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1. Introduction. In the present paper K — K .(I/Z) denotes any fixed
guadratic field of the diseriminant 4 <1 and & stands for classes of
ideals in K (either in the usual or in the restricted meaning; ef. [97, § 1).

Leti ¢ be any natural number > 1 and @, denote a group of reduced classes

of regidues I (mod g} formed by the residues of the idealnorms Na with
{a,[¢]) =1 and a belonging to the principal clags ],. Let @1{q) be the
order of ;. Then for any class & there are as many different normresidues
Na(mod ¢) with ae® and (1, [¢g]) =1 (cf. [6], §4), and we have

(1) op () < ¢1(q) < ¢(g)

where ¢ = ¢() stands for a positive constant < 1 and ¢(g) denotes the
number of reduced classes mod ¢ (cf. [18], §§ 107, 108). The number of
classes & will be denoted by h. '

The aim of this paper is the proof of the following

THROREM. Let ¢ = a(g, ]) be a normresidue mod ¢ witl (@, q) =1
Jor the class & of ideals in the quadratic field K (I/Z) and let ={x; K, ¢, a)
denote the number of primes p < @ such that p = a (mod g} and such that
P = Np with peR. Then for any constant 4 > 0 there is a corresponding
consiant B > 0 such that

\ 1
(2) _)j y ‘maxmax w{e; K, g, ) — ——— Liz| &

R gecollfigg—- B, MR} =2 hegpy(g). (logz)*

with the constant in the notation depending merely on A and A.

A theorem of this type for the function y(w; ¢, @) (denoting the sum
of logp extended over all prime powers p* < @ such that p* = g (mod ¢))
was first proved by Bombieri [1]; his proof is based on the distribution

- of the zeros of L-functions. Gallagheér [11] gave a more direct proof based

on the Pélya and Vinogradov’s estimate for character sums ([16], . 146).
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As good estimate for the character sums in K (I/A) not being known, in
the proof of (2) we shall follow the method of Bombieri.

Bombieri’s theorem has been used in some additive problems ag
2 substitute for the extended Riemann hypothesis and for the dispersion
method of Linnik (cf. [4], [2]). The theorem of the present paper may be
nsed for similar purposes if in the given problem the set of all primes
is reduced to that of the primes in the sequence of idealnorms of a given
clags & in K A).

The result of the present paper has been announeced in [10].

2. Preliminaries. It the proof of (2) we shall need the following
anxiliary theorems.

(i) Let yq denote charadters of classes & of ideals (in any algebraic num-
ber field) and let yx, be @ Dirichlet's character mod g. Then the function

O ) gale)
(3) C(8y gy 2xw) =2x—£—l\%§ﬁ—(“

(where § = o-+it, o > 1, the sum is over all integer ideals a 7= O} is identi-
eal to some L-function of Heoke

(4) 208, s 20) = £8, 1) = Do

where ¥ is a charaster mod [¢].

For the proof see [9], Lemma 1.

(ii) Let again & be the classes of ideals in any fixed algebraic number
field and let g == ¢(&, ¢) denote the namber of mod ¢ incongruent ide-
alnorms Na with (Na, ¢) = 1 and ae K. By what hag been proved in [6],
p. 260, this number actually is the same for all classes ]. Therclore we
ghall write simply ¢ = g{q).

The reduced classes [ (mod g) for which there ave idealnorms Na
with Nua =1I{modq) evidently form a grouwp & = H,+H,+...+H,,
the H, (1< < 7) denoting its different elements. Lot ¢ = Hy4...+H,
be the subgroup of @ containing the normrests of the prineipal class of
ideals. Since in the group representation

G = HG+H, G+ ...+ H,G,

any two cosets H;Gy, H;&, are either identical or they have no common
element (see [13], §6), we deduce thati the normiests of any class &;
are those of the prineipal class &, multlphed by a suitable number %
with (k;, g) = 1.

