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Reducibility of quadrinomials
by

M. Frizp (Stony Brook) and A. Scrrnzer (Warszawa,)

In memory of Professor Waclaw Sierpisks

This paper is based on [8] and the notation. of that paper is retained.
In particalar if :

Py ens Yi) = Y1 o YT Wy ey i)
where a; arve integers and f is a polynomial not divisible by ¥, (1 g t < k)
then _ :
. TPy oo i) = flony oo Ya)-
A polynomial g(yy,...,v.) is called reciprocal if

Jgr, o ¥ = 29, --vs V)

Reducibility means reducibility over the rational field ¢ wunless
stated to the contrary. i :

L®(y,s ooy Ys) is JO (¥, ..., ¥s) deprived of all its irreducible recip-
rocal factors and K@ (x) is JO(z) deprived of all its cyclotomic factors.

Ljunggren [5] has proved the irreducibility of H (o™ + g, 2™ + e,2% + £5)
where m > n > P, £, &, &5 a8 -1 and the case m =n-+p, & = &89
is excluded. He has alse proved {61 the irreducibility of K (&™ + e;a™ + e ¥ +
+&,7}, where 7 i3 a prime. The aim of this paper is to treat a general
quadrinomial ¢(a) = ag™+-ba"+ox®+d by means of Theorem 2 of [8].
In order to apply thig theorem it is necessary to investigate first the
reducibility of a quadrinomial in two variables. The result of the inves-
tigation is given below as Theorem 1. Combining this theorem with The-
oreny 2 of [8] we obtain a necegsary and sufficient condifion for the redu-
cibility of Lg(z) {(Theorem 2). In general we have no such condition for
the reducibility of Kg¢(x) but in the case a =1, b =¢, 0 < el < |d]
{6, d integers) Hg(z) = Lg(»} which leads to a generalization of the re-
sults of Ljunggren (Theorem 3). We prove : :

. 3 '
TeEOREM 1. A quadrinomial Q(y.,Ys) = J(@+ > a;y7iys%), where
: i=1

a; #= 0 (0 15 3), (v, vy distinet and different from [0, 0], [v;] of rank 2
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is reducible in o field K of characleristic zero if and only if either it can be
divided into two parts with the highest common factor D{yy, ) being a bino-
mial or 4t can be represented in one of the forms

RO+ T+ W—3UVW)
e WAV WP ATV WUV~ OW -V W),
1) WO —4TUVW TV — 4T W)
= LU~ TV —2TVW — 20 WU+ TV 2T VW +2TW?),

RO+ 2TV V=W = k(U + V+ WU+ VW),

where ke K and T, U, V, W are monomials in K[y, ¥o1. In the former case
QD™ i either irreducible in K and non-reciprocal or binomial. In the latter
case the factors on the vight hand side of (1) aie irreducible in K and
non-reciprocal unless eI when

P4 VAW = OV — UW—VW = (U+V+EW)(U+ GV +LW).

TrREOREM 2. Lel a, b, ¢, d be any non-gero dnlegers, mw > 10> p any
positive indegers and assume that q(v) = az™-+be"+ca¥ +d is not a prod-
uct -of two bimomials. Lg(w) is reducible if and only if either g(x) con be
divided info two parls which have & non-reciprocal comwmon faclor or it can
be represented in one of the forms (1) where ke Q; T, UV, W are monomials
in Q] and the factors on the vight hand side of (1) are not reciprocal or
finally m = oy, B = Wy, P = WPy,

My < O{a, b, 6 d) = exp, (327 P E o0 (34 PR+ 24 d2))

and L{ax™ -+ ba™ - cx"14-d) 48 reducible.

THEOREM 3. Lét & = +1,¢,d be dntegers, 0 <le|<<id|, m>n>p
be positive integers and assume that (@)= o™+ e+ e’ 4d is not a prod-
wet of two binomdals. Kq(z) is reducible if and only if either theve ocours
one of the cases :

(— o) — (= o 1, 8y == (m—p, n);

(—e0)™ s (— @)W ot L, by = (mym—p);
m o= 2y, Bo=2p, &= —1, * = —~dd,
(@) mo=2p, mo=2n, s= —1, ¢ = 4d,
mo=3My, B o= BN, P = MyNy, ¢ = —2Ted,
o= Ay, o= ANy, P o=y -Eny, &= —1, o' = —0dd,
M= dMyy, M= DNy, P = MWy +Hy, £ = —1, ¢' = 644

oF My == Uiy, N =0y, P = UP;,
' my < O(L, ¢, ¢, d)
and. K (@™ 4+ so™ 4 exPl + @) is redicible.
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CoroLLARY. Under the assumpiions of Theorem 3 the guadrinomial
™4 e+ ox® +d 48 reducible if and only if either theve occurs one of the
cases (2} or we have one of the equalities

