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Euclid’s algorithm in complex quartic fields
by
RiczawrD B. Laxem* (Buffalo, N. Y.)

1. Introduction. An algebraic number field K iz called euclidsan if
for any integers a, i == 0 of K there is an integer y of X such that (¥
denotes norm)

1) |V {a— )] < |X(B).

We also say that K has a Buclidean Algorithm (E. A.). A enclidean field
hag class number 1 (unique factorization). It is wellknown (see, e.g.,
[11, [3]) that exactly 5 complex quadratic fields and 16 real quadratic
fields have an B. A, '

In this paper we consider the clasy # of complex guartie fields H
which contain a complex guadratic subfield. We show that 51 fields of
this type (30 not counting conjugate fields) have an E. A.

THEEOREM. Let K be a quadratic extension of B with velative d@samm@nant
8 (8e F). In oll of the fotlowing 51 eases K has a Buclidean Algovithm:

(i) F =Q(Y—1) and N6 <52 (14 cases).
(i) F =Q(Y—3) and N5 <133 (36 cases).
(i) =@/ —7) and N5 <16 (4 cases).

{(The fields Q(}/——l ]/—3) G — 1/— 7), and Q(I/ 3, V—17) are each
counted twice.)

The proof generalizes that of Perron [10] for real quadratic fields.
In fact for (i), (ii} the key Lemmas are special cases of results obtained
by Perron [8], [9] for guite a different application. (See also [7].) For
these special cases we give new proofs which are simpler than, and were
obtained before learning of, the proofs in [8], [9]. Furthermore, the present
paper appears to he the first to treat the B. A. in fields of this type (cf.
(6], pp. 174-176). :

The problem of determining all quartic fields K in the class 2 which
have an E. A. is in quite a different state than the problem was for quad-
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394 R. B. Liakein

ratic ficlds from 1927 to 1948. In the guadratic case general methods
were developed to handle infinite classes of fields before it was shown
in [5] that no real gquadratic field with diseriminant greater than 16384
ean have an E. A. In the quartic case the problem was already in 1952
reduced to a finite numbor of cases [2], [4] In faet, the bound in [2],
p- 85, shows that for a totally complex quartic field A to have an B. A. if
is necessary fthat its diseriminant Dy satigly Dy < 24846000. We ghall
deal with the problemn of showing nonexistence of an I, A. (in such fields)
in a subsequent paper.

2. Table of Euclidean fields. The following fields X = #(Vu) are
euclidean. Two values of w in the same eolumn (e. g. L4414, 1 —44) are
conjugate over F and generate fields K, &' which are conjugate over ¢.

@) F=Q0-1),K =F¥p).

~3| ¢ | 144 | 1424 | 5| 144 | Br4d | —7] 3424
# 1—4i | 1—24 1—1 | B—44 394

wo | 9 |16 | | 20 |es| a2 | @ |40 ] 2

(ily 7 = QV—=3), K = F(Vp), o0 = $(—1+4V=3),

’ 1+4gr~—1 1—do | B ’*3—:—49! 1+2p0 7 ‘ 1--8p
—3—dg| | G+dg —T—dg|—1—2¢ —7—8p
we| 13 |16| 21 a5 87 | a8 | a0 | 7

5—4p 1—8¢
P lotdag | 2|72 948,

—T-do l —3-4-3¢ ‘ B+120

—1L—4p| —11—8¢| —7—12¢
No| 61 Jeales| 7w | e | er | 100
1—2p | =1+4+2p| —11} 5--8p | 1412¢ 94y
# } 3+2¢ | —3-2¢ } 13+ 8¢ ‘mn_m@r 13+ g
wo| w2 | wmz [aa| 120 [ 133 | 1ss

(i) 7 = Q(/ =T, K = PW/a), 0 = H14+V=7).

—w _3’%1

How—1

ol 8 |91
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3. Outline of proof. Let F be a complex quadratic field and let
K =P (Vu), e P. Then, if zcK and N xr denotes the relative norm,

N(z) = N Ngyr®) = |V gp(o)®

Therefore in condition (1) we may replace the absolute norm ¥ = Ngy
by Ngp. Since morcover the norm is multiplicative, X is euclidean if
and only if for any £ = «/f« K there is an integer ¢ of K such that

2) o N gr{E— ) <1

But if o =a+bpuecK (a,beF), then Ngp(a) = at--pub2. Therefore
the problem is formally the same as for guadratic fields, as in [10].