Considering that the group of characters of any Abelian group is
isomorphic with the group ifself (see [13], § 10) we deduee that there it a
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group I' of characters y, mod ¢ of order g corre"sponding to the subgroup &4
in the group of all reduced classes 7 mod g.

XemyA 1. Let a denote the veduced normrests mod g of the principal
class 8, of ideals. Then the reduced normrests of any other class R, ave = ak,
(mod q) where ¥, stands for a suitable constant with (ks g) = 1 depending
merely on the class R, and we have

(5)
M (R ) Helaky) (N @) 75(a) =

Xg* I'

gh if  aeSy, No = ak; (med g),
0 otherwise. '
Here yxq runs through all ihe characters of the elasses K (h in number) and I’

is a suilable group of order ¢ of Dirichlet’s characters y,, isomorphic with
the group of the numbers a

Proof. By the orthogonality of the characters ([137, §10)
_ o O O&=28
2 Ao (R} 7a (R) =—‘{ z ,
iy 0

Hence the sum (5) differs from zero merely for ideals qef; and thus Na
= ak; (mod ¢q) with a fixed %; and ¢ running through the normresidues
(9 in number} of the principal class ], making the group ;. Considering
that I" is the group of all characters of @; we deduce that for any a’ <G,

if
2, %) 7,() ~{

b otherwise.

Hence (5) follows. It is a correction of the erroneous formula (12) of [6].
In what follows we shall deal exclusively with Hecke’s L-funetions

®) G, )—Z el

with chavacters y mod‘f on the quadratic field of the discriminant A.
Write

(7) d =;—V\'AI-N%.

otherwisge.

o =o' (moed g),

(s = o+it,o>1)

The following properties (iii)—{v) are particular cases of what has been
proved for Hecke’s L-funections of any algebraic field.

(iil) There is an absolute cowstant ¢; > O such thal in the region
G {0 1—cflogd(l+ 1) = 3[4} -

there 48 no zero of the funetion-(8) in the case of o complex y. Por at most
one real y there may be in G a simple zero 1 — 5 of {{s, x); it is real and

B> ea(e)d for any &> 0 and o suitable cy(e) > 0 (independent of d).

5
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For the proof see [5] and [T](%).

(iv) Let N(T) denote the number of zeros of the function (6) in the rec-
tangle (0 < o<1, =T <1) (). Then for wppropriate ebsolute constant
¢ > 0

(8) : N(T) < o5logd (L + |7T])-

For the proof see [5], Lemma 5.

(v) Let e =1 if y i the principal characler mod f, 6 = 0 otherwise
and let o vun through the zeros of the function (8) (*). Then in the strip
—l<<og3

¢ 1 2
(9) —C—(s,x)— 2 S_Q+~S~_‘li<1ogd(1+\t|)
la—el<l

with an ebsolule constant in the notation,

For the proof see [5], Lemma 6.

(vi) For any fived noatural number ¢ and the quadratic faeld K (V 4)
let I' = I, be the group of Dirichlel characters x, as eaplained in Lemma 1
and let

{10) (g, = Z‘ g () £,

l=smq
If Nia, T, x4 xa) denotes the number of zeros of the function (3} in the
rectamn, Jle (a< o, BT, dg) stands for the number of natural divi-
sors of ¢ and 3 dmote's a sum over all characters of the group I excluding

% .
the principal character xS, then for any w«e[1/2, 1] we have wniformly in
22, M=2,T=2

(1)
) — 4(1-—-a)
> S “—-*—2 [z ( Xa ! N(a: y g %R) z T(ﬂ/ﬁ )8 = ]OgI%MP
cz? e Y

with the constant in the notation depending merely on A.

(4 Leb § be the set of functions (8) where gg runs throngh the characters of
the elasses R and x, throngh those of the group I'(of. {ii)), Using the uniqueness theorem
for Dmchlct series one can prove that no two funetions of the set §F are identical.