(— )™ P = (oo = L1,
( _ Ec)mldz — (__ d)(?L—TJ)l’&z n ili
(__ 8)@]55 — ( - d/c)(mﬂn)lda,

8, = (m—p, n);
9z = (M, »—~P);
Oy == (m—n, p);
L pof? pd =0, =1, §=(m,mn,p)
OF M = DMy, W= Dy, P o= BPy,
m, < 01, &, ¢, d),
and ™ - g™ - el 4 d 45 redueible.
Lmvwva 1. If m > n non-zero iniegers, ab =0 ond
@™+ ba™ = f,(fa (),

where f,, f, rational functions, then for a suitable homography k we have either

fobiz) = ax, ]Lulfg(m) = g™+ %mn

or :
fib(z) = ag™ L 2™, RTu(@) =2°
or

m=—n, fih(®)=20"0T,,(yca), K fo) =o'+,

where ¢ — bla and T, is the mth (f'ebyéev polynomial.

Proof. Assume first that # > 0. Then by a known lemma (see [2])
for suitable homography B, f; # and A™'f, aré polynomials. We may assume
the game about f,, f, and suppose maoreover that f, is monic with £,(0} = G.

Tiet
fulw). = a H (o — a3},

fa=1

x; distinet, a;+...+op = a.

Since fy(w)—a; are relatively prime in pau‘s exa,ctly one factor, say
Fal®) — o, is d1v151ble by « and ‘we have fy(x) — =z, = #'¢(2), where la; = n.
However ¢(w)™|ax™ ™4b, hence either g(w) =1o0ra =1 :

In the first case the lemma follows, one obtaing also o, = 0. Tn the
second case I =m; if now g(z) ="+ a8 +..., where p >y, > ...

and @, = 0, then fi f2(®)) beging with two non-zero terms

. ' aw(?+n}a+aa%mc(%ﬂ)ﬁ-n—?_ _
Tt follows that a(y+n)+y—y =n; a=1, y =m—n, y =0,
b
Ji(#) = am, fai(w) ﬂm"‘+;w“-' .
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R

The case o << 0, m << 0 can be reduced to the former by substitution

@ -~ Lfo.
Aggume now that m > 0, n < 0. Set
_ B2) _ Px)
fila) = S (@) s Jal®) = @)’

where P, @, R, 8 are polynomials of degrees p,q, 7, s respectively and
(P, @) = (E, 8) = 1. Applying to P/Q a suitable homography we ean
achieve that p > ¢, # > s and that P, @ are monic. Consider the identity

ag™ " +b  R(P,Q)
w8, Q)

where E(P, @) = Q"R(P/Q), ete. Since R(P,Q), §(P, ), Q are relati-
vely prime in pairs we have either ' :

8P, Q) =c™ Q=1 o SP,Q =0 (=g

In the first case @ = 1, by a suitable linear transformation wo can achieve
P(0) = 0 and thus P(z) = a’, §(z) = cx~"",

fulz) = o

In the second case it follows in view of p> g that @ = o™ g =0

ful@) = aa™® 4 b,

H

. . L m—n
fi i a polynomial and we have p =

7 !

fl(mﬂ./wp) — am¢)1+ ba™.

If P contains terms o,4”1 with ¢, +£ 0, p > Py > ~—nfr then taking the
largest possible p, we get on the left hand side o term are; ™ PP Iacking
on the right hand side. Similarly we get a contradiction if P contains a term
0@ With —nfr > p, > 0. Therefore, P = gt~ g 5ol 4 ¢, and ap-
plying to f, a suitable linear transformation we obtain P = g®™=" 1, .
Let § be any (m--nm)th root of —bja. Then g, = ORI 1 o
suitable %. Moreover

Fu{B e it g L) = 0

for all § = 1L,2,...,m—n.
Suppose that for two values of ¢ we get the same zero of f,, i.e.

dmfr 2731 3 j -1
é‘?ihiqn+ ":er Enﬂn = jmﬂi?;rl‘ Ciﬁd IC’”"_’n-

- It follows henece (see [7]) that either both swms are zero, or the ferms
are equal in pairs, i.e. either '