Now let ¥ = F,, F,, or F,, where F',, denotes @ (¥ —m). 8o ¥, = Q(1),
Fy = Q(p), F. = ¢{w), where g and o are as in Section 2. Let O and O
denote the ring of integers of K and of F, respectively. By unique factor-
ization in O, we may assume that K = F(Vu) with g in O, and square
free. There is a basis {1, 2} for Oy as an Op-module, where 2 depends
on the residue class of p modulo 4. The various cases can be treated at
the same tinie by using the notation

(3) : Q=& +Vue

with &ppfopri&te g, ¢ in F. In particular £2 in Oz and p/e? = 8/4, where 8
is the reldative discriminant of K /F. If now & = a,+bl/ysl( and.y =r+
+880eO0x (&, be F; v, 5¢ Og) then

(4) Ngplé—y) = 8{eb—s)?[4.

Thus by (2) and (4) K is euclidean if and only if, given any &, be .F there
exist r, se Op such that

(a—e's—¥)2—

{5) Ha—ze's—r)2— §(eb—8)2 4] < 1.
The basic tool is contained in the following Lemma.

Tinna. Let o(Fy) = 3/4, ¢(Fy) = V134, ¢(F;) = 1/2, and let ¥ = F,,
Fyy or B If d is any complexr number with |d] << o{F) then & hos the following
property: given eny complem 2, there is o “homologous” mnwmber 2 (4. .
g—ze Op) such that 22— d] <1, Moreover the constants ¢(F,) and ¢(Xy)
are best possible. (The geometric proof ig sketiched in Section 4.)

Prootf of Theorem. Following [10] we set

" (6) d = 5(eb—s)2/4,

7 C gy =a—&'8 g =a—es=r."
( 1 ) .
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Thus the inequality [¢*—d| < 1 in the Lemma i3 exactly inequality (5).
Now let a,be F be given. We see fivst, from congideration of the

lattice O in the complex plane, that it is possible to choose s Oy such

that ‘

(8) leb—sl? < 125 1/3; 4/T.

- (We give suceessively the results for Fy, ¥y, F;.) ‘Tt follows from. (6) and
(8) that |d| << ¢(F) so long as

|6] < 6; 3V13; 7/2,
or
(8) N§ << 86; 117; 49/4.

If (9) is satisfied then by the Lemma we can choose 7e O, (thus defining
2 by (7)) such that |22—d] < 1 — that is, such that mequality (5) holdg.
Congequently for § ag in (9), K is enclidean.

This accounts for 39 of the cases listed in Section 2. The geometric
arguments used to prove the Lemma immediately yield three more cases.
These, plus the remaining 9 cases are obtained in Section 5.

4. Geometrie proof of the Lemma. As before let F = F,, Fy, or F,.
We shall say that a complex number & is admissible if it has the property
stated in the Lemma: for any complex 2, there is a homologous z such
that [#2—d| < 1. Let € denote the complex plane, and B(d) denotes the
open dise jg—dj <1 T = T{F) is the group of all translations of € by
integers of F: £(2) = 2+ a {ze €) for some ae Op. Thus ¢ is homologous
to 2, if and only if 2 = ¢(z,) for'some te L. By a fundamental region % we
ghall mean & closed region whoge T-tranglates cover ), and having ne
two interior points homologous. For

8cC 8 ={? 28}, af = {ar| 2e 8}, § = {5] 2 8}

(complex conjugate).

Now let # be a fundamental region and let de €, We say that 4 is
R-admissible it #2 < B(d), Thus 4 is admisgible if and only if &is Z-admis-
sible for some fundamental region. %. The Lemma is proved by exhibiting
& mall number of fundamental regions #; such that every d with |d| < o(¥)
iz #;-admissible for gome j. We sketch the proof for F = 7, and F =~ F.;.

Proof for ¥,. Let #, be the (closed) square with vertices (41/2,
+1/2). Then % is the vegion [#| < 1/4—y* (region ABCD in Fig. 1).
Any point d =z 4-y¢ in the region Lo

C 8 gl < VL =% —1/2, o] < V(I —4f) —1/4
is Z,-admissible. (8, is HAJLCM in Fig. 1.)

&
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Next let %, be the parallelogram with vertices 4-(0, 1/2), 1-(1, 1/2};
# (BEDGA in Fig. 1) is given by o= 4" —1/4, y>=20'—1/8. Any
point d in the region §, (AHY in Fig. 1) is #;-admissible. 8, is bounded
by AN: o = 0; AH: o®+(y+1/2) =1; HR: (v+-1/4)*+y* =1, and

RN: @ =t—4i(1+168)7" y = 22218+ (1+16#2)7
(14 KEK0)

(R = (1/1/§-1/4,1/‘I/§). RN iz fraced by the tip of the unit normal
to the parabolic arc BE.)