Hence exactly one of them has a pole at s = 1 and at most ona has an exca’phona}‘

. zero, since the corresponding is true for the L-functions (4) with characters y* mod [q'i
SBec also [9], Lemma 2, footnote(s).
(2) Multiple zeros being counted according to their order of muluphmty
(%) Multiple zeros being allowed for by repetition. -
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For the proof see [9].
If ¢* is the conductor of the character %qy then 7*lg and the sum
(10) satisfies

¢ i (7, qd
0 _otherwise

=1 and ¢/¢* squarefree
12) g =\ e s ’
(see [12], §20 or [3], p. 148).

3. The fimetion ™ (2, ¢). In the subsequent proofs we shall use the
following notation:

log V. if
Ay = 57
0 . otherwise; .

a =p* (p—prime ideal, & =1,2,...),

A'm) = Afn) it » = Na and = 0 for other n;

(13) w7 = ni 'y Xas A8) =

1 e--ico a';s"‘l Q’
— 5= L AT AL

(e>1,8>1)

{cf. [14], pp. 30-32). For any class of ideals &; and for any e = a(g, ]))
with (a, ¢) = 1 and such that there is an integer ideal qe®; with Na =
(mod gq) let us write

(14) plog R, g0 = D
aefty
z}thﬁa?modq)

2

A(a),

%

(1) w0 Koy @) = [ vl Ko, 0, @ =

] a@n=a(modg)
97.:Np"’,pf"s.ﬁ,b-, k=1,2,...

PR

(&—mn)d (n)

¢--lco

5t
Brihgs(q)  J S(s+1) 75 (8

('9: qu Za)ds

{(e>1,8>1),

B(z; $u: 45 0) = wil#; R, ¢, a) —2%2hen (9),

maxmaX[E(z 8, 4,0, E*(Q;Qf) = max By, g).
R oa(nR) . Y=z

Ez, q) =
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The identity of the Iast two expressions in (15) is a con-
sequence of (5).

TEMMA 2. For any A €1 ond z — o0

an B (z,1) < & (logz)™
with the constant in the notation depending on A and A.

Proot. It follows from §2, (ili) (withd = |4/"*/n <€1) and (4),
(8), (8) that for appropriate constants ¢,, ¢s, ... (depending merely on 4)
there are no zeros of £(s, 71, z¢) in the region o= 1—¢,flog(3 -+ [¢]) and
in thiz region [&/2(s, xi, xa)l < cslog* (3 + )+ s —17" Now we use
(15) (with ¢ =1, ¢ =1, ¢ = 1+ 1/logz) and move the part of the path of
integration with [#<{,= exp (cﬁlflogm) to the line o= o, =1 —¢,/log(3 +1,).
In doing this we pass no other singularities of the integrand than
s = 1 which iz a simple pole of '/¢(s, x1, x%) (x%— the principal char-
acter) with the residue —1 (cf.[157, Satz LXIII). Thus we get the estimate

(18) wo(wy &, 1, 1) —22/2h <€ sPexp(—c,¥loge),

whence (17) follows. _

TLeMMA 3. Let N and B be arbilrarily lorge positive constanis, @

>N, B) > 1, w2 2", 5, o 4} and < X, = (logz)". Then
& P () xoy %) < @ (loga)™?
with the constani in the notation depending merely on N, B and 4.

The proof begins as in the previous lemma except-that now (3) is
an integral function (see footnote (*)), in the region ¢ = 1—¢,/logq(3 + [#]}
we have . '

1L dgy 29l < slog’ g (B[t + s — (1 — 8}

(where 6 e(e}q® for any e>> 0) and we take o, = L —o¢,/logq(3+1,),
1y == exp(cﬁl/logw). Moving the path of integration in (13) as before we
pass at most one singularity of the integrand. It iy the real exceptional
zero g == 1—8 of £(s, 14 xa) (f existing) and for e = (2N)"" it gives
a regidue _ _ '

< wzac(a)q"“ << m?.(logm)-—.ﬂ‘ .
The integral along the contour does not surpasg the right-hand side of
(18). This completes the proof.