T == Ll
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or
Fli-fmir ., gl

m—1

or
E&i’f;}j“}”” — an_m;in]/r — Cﬁ:f“-

The first equality implieg 27 = 2j == 24’ +r~-1mod 2r (i’ fixed, determined

by h and the choice of {,_,, {,), the second ¢ ==j mod r(m—n)/(m, n},

the third ¢ ==jmodr(m—a)/{(m—n,m+n). Thus .all but at most
Wy~ 1 . m—mn

e ————— il r——————— are

(m—n, m-+n)

—1 zeros of f, obtained for
_ (m—mn, m-+mn)
distinet. Hence

m—"n m—"n

¥ <r
(m—n, m4+n)

(m—mn, m+n) N

and either # =1 or m—a|m+n thus m-+n = 0. In the former case
we get f(2) = ax, fu(2) = 4™+ (bja)z" in the latter case

w
2Ve,

Jilw) = Ba(l/a)"ﬂ( ), Fol®) = a™ o7,

LeMmA 2. Let my be integers different from zero, my # my, my-+my
=05 Mg 7 My, Ma-bMe 0, 4 (i == 0,1,2,3) complew numbers different
from zero and the case mg-+my = myt+my; = 0, aya, = a.a, be excluded.
If the gquadrinomial

4@, y) = T (a0 -+ 0y 8™ Y™+ ay™)

is rédueible in the complex field C then either it can be divided imio two parts
with the highesi common factor d(x, y) being o binomial or it can be repre-
sented in one of the forms

W 0° 4w — Buvw = (U o+ w) (% Ev -+ Gw) (u+ Lo £ Lw),
(3)

UE — ddypw — 0% — AP = (u— 0% — 2w — 2tw2) (16t — 2w -+ 20w,

where 1, u, v, w are monomials in Cle, ¥].

In the form@* case gd~* is drreducible in € and non-reciprocal, in the
latter case the factors an the vight hand side of (3) are drreducible in C and
non-reciprocal. Moveover if (3,) holds, u?--v24-w?—uv—ww —vw is aolso
not reciprocal. : :

Proof. In view of symmetry we may assume that m, 2 |m,l, 75, 2 |mg].
Set f(@) = a@™ - a, ™, g(y) = —agy™ —ayy™ and denote by 2,
the splitting field of f(x) -z over C{z). By proposition 2 of [4] them exist
rational funetions fi, fo, g1, ga Such that f = f1(f3), § = 01(¢), ¥y, o = le;—_-z
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and f—yg, fi— g, have the same number of irreducible factors in €. (The
number of irreducible factors of Fy/F,—G, /Gy, where F,eClo], G;eCly],
(Fy, Fy) =1 = (G4, @) is defined as the number of irreducible factors
of F,G,—F,G,.) Since both conditions are mvariant with respect to
transformations f, -» fih, g1 — g,J where h,Jj are homographies we can
apply Lemma 1 and infer that there oceurs one of the cases

L fy = apabaa™, — gy = Gy Y™
fi = gttt a g™, —gy = 21/0’2“312@2(@/): Py == My,
fi= m/%alfno(m); — g1 = @Y I AgY™, My = — N,
fl = 2V a0, T, ) —h 32]/‘32“3111»2(9)7 Ny =y, Tz = 1y,
where m;, = m;/d (4 = 0,1), n; = mfe (3 = 2,3). Setb

1

B

g = gl ) (5= 0,1);  ny = nf{na, me) (I =32, 3).

Let o,(fi} be the branch permutation for the Riemann sarface for

f1{x)—¢ over the place 2 = « on the # sphere and let w be a generator of
the extension .Qf1 L C{8). w i3 expressible rationally in terms of z and of
#@)s (§ =1, ..., k), where

I

ful@) —z = Fla) [ [e—2 (),

4wl

Fw) el [].

-

jo,(f1)l, the order of ¢,(f,), is the least positive integer M such that each
«®(z) is expressible as Laurent series in (2— )™ in the neighbourhood
of 2 = q. It follows that w i3 expressible ag such geries in (z— a)!1%i,
On the other hand, if w is expressible as a Laurent series in (z—a)"¥
then all #™(z) are 50 expressible and hence |o,(f,)| < N. Thus |o {f)]
is the least integer N such that o i3 expressible as a Lawent series in
(¢—a)'" and therefore it is determined by @, _,. From 2, , =
we have ' :

{7t

lau (fl” = |au(gl)| .

‘We use this observation separately in each of the cases 1—4.

1. Ifn, > 0 a simple computation shows that the branch permutations
for £, _, are o, (a0 n, cycle), o, (an n, cycle), and n, — n, other finite branch
permutations (of order 2 and type ¢ = (2)(2)...(2)) corresponding to

s e st it
(11g,m9) times

the branch points

[ 1 (m—ny) ayny |0 ) .