Pig. 1

Now forj = 2, 3, 4 let §; be the region in the jth quadrant symmetric
to 8 8, =—8,8, = —8,8, = S,. Set B, =g, R, = iRK,, A, = &,
(all fundamental regions). By symmetry any point of §; is #;-admissible.
Hence every point & in the region & = §u S, U 8, U S, v 8, (HNJLPM
in Tig, 1) is admissible. In particular every d with |d| < 3/4 (dashed circle
in Fig. 1) is in &, so the Lemma is proved for F = F,. [Note that &
inclndes its boundary, escept for the two points (£3/4, 0).]

Proof for F,. Tt is easily checked that every point 4 with [d| << 1/2
is #;-admissible for one of the following fundamental regions: %, is the
rectangle with verfices (4-1/2, :I;ﬁ/é). #, iz the parallelogram with
vertices <-(—1/4, V7/4), £=(3/4,V7/4); and #, = &,.

The geometric proof for ¥, is omitted. It is considerably more com-
plicated and delicate than the others. Moreover, the proof given above
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for F, immediately yields (see Section b) three extra values of x in the
“table in Section 2, which are not given by the Lemma alone. On the other
hand no extra values of g are obtained from the geometric proof for Fj.
Similazly, the constants o(F,) = 3/4, ¢(¥Fs) = V13 /4 are best possible
{cf. [8] and [9], p. 135). But there is no benefit, for the present application,
in obtaining the Dest possible value of ¢(F;) (which appears to
be 9/16).

5. The remaining cases.

(5.1) First we consider the case ¥ = F|,d = p=1mod 4, 80 ¢ =2,
g =} in {3). Denote

(10) Ny (a, b, r,8) = (r+38/2—a)—p(s/2 D)2

Ag we saw above (cf. (2), (4), (B)), KL = Fl(ﬁ) is euclidean if and only if
for every a, be Fy = Q{i) there existr, se Z[] guch that [Ny (a, b, 7, )| < 1.
By the remarks at the beginning of Section 4, it is sufficient fo show
that for every be<@(¢) there ex:ests se Z[i] such that d = u(s/2—0)? is
admissible. Since

(A1) Neybyrys) = Nyla, b+m,vr—m,s42m)

for me Z[i], it is sufficient to take b = @ 4-y¢ in the fundamental region
|l << L, |9} < 4. The further relations

(12) Nu(a b7, 8) = Nyla+0f2, b+2[2, 7, 5+2)

for { = 41, 4% allow us to further restrict b = z+yi to the square
Z: < L lyl< L

There are three values of p (with Né > 36) for which the proof of
the Lemma shows immediately that K = Fl(l/ﬁ) is euclidean: g = 544,
544, —17. In each case the region u#: is contained in the region &;
hence for each be #;, d = ub? i3 admissible. (Note that for larger values
of § =pu=1mod4 this simple method fails: for certain be &, pb? iy
surely not admissible.) '

(6.2) Next let # = ¥,
g ==1Je in (3). Denote

Nu(a, b, 7, )

= £ 1+24 (mod 4), 6 = 24y, ¢ = 144,

= (r+s/(1-+4) —a)?— p(s/(L44)—b)2

As above K = Fl(l/y) Is euclidean if and only if for every a,be@Q(i)
there exist r, ¢ Z[i] such that [¥,(a, b, 7, §)i < 1. By relations analogons
to (11) and (12}, we may restrict b = x4-yi to the square #,: |zt y| < 3,
with vertices (4%, 0), (0, +-3). Woget d = ,u(s/(1+d)~b)2. If b2 << 5 /4|ul,
take s = 0; then |d] <X 3/4, s0 d is admissible,
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"Now let u = 3+2i. We need only consider the region # = {be 4,,
2= 3 /41/15}, which congists of four symmetric pieces (cormers of ).
By a symmetry argument Iike that used in the proof of the Lemma for
B, it iy sufficient to deal with only one corner, say the one at b = }:

T b= sty t<e<l W<i-o BP2>3/4Y15.

We may take as a fundamental region # = R, U R,, where I, is the
trapezoid with vertices (0,0), (1, 0), (, .66), (0, .34); and R, = —E;.
It is easily checked that for each be %, d = (3-'—%)62 is Z-admigsible —
i.e., for aeZ and be %,

|¥o(a, b, 0,0)] = |a>—(3+20)02 < 1.