4; LevMMA 4. Let N and A be arbitrarily large constanis, & — oo,
X, = (loge)", X <4, D= 2, M == 2 and let @y, denote the set of integers g
such that . :

l<g<s M, dig<D.

icm

A mean value theorem of Bombierd's ilype 143

If 3" denotes summation over the primitive characlers gemerated by those
X
of thqe growp I' = I’y (see § 2), then

: (logz)®
19) O B0 < + +
= {(1ogz) D }

+ (logz)® max M™! Zy maxmax 191(Y 5 2g> 2x5)]
Xy M<X i

with the constant in the notation depending on A, A end N,
This ig an analogous of [1], Lemma 4.
Proof. Let us write

200 YEea=)+2

<X Ry  HOx

= 45,

Since any prime power ig the norm of at most two ideals in K, we
have by (1b)

(o K&, ¢, o) < (loge)

zzn=u(mod )

(2—n) < (loga) (“‘% bt q)

whence, by (16),
(2, q) < z/g logz it ¢< X <o,

Hence, by Lemmsa 2,

2],
el n<PED+ ) 8
gsX q
dg)>D
22 2logz d(g) 2* 2(log,?:)?'
< {log2)4 T < q < {(logz)* T
d%&ﬁ:sb
v (15) and (18)
25 8 ;) (@) (e )-
pilE; Ry gy ) = h%(q) < gm( PACENC A
Hence, by (16),
(22) e (B2, @) < lwales 10— 3221+ ) twalz, 2l

. 27X
Summing {18) over all classes & we get

(23) Ny wi(2, p)— 3 €& (loge) ™4,
In the same manner we can prove that

| .
(24) 2 a(e D) L o
ZH 00 TING.

—0
xq—xq
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For any y, let xq denote the prlmltwe character generated by %o
(ef. [16], IV, § 6). Then for any y, 7 xg We have by (13)

m )= D M@ e—n)d (n)
nsz’f‘qﬁim,...
=g~ Dt mzap®)e—n) A (n)
(n?,"gid

n=NJJ7"',Iar=1,2,...
= yu(e 25, 1)+ 0 (2 3 10gp) = wi(2; 25, 1a)+ O (log #log g).

;,7.'6:,._;5

ply

Hence, by (22), (23}, (24) and (18)
o

. z
b () B (2, ¢) <€ = )A w7+ va(g)z(logz)®+ Z max m "XITM(J: qu Za)l-

(logz
xq#zq
Hence by (20), since ¢,(q) > @(g) (see (1)),
FE 1 1 .
(28) &y £ ) 4 Xz(loga)2+
" loge)™ &g 7(d)
-7 1 -
+ Z mMaX Max [y, {4 ffq ol
P 8 p1(q) ) PR usa
E t P

-4 1 ‘ .
<W+C§ p:{q) Zlﬁixrﬂ;;\qul(y, Xar Xt
. 0y

zq¢xa,

Let the conductor of z, be ¢* (¢*1¢). Then |

DI

2 maxma;x[w (’t/, X1 %a)i

oo p1(9) - xg
Y N\ 1
< Z _Z AKX |y (Y5 2y 2ae)i 2, e
ey 2 ues 9e8) aas P
Qwa‘\lji

Sinee (q*r) = ¢(g")p(r) > ¢* ¢(r)flog X (see [16], T, Satz 5.1), this does
not exceed ‘
(26) © (loga® D' (g% D maxmax|ps(y, 1p, 1a) -
Q*EQX Ig» ARy
Lebt g, # x5, ¢< X, = (loge)™. Then by Lemma 3 (with B = N -+ A~ 3)

2%

2 QHZ mﬂxmfbx M(y, Las Yo L —

i (log=)4¥2 "
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Splitting the remaining sum (over ge[X,, X1) into < logX parts v, 2U)
we deduce that

5" g*lz ma;xma;ﬁ%(% Xgr Xs)]
quX
a=X,

& (logz) max M 2_‘ E m&XTﬂ&X 1 (") 240 Zﬁ)l
Xy M<X Qa 2y RS

Hence, by (25) (26)

£y << )A +(logeY® max M- ZZ mzuxma.x Wl(@/:xg, )l

M X
Xoi-i- = QM 7’1

whenece (19} follows by (20) and (21).