& = gt — §==0,1

t Mg Ty oMy ’ My Ly
oM

icm
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It <0, ou(fi) is a product y,y,, where y,,v, are disjoint
cycles of length 7, and [n,| respectively. The finite branch points are again z;
and the corresponding permutations are of type o = (2)(2)... (2). We

- (ms
have to consider several cases. _

A ny> 0, ny> 0. From |o(fi)] = log{gy)| we get #n, = n,, from
[0 {fi)] == 10(g1)] We get ny = n,. Also the branch points must be the
same, which implies

r
7

P
—a\" —a,\™
@y Qg

Since (ny, v} = 1 there exists a unique number + such that
ne ]
T = —afay, v = —ayfa.

On substitution » = 2y the quadrinomial f,(z)— g, (y) takes the form

n
—5 1),

7

(@) — 1) = g™ (&0 — ") 4 ayy™ ("

g l—r " ) :
Since ——— is not a power in C(z) and

z’)Ll — ,r'nl

T — z(”'o’"'l) —y

we infer in virtue of Capell’s theorem that
fulz = y" (%" —r)F (2, y)
where ¥ i3 irreducible in C. It follows that _
ful@) = ga{y) = (@0 —rytehy G (o, y)

where & is irreducible in €. Thus the number of irreducible factors of
fi— g1 18 (my, ) +1. On the other hand

a(x, y) = (aowﬂtg+a2ymz, alwwal+aé?1m3) — m(no,nl)_ﬂ;.«y(no,m)’

thus the pumber of irreducible factors of fl@)y—g(y) is at least (ny, n;)
(8, €) -+, where » is the number of irreducible factors of gd~* (¢ has no
muitiple factors). Tt follows that

(mgy M) (B, )+ v << (Mg, my)+1, v=1

hence gd~' iz irreducible in €. Moreover it is mot reciprocal since the
degree of Jg{z~*, y~') is greater than the degree of g and the degrees of
Jd( YLy and of d are equal.

!
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B. n,n,<< 0. In view of symmetry we may assume 7, > 0. From

la(fi)] = loglgs)| we get my = 1, from Jo,(fi) = Jdoo(gl)l_} Pog = [Hy, Ny ]
Counting the nwmber of remaining finite branch points we get
| + s Ty o]
—1= - r - [Bgy Ba] —1 = ————
ﬂn (g, 13) (e Mol (figy M)

or .
(g — 1) ([#g] = 1) = (%, 75) + 1.

has three solutions with %,z —n;> 0:
(nz,ns) = (37 _2)7 (37 MS)? (4: “2)-

The first sohition gives n, = 6, '

file)—gly) = 1y 0"+ 0y T+ Ay Y + sy

and the numerator of the fraction obtained is irreducible in €. Indeed,
it clearly has no factor linear in ¥, thus a possible factorization would
have the form

@t + (g 2" - @y )Y 4y = "12(?/2 +F1{(®)y
I follows hence

g [Rg| — g — Mg — (B, Bg) = 03

This equation

TE = a2+ g @) + gy

+ 64) (?/3 +fa @)y +fs(2)y + 02) .

) =0,
xy-+e¢ =0,
G2,f1 +01f3 (@) =0,

— e fi{@) —efrlm) +61 = 03

filwe) = —fox) = const, fy(w} = const, which ig impossible.
The second golution (ng, 7} = (3, —3) gives #, = 3. Since the branch
points must be the same '

f +f1
@)+ fu(w

3 S 2 = — 2T 0y Ag.
It follows that
q@,9) = J{f@) —g() = (00" + 00")y + 0" + 0y
R S +wt —Buvw = (504w (-l Lo+ £ w) (0 -+ 8 e 4 Ly,
. where
. g = amm's?f P = al}%ch W = a‘ya

and suitable values of the cubic roots are taken. The txinomials + Cg’tH—
“+&ytw are irreducible in € in virtne of Capelli’s theorem since fEalyt

+ it y‘s is not a power in €(y). Moreover one verifies directly that
wtlio+Ew (=0, +1) and w-Fo - wp—uw—vw Are not re-
ciproecal, :

icm
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The third solution (n,, #;) = (4, —2) gives #y = 4. Sinee the branch
points must be the same we have for suitable values of the cubic Toots

3 [ —a 6 [Za, .
Za’l(mo) .:—Za“(:mg P o= Gdagayaf.