(The worst part is ¢ = .344, b = &, for which |N.{(a, b, 0, 0)] — 9997)
Thus = 7, (l/ 3-+2i) iv euclidean.

(5.3) Now we consider.the case I
N (e, b,r, 8 as in (10). .

Just as in (5.1), in order to show that K = FE(I/,E) iy euclidean, it
is sufficient to show that for each be Fy = @ (g) there exists se Z[p] such
that d = u(s/2—b)? is admissible. The relations (I1) for me Z[o], and
(12)for { = £1, 4, -+ o% allow us to restrict b to the hexagon &, centered
at the origin, with vertices at Z{(—3)/6 (£ = 11, g, &0 — i.e.,

(0, £V3/6), (+1, +V3/12). By the Lemma, if [b}2< V13/4|u| then
(¢ = 0) d = ub® iz admissible. Hence just as in (5.2) we need only consider
the region & = {be Fy: B*> ]/1—3/4];4}, which, for 117 < |u|* < 201,
consists of six symmetric pieces. Because of the six-fold symwmetry in
Z [p], it is sufficient fo deal with just one corner, say the one at b =
(2+0)/6 = (3, V3/12):

=TI, 0 =p=1mod4, with

%:b—atyi 18<s<L/A, 0<y<(3—a) /1/3, bi2 = V13 /4]

We shall gshow that K = Fg(lf,u) is euclidean for g = --11,5—38p,
9—4p, 1+125 (and the complex conjugates of the last thres). In each
case it remains only to exhibit a fundamental region # such that for
each be%, d = ub* is #-admissible. It is possible to take # = R, U By,
where R, is a parallelogram and R, = — R;. For each value of x4 we list
the vertices of Ey.

g o= —11 ¢ (~.915,V32), (085, V3/2), (—.84,V3/4), (16, ¥3 [4),
4 —B—8g : (2674, 0), (1.2674, 0), (.2674, V3/4), (1.2674, V3 [4),
wo=9—4g : (0,0),(1,0) (3/4,V3/4), (1/4, V3/4),

= 1+120: (0, 0), (Lj2, V3[2), (L[4, 3V3/4), (~1/4,V3[4).
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Note that £ is given in this gimple form to simplify the description,
bub it makes it very delieate to check that the condition [a®— ub?| <1
is actually satisfied. Thus for u =5—8p, a = .2674, b = (2+0)/3,
la®— pb?| = .9994. It is possible to get somewhat more comfortable upper
bounds for |a2— ub¥, but only by using more complicated fundamental
regions Z. '
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Indépendance statistique d’ensembles liés a la fomnction
“somme des chifires”

par

JEAN BESINEAU (Paun, France)

0. INTRODUCTION ET PLAN DE L’ARTICLE

0.1. Infroductien.

a) Des problémes de R. Salem, E. G, Strans et A. 0. Gel'fond. A la
fin de [11] R. Salem pose (p. 62-63) une question sur le comportement
& linfini de la transformée de Fourier d'une mesure portée par la gomme
de deux ensembles de Cantor. B. G. Straus, plug tard, conjecture le résultat
arithmétique suivant qui résound, en partie, le probléme d’analyse harmo-
nique de Salem. Soit g,, g, deux entiers > 2 premiers entre eux, s 72 Sy
les “sommes des chiffres” en bases ¢, et g, (respectivement): Trensemble
des entiers n tels que s, (n) < 4, 85, (n) < B (A, B donnés} est fini. Toujours
dans Je méme egprit, A. O. Gel’fond qui dans [5] avait obtenu des résultats
sur la somme des chiffres, pose le probléme suivant ([5], p. 265) quw’il
gqualifie d’intéressant (1): Démontrer que:

card {n < a; 8,,(n) = ¢, {mod 'ml); 85, (n) = ¢y (mod my)} = + O{a27)

MMy,
‘ (0 < ae< 1)
si{mg, g1 —1) = (My, g5 —1) = 1. '
h) Ce zont des problémes du genve de celui de  Gelfond qui seront
ici résolus. Nous les énoncerons sous forme “d’indépendance” d’ensembles
relativement & Ia densité d des suites d’entiers. '
On a par exemple le résultat A’indépendance suivant:

dfs,, (n) = ¢, (mod m,), 5,,(n) = 6, (mod m,))
‘ . 1

By Dy

= dfs;, (n) = ¢ (mod ml))-d(s%(a-b) = ¢, (mod m,)) =

(1) Dans Ie m&me- article Gel’fond pose denx autres probldmes, dont l'un est
réaoln par M. Olivier dans [10].