5. Proof of the estimate (28).
Lnaa 5. Let @ == fi- iy run through the zevos of £(s, x4, xa) (2 5= 200C)
m G << o<1 (where ¢, stands for any positive comstamt < 1/8) and let
v1(2, %g, xs) be the fumction (13). Then for g < 22 and.Te[2, 2]
2te #%(logs)?
le(o+1)! Vi

(27) (2, Xar Ka) £
: f=1r2
=T

with the constant in the notation depending merely on A.

Proof. Using the properties (8) and (9) of the funchion (s, )
= (8, %4y xa) We can prove (cf. [17], Anhang ITT, Lemma IV) that for
any I'> 2 there is a line I, (1 = f,e[T~1, T], ¢, < o< 1-+¢,) such that
the distance between I, and any zero ¢ of £(s, ) is > 1/logqT and thus
for all sel, we have {'/{{s, y) <log?qT. And there is a’'line I, (t = —¢,
e[—T, —T+1], ¢,<< 0 < 14+ ¢,) with the same property. This property
possesses also ‘some broken line l,e (¢, < 0 < 26, [ < T) satisfying the
following condition: For any integer me[ — 7, '] the part of I, with ¢
efn,n-1]is of the length < 2

We replace the part —f, <<, of the path of integration in (13) -
(where we use ¢ = 1+1/logz) by a contour along 1,1, I;. The contour
integral is evidently
2*logtz

7 + 2 logt 2 |

€

and the sum of residues at the poles ¢ being passed over does not exceed _

Q 1270 B zilogzz)_
<Z Z PIZE] +0(2**log?z) = Z +O( 7

Wls:T AT s y=T
Ao g=1/2

Hence (27) follows.

10 — Anta Avithmatinn ¥w%T
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TEMMA 6. Let B (2, ) be the function (16). Then for any constant 4 > 0
there is a corresponding constant B = BA +213 such that

(28) N, p €tlogd) ™ i X < {loga) "

=5 4

(The constant in the nolation depends on A and A.)
Proof. Splitting the sum of (27) into parts |y| < 1 and 2=l |y < 2™
(L m <Lloge) we get '

A o—tm N1 i4p
(29) _-.———1 & 2 PR
= lele-+1)1 &7, e
ﬁzll— )

By partial summation (ef. [14], p. 18, Theorem A)

1
VA me 3 PN (4 27 g )+ loge) [ Nle, 0, iy, 40) 2 daf.
[yl Ipl=2® 17
B2z
Hence, by (27) and (29),
' 22(log2)?
max |1, (¥ 5 Zgs 2] <—IT“"““ +

y<s
1

Floga) > 2N, 9%, gy et [ N, 2, g, 20)2 ]

am—lor 12

and thus (cf. Lemma 4)

(30) w3 " PAKISX 939 s 45
Qpr 1g IR US

: 21 . s T .
{l‘fz (logz) + 0gz >"T 2—2"‘{@”2'__" ma:xN(-%,?,”‘, s %R)+

T M ﬂm:-:ggv @ X A
1
[ 3T N (e, 7, gy )
1% QM ;‘1:
2(lo loge ral
<Mz (ng) ﬂ’i 2 2‘“2”“ma,x{ 2 maxN(a; :Xa:%a) }
gm—1

. 2{1oo 22 |
<’ (logz) + (loge)? max ( 111&1:{22 maxN (@, 2", 2y 28) %" ‘[

T M :
. ¢ 2T &;T Q.M 7q
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Since ¢ e (x,)i* =1 for a primitive y, and = 0 otherwise (cf. (12)),
by (11)

4(1—q)
VZ T, Xa_zr 2a) L g D+ (]1[21' =Ty loglgs MT.
Uy Xy
Hence, by (30) and (19)
loga)®
N et 2 {log )
q'é/'.‘"z # 0 <z ( (log =)t 7 +
3 2*ogy ~ ) o ] o1
+(logz)® max MT + M~ (logz)*=D* (logz) maxe M-
XpsMeX