If follows that

g2, ) = J{F({@) —g(y)) = (@%a®+ 0, 2) 9™ +agy™ -+ a,
== gl — 4w — 2ot — 4% .
= (% —tp® — 2vw — 24w?) (1 I t? — Svw - 2wy,
whers
.t”,-z.y*’-,~ ‘Zﬁ*(—-ﬂ'u I.’z ’U———‘(— )lj‘LyE’ w=(—wojy)”“‘m"

and suitable valnes of the quadratie and the quartic rooty are taken.
The guadrinomials # 4 w2 — 2¢vw 4 2tw? are il'redueible in € sinee after

the substitution

& ]
B =&Y, Y=

we obtain

o 4 w2 — 2w + 2w

— (_a3)1f2+y.‘{ﬁ5[j:(_a2)1f2_2(a0a2/4: 14 6:|:2 __%/4)112 2:5
and the expression in the brackets is not a power in €[w,]. BMoreover,

one verifies directly that the guadrinomials 4 ?—Stow - 20w? are nob
reciprocal.

O my <0, my << 0. From [o,,(fy)] = |on(g:)] Wwe get
4 [, 1] = [mg, 4]

Counting the number of finite branch. pointe we get

(5) e g 2

(#g; 1) {g; g} .
I£ (ng, my) = (Mg, my) = 1 we infer from (4), (5) and the inequalities
Mg 2 — Ny 2> 0, 1y 2 — Ny > 0 that my = 0y, 1, = n,. The same conclusion
holds if

o Mgl M- |7y
(M5 7g) (13, g)

sinee- 2 8 and 4 have only one partition into swmn of two copnme pogitive
mtegers Singe the branch points must be the same we get

(o) - (e

=2,8 0 4
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and there exists a uniqie r such that
P = — dhpflly s P = — [ty .
On substitution # — 2y the quadrinomial J{fy(»)—g,(y)) takes the
form ' )
I {fu(@) — () = agy™ et gl (0 — o) 4. g gyl (L — ™10,
Since the case Myt = Me+my = 0, Gy, = 830y has been excluded
1 — Mgl
znumw‘o
is not a power in C(z). Also
(z"ﬂ—r’{ﬂ, 1 Mgy = ety
Thus in virtue of Capelli’s theo‘reml
Tf@) —ly)) = g™ M =) F G, )

where F iz irreducible in C.
Tt follows henece like in the case A that

a(z, y)

and gd~' is frreducible in C.

Since the case m.,—{—ml = My-+my = 0, 4,8, = a,ay has been excluded
the degree of Jq(z™', y~') is greater than that of g. The degrees
of Jd{z,y™") and of d are equal, thus ¢d™* is not reciprocal.

Assume therefore that -

Thgt n,ﬂ ¥ _ .. (n 1 M)8
= (@™ + @Y™, “1mm1+a3’!}' 3) = gl — gyt

g~ I’”fi!

ny > 4
('71'0:"”’1) U+ '

(6)

and set
fole) = @™+ aga™,  galy) = — oy —asy™.

I, =29, ,we get the assertion of the lemma by the previous
aJI'U'Lll‘ﬁe]lt Wlthout loss of generality we may assume that

Lpys 7 Qpy-ogys-

By Lemma 1, f, is indecomposable. It follows by Liiroth theorem
that there is mo field between C(z) and’ C(w,), where fy(,) = 2, thus
the monodreomy group G(!),rz[C(z)) is primitive (¢f. [3], Lemma 2).

On_ the other hand, this group contains a 2 cycle, thus it must be
the symmetzm group S, ., (see {9], p. 3B). & 0 R, is a norma,l.
proper subfield of {)fg_z which corresponds to a normal subgroup of

icm
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(9f3—z/0 ) It follows from the well known property of symmetric

groups that this subgroup is Suppmyy OT Ao r1my (see [9], D. 67) By the
theorem of natural irrationalities

(el o 2, ) e G0, 0, 0, ).
However G(£2;,_.2, ,/9,_.) is a quotient group of ¢(£2, /R

Hg—z

Since g = g,(#"1) we easily see that G(Q2 Z/Qgs_z) is a cyclic group
and ginee by (6) none of the groups Gty Wnfyrmy) 18 Cyclic we get a cox-
tradietion. _

2. Riemann surface 2]/a2a.3ﬂ_”ng {x) =« has an n, cycle at oo and two
branch points 2eVa,a; with the permutations of type (2)(2)... (@) if n,
is odd and {2)(2)...(2) if n, is even (s = +1). (Ra— 1) times

{rg—1—5/2 Gmes

A, 9y > %, > 0. Then

Ny =Ry Hy =1, wng—1=2;
ﬁal Loy 5 o
‘“al-i/’ = =2V @abs, @y = —2Tay0,0,,
Sag .
the case considered under 1B.
B. ny > 0> n,. Then

Mg~ Mg o .
70y 73] = ney, — =y Wy = oy = Ny = — R

(7, By)

“1]/“* = +2Va, ally,  Gyly = ol

Wy + My = My--Mmg = O, the case excluded.