The restrictions imposed on M, X and T are W< X <23 T 't
(ef. Lemmas 4 and 5). Further on we use D = (logz)y**, T = M (logz)4*®,
X < 2" (logz)™*~" and ge

ﬂ(l—u L

(31) DB, < < s +2(logz)t4+ max 2 52

a=X 1/2=<Ca<C]

22
<

2
< + z(logz)&A—i—ﬂﬁl max zﬂM?olZ-En
(logz) 12<esl

(ef. [1], D. 214). Taking X = 2"*(logz)~8, M > X, = (logz)¥ we have
{cf. [1], p. 215)

At <L z(loga) ™+ z(logz)™®  for all aef1/2,1].
Now (28) follows from (31) if we take N/2 = B = 5A—j—213.

6. Proof of the estimate (37).

LA 7 Let C be any consiant > 4, 4 = 40, B = 54 4213, 2 2= 2(C)
and let

¥2<g<y where 2<y < 2(loge) .

Then for almost all qe(y/2,y] (with exception of < y(loge)™C integers of
this interval)

(32) 'Pl(m5R7Q1a)_

m2]2 ) 72 ' )
hepy (4) < %_(Q)(logm)g if  wme[z(logz) O, 2]

and @ is o normresidue modg with (a, q) = 1 for the class K. The constani
in the notation depends on ¢ and 4.

Proof. Having fixed 2 and ¥ let us eall qe(¥/2, 4] a normal integer
it (ef. (16))
22

33 B —
©9) NI
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Let N, denote the number of the excepbional ge(y/2,y] not satisfying
{33). By (28)

&® #?
Y pu(g)l0g?)

whenee (since g, (g) < y) N, < y(logz)~% For any of the normal g«(y/2, y]
we have by (16) '

30 < (logz).‘l!

EER P

o (9) p1(g)(logz

(since z< wlog®e), the desired result.
Temma 8. Suppose

2 mz sz
# &

"Fl(m;ﬁﬂ 1, a)— )SU & (g)(logz)a S

&

)= Yo file) = [ flu)du,

naw 0

fule) = WZ'FO(——(L?E—E) if
& (logx)

(A stands for o positive constant). Then

o, =0,
and

Te(®y,y #y], #y > 4y > 4

ax
{34) fle)y = 202+ O ((lowm)‘”z)
if ‘
welwy, ] = [o+olog - @Lyy By~ wzlogHAm #s].

Proof (ef. [14], p. 35, Thecrem C). Since f(w) does ‘not decrease, for
any @, ¢(2,, 2,) and any (%, 2;) we have

: 1 w_ _—— Julow) — 11 ()
j(wp)é-—w_?c:x flu)du ===
0
_ ao® — awi 4 0 (aa*log ™ m) . mﬂf”___.-_... )
= o— = a(@+ap)-+0 {w—a)logn |’

whenee (taking o = m, +@,log™* m,)
(35) ' Fl@y) < 202+ 0 (amylog™ " a,).
By a similar argunment

log**a, o

Wy

Flu)du = 20w, -+ O(amlog™"m,)

rg—agilog4Pay .

fla) 2 ———

i wye(my, ).

Hence by (35) the lemuma follows.
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Lenma 9. Let p(z; &, g, a) be the function (14) and suppose that (32}
holds. Then

€* HA X
@)~ pr(@)(0ga)

Proof. (38) follows from (32) and (34) in the first instance for the
interval [z,, @,] (where m, = z(logz)"+2z(loge) "%, 5, = z—z(logz) O?)
and thus ultimately for [z(loge)~C, 2], since changing x by < w(logz) “*
the variation of the Jeft-hand side of (36) does not exceed the term on
its right-hand gide. (In the proot consider that yi(z4y; &, g, a) —
—yp(z; ], g, a) < 23 logp where the sum is over all prime powers p* = a

(36) (xR, q,a)— if  we[e(loge)™", 2].

- (mod ¢) of the interval (z,z+v) and ¥ = z(loge)” " By [8], Lemma 1,
the sum satisfies <€ y/p(g).)

Ly 10. Let a be a normresidue mod g for the class &, (e, q) = 1,

cand let m{e; R, q', a) denote the number of primes p <z suck that p = a

(mod q) and p = Np with peR. 1f (32) holds, then

x P
(37) =z 8/, ¢, 8)— — Liw &£ { L B)
T hea) gi(g)(logz)™® " (logm)™® =7
with the constant in the notation depending on O and A.
Proof. Let us write
(38) Blw;R,q,0) = D logp =ple; K, 4,a)—0 logp)
R . P, k=2,3,.,.
p=a(modg) pl=a(modg)
D= Nppeft

where p denotes primes and p prime ideals {ef. § 3). Oonsidering that the
number of the solutions we(0, ¢) of the congruence u* = & (mod g} does
not exeeed 2.2°9 <& ¢° (where v (g) denote the number of all different. prime
divigors of ¢ and & standy for any positive constant < 1/4) we deduce that
the number of solutions ue(0, %] of the same congruence satisfies

Alf2

& b

P
q q(logz)*+*

(since g < #2(logz)™%, @ > 2/log®?2). The number of solutions wue (0, 2]

of the congruence #° = a (mod g) for %e[3, logz/log2] satisfies the same

estimate. Hence the remainder term of (38) does not surpass the right-

hand side of (36), whence

(39) Ha; R, q,0) =

@ & @
+0 ( 5 ) ' <L ).
hpy () (@) log® ((logz)” )
-~ Let us write -

&y = z(logz)‘g, Py R, q, 6) = S{@)+r(@)



icm
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where
o w

" @), ") < g Goga)o®
Then '
S ~Sn=1)

(10)  a(a; K, ¢,0) = ogm
TYRNEL
¥ rm—rin=d)

Togn 2—1/2; R, ¢, a).

&) SN

The absolute value of the lagt sum does not exceed

1 1
]T(%)l(logn B 1og('n—l~1)) *
* ()

log [}

e

x
¢.(q) (log @)™

The last term in (40) does not exceed the number of primes p << o, p = a
(mod ¢) which number is <€ o fp(g)loge, by the theorem of Brun-Tit-
chmarsh (cf. [16], IT, Satz £.9). Hence, by {40) and {39),

Z logn +

cc<1,(m

r([x,])
logf=,]

_E..

m(r; 8y q,0) =

1
hqa ( i (g)log“*m) )

1 @
P
ho () ) ’731(4)1030]2
the desired result.
7. Proof of the theorem. Let ¢ run through the normal integers

(42, ¥] (ef. § 6). Then by (37) for any & and any normresidue & == &(R)
mod ¢ with (e, ¢) = 1 we have

1 . 2 z
ml; R, ¢, 8) — - Litp & —rrmmmer e T 2
@8Oy MO g oga® 7Y
whence _
‘ | zlaglogz
(41) - max | (e ], ¢, 6)— ————Liw =
WZ;;Q P AP PR o (a) J (logz)w )
&norm,

ginece ¢, (¢) > gfloglogq. The sum over the exceptional numbem ge{y/2, e/]
not exceeding

Y . 2
(logz)® p.(q)loge

zlogloge
S {loge)ot
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the restriction ‘¢ norm. in (41) may be dropped. And we may drop also
the restriction z = z, = 2/log®?z, since by the theorem of Brun—Titchmarsh
for & < %, the left-hand side of (41) does not exceed

%y zloglogz
<
<v pi(g)logx < (logz)“"logz

Summing over all the intervals (y/2, y], (¥/4, ¥/2], ... (£ logz in number)
we obtain the inequality :

1 z
maxmax | w(x; K a)—— iz | & —— "
2, a(%,q) vz AR hoy () (log)“"*~

-~y
o<s¥logz) B

This implies (2).
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