3. This casge is symmetric to the former.

4. Thenn, = —mn; = n, = —ny, i?;]/a:a—l = :,_E-?J/aza,s,aaml = G0y,
My -+My = My—+hey == 0, the case excluded.

Levma 3. Let K be any field of characteristic zero, oM, a; 5= 0
(t =0,1,2,38), my; integers, my+m, = 0, m, % My Wig+ Mg 22 0, My 35 My
and emcﬂy one among m; bezero. If ¢ (x, y) = J (gy@™ +a, ”‘1+a2ym2+a3ym3)
8 reducible in K then it can be ?epﬂ"esented in the form

(7) WU+ 2u0 -+ 02— w?) = L+ oL w)(u-t+v—w)

where LIl and w, v, w are monomials in K [#, y]. The factmﬂs on the right
hand side of (T) are irreducible in K and non-reciprocal.

Proof. We may assume without logs of generality that m, = 0.

. Then ¢(z, y) is & binomial over K(z). By Capelli’s theorem, it is reducible

only if either for some prime 7|m,, a; (a,a™ 4 a,0™ 4 g;) — —g(x)
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or 4|my, a5 (@a"™0 - a, 8™+ ay) = dg (@), gl@)eH(z). However g™
+a, 2™ | 6, may have at most double zero, therefore I = 2, g ™ - g L -
+ay = —ayg(w)® and g(z) has only gimple zeroy. Moreover ¢(z) must
have only two terms and taking _
J (g() ol
g()
we gob the representation of g(,y) in the form (7). Again by Capelli’s
theorem the trinomials
u+vtw = J{g(x) £y"")
are irreducible in ¥. One verifies direetly that they are not reciprocal.
Limvva 4. If any of the equations ’

B o= —thg, u4v=dJdg{n), W=

(8 11y ¥2) :Zo(Uﬁ'f‘?'UoVo‘F Vﬁ"“l)a
(9) QU ¥ = (U VE+1—30, V),
(10) Qs ¥a) = Zo(Us— 4T, V,— Vi—4)

is satisfied Dy rational functions Uy, Vo, Z, of the type cyyss, ¢<XK, then
Q(yy, y,) is vepresentable in the corresponding form (1), where k<X, T, U, V, W
are monomials over K and moreover '

Vot =VV =W 4f (8) or (9),
UUst="wr, VV1l=W if (10).
Proof. Let y, divide U,, V,, Z, with the exponént Uy, Byy B SiNcE
{Q (ylﬂ ?/2): @/1@/2) = 1 we have .
—min{ 2, wg -+ vy, 20, 0) if (8
—min{3u,, 3v;, 4;+v;,0) i (9,
- —min (2w, w+ v, 40, 0) i (10).

n
&
Il

Sinee
o+ 0 2 in (2, 20;),
U+ = in(3u,, 3'v¢., 0,
w;+v; = min{2u,, 4o, 0),
it: foliows that
' — min (2u,, 29,) = 2z it (8),
2; =1 —min(3u, 3u;, 0) = 32 i (9),

—min(2u;, 4v,, 0) = 2 - if  (10),
where 2; = 0 is an integer. We set in case (8) and (9)

k= Zyrnyn, We=yl, U=T0W, V=7VW
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a

in case (10}
ko= Zyroayr®, W= yltyled), = yllyz W=, U = UWE, V= V,W
and the conditions of the lemma are satisfied.

Proof of Theorem 1. The sufficiency of the condition is obvious.
In order to prove the necessity and the other assertions of the theorem set

Y11 V12 ""12 V13 Pia Vi1
4, zl y Ay = r A= 3
121 Vae Vap Vag ¥az Vaa
3 1 i Ay 424,420, 1 if dy—dy = 0,
= s =
—‘1 j.f j1+2A2+A3< 0; *1 if Al“"A3<0-

Since the matrix [+;] is of rank 2 we may assume without loss of
generality that 4,3 4; 55 0. On substitution
_ 2/1 — 6(;'22~923)yﬁa-v21= yz s xa(”lﬂvwli)y“ll-
we get

3 .
B(y1, Ya) = Got Y, ayiligin
i=1
= mwéjz (808" 5™ @y Y2 4 ayy™) = 27 g (a, y),

where

My = 84y, My = (A F A+, my =ed;, my = —ed,.
‘We have m, # my, M, = m; and by the choice of § and =, m,+m, > 0,
Hro+ My == 0.

Moreover setting g(x, 9) = Jo(z, ¥) we get

(11) Qur,ys) = ' y"q (@, y).
Assume that , _
QY1 ¥2) = Fr(¥1, ¥2) Faltf1, ¥,
where £, F, are non-constant polynomials over K, It follows that

(12)  glo,y) = JF,(@tn—wy=on, gHuwyruyx
X J By (20l y=me [ pflas- iy,

where the factors on the right hand side are non-constant. We distinguish
three caseg

(1) mg = —my, My = — Mg, Qelly = A ls;

(1) mymymam, = 0 and (i) does not hold;

(i) Mgty mamy = 0.

(i) We have here 4, = — A4, = 4, Hence

Yy =Vt (¢ =1,2)
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and
g a o Y
D (15 ¥a) = (g + o912 952) (1 + f:‘hlai‘/zza):
0

thus ¢ (y,, ¥.) can be divided into two parts with the highest common
factor
D = J(ay+ ayi12y22)

being a binomial. The complementary factor

007 = 7 (142 o)
is alse a binomial. '

(i) Here we can apply Lemma 2 and we infer that either alz, ¥)
can he divided into two parts with the highest common factor d (=, )
being a binomial or g(z, ) can be represented in one of the forms (23,
where ¢, %, v, w are monomials in €[z, ¢]. In the former case gd ™" ig. irre-
ducible in € and non-reciprocal, in the latter case the factors on the
- right hand side of (2) are irreducible in € and non-reciprocal. N ow, if

(o, y) = (J (@™ + ay™), J (@, 0™+ ag_y™-1)) (i =2 or 3),

D, ) = (I (@ + @i gidt), o (@yy gt + @y _yibs-tyips—i))
then
di(%,y) = JD (et vy~ n # Ty

Tt
(13) gz, y) = u* 4 0®+uw® — Suvw
= (uto+w)(u+ Lo+ & w) (w4 5570 - [yw)

then by the absolute irreducibility of the factors on the right hand gide

and by (12) we have for suitable ¢ = 1 or 2, suitable § = 0 or 31 and
suitable a, 8, ¥ : '

thus the properties of d; imply the corresponding properties of D,.

Fi(trss ya) = y2°9 (4 Lo+ &7 ).
We may assurme without loss of generality that § = 0. It follows that
(14) Uy = ww ™ e K(yy, y,),
and by (11) and (13)

Vo = ow™ e K (yy, ¥s)

Q¥ ¥3) = 22y (U3 + V3130, Ty).

Since u, #, % are monomials in Clw,y], T, V, and Z = g4 yBw®
are of the form cy1'ys?, ce K. By Lemina 4 there exist monomials u,v,w
in K[y, y,] and ke K such that :

Qs ¥2) = KT L P+ W'—-3UVW), TU = V7,0 = W,

icm
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It follows by (14) that
Oyt = Vol = Wu?,

T(U+ 8V + 557 W) (@fenrmy=on_ gfansyon) = 5 (ut tho+ 557 w)
(meC, j =0, 1)

and sjinée w8+ 77w is irreducible in € and non-reciprocal, U4+ &V +
+ {7 W has the game property. If {, ¢ K

P+ TPHW—UV —OW—TFW = (U+ V4L WHT IV 5W)

13 irreducible in K. It is also non-reciprocal by the corresponding property
of 4?4+ 02+ w2 — uv — ww —vuw,
Asguime now that

gz, y) = u° — dtuww — 20* — 480w*

= {1 — {0 — 2fvw — 200?) (u + to? — Slow 4 24w?).

Then by the absolute irreducibility of the factors on the right hand side
and by (12) we have for a suitable sign and. suitable «, 2, &

F:L(?h;_ ¥a) = pa®y® (u o — 2Hvw L 2tw?).
It follows that
(18) Uy = ut_z'w_sz(yaa ¥a)s

and by (11) .
@Yy, Ys) = mAthﬂwg'( 03_4170 ?0_ 73—4).

By Lemma 4 there exist monomials T, U, ¥V, W in Kiw,y] and keK
such that

Qs Yo) = B{TF—4TUVW — V*—4T°WY),
It follows by (15) that
Tyt = TV 197 = PV Wi o™t = ITW2 w2,
J(T £ TT2-2TVW £ 2TW?) (2®tnady—on | gl ralysn)
= (= fv? — tvw 4 2hw?)

Vo= ’Uw_lfK(?/I: Ya)

U0 =TW, VV;i=W.

(1< C)

and since u1w?%—2tvw42w? is Irreducible in € and non-reciprocal,
ULTV—2TVW +2TW* has the same property.

(iii) If two of the numbers mg, m;, My, My Were equal zere, two
of the vectors [0, 0], [, »:] (§ < 3) would be equal. Thus exactly one m;
is zerc, we can apply Lemma 3 and iofer that g(z, y) is representable
in the form (7), where %keHK, u, v, w are monomials in Kz, y], the tri-
nomials %+ 94w are irreducible in K and non-rveciproecal. '
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1t follows from (12) that for a suitable sign and suitable a, g, »

Folys, ys) = vy (w+ v 4 w).
Thus
(16) Uy =m0 e K (Y1, ¥a),

and by (11)

Vy = w0~ e K (yy, ¥,)

Qs o) = oy (U5 +2T, Vo + V2—1).

By Lemma 4 there exist monomials U, V, W in K[z, #] and ke
such that

@y, y2) = KU +2UV + VW7,
It follows by (16) that

TUY = VYV = W.

U™ = Vol = Ww™?, .
J(U+VEW) (@ sly=n, s 2yoi) = putotw) (oK)

and since w-+otw is irreducible in K and non-reciprocal, U -+ V+W
hag the same property. The proof of Theorem 1 ig complete. .

Proof of Theorem 2. In order to prove the necessity of the eondi-
tion we apply Theorem 2 of [8] zetting there

F@y, @y, 03) = oz, +Fbey+cn,-d

8o that .
gloy = F@@™, a", o).

By the said theorem there exists a matrix N = [»,);.., of rank r < 3.

such that Jd
(17 0 < max jvy| << ¢, (F),
(18) Emaﬂa?] = [gl:---r@r}Nr
* ™ r ]
9 I{a[[wetd][yiere][ym+a) 2 const [ ] Fo(g, ..., gy
f=1 4=1 i=1 ga= L
implies
. N s
(20) - Lgle) = eonst [ [ L. (o™, ..., 2%yt
: o=1

Therefore, if Lg(z) is reducible then the left hand side of (19) is re-
ducible. It follows by Lemma 14 of {87 that » < 3.

If » =2, set in Theorem 1:ay = d, a, = a; ay = b,u; = ¢ so that
the left hand side of (19) becomes L) (y,, ¥,) in the notation of that the-
orem, The vectors [0, 0T, [n;, »y] (¢ << 3) ave all different in view of (18)
and of the assumption m >n>p > 0. If Qy,, #s) 18 a product of two
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binomials, ¢(#) = JQ(a™, £™) ig also such a produect, Thiz case hag been
excluded, but the condition is satisfied also here, since one of the binomials
mugh be non-reciprocal and it is the desired non-reciproeal common fac-
tor of two parts of g(z). Apart from this case, in virtume of Theorem 1,
LGy, ¥,) is reducible if and only if either @ ean be divided into two parts
which have a non-reciprocal common factor or it can be represented in
one of the forms (1), where ke @ and ', U, ¥, W are monomials inQ[y,, #.].
If F,(4,, y.) is an fiveducible non-reciprocal factor of Q (y,, y,), LF, ("1, &2)
is by (20) an irredneible non-reciprocal factor of ¢(z). Therefore, we get
either a partition of g(z) into two parts which have a common non-reci-
procal factor or a representation of g(z) in one of the forms (1), where
I, U, V, W are monomials in @] and the factors on the right hand side
are non-reciprogal. , '
Finally, if r = 1 then m = vm,, n = vng, p = Py,

My << 05 (F) = exp,(24- gttt a0 02 pay ¢+ a2 = Cla, b, ¢, d)
by (17), (18) and the formula for ¢, (F) given in [8]. Moreover

g
A
Liaz™ 4+ ba™ L ex™ -+ d) = const [ f B (m)
g=1

implies

can

Liax™ -4 b + ex® + d) = const HLFG(m")"G.
. o=1

Thus the necessity of the condition is proved. In order to prove
the sufficiency it is enough to consider the case where q(z) can be divided
into two parts which have a common non-reciprocal factor d(z). Since
the highest common factor of two binomials is eifher 1 or a binomial
and since binomial with a non-reciprocal factor is itself mon-reciprocal
we may assume that 4(z) is the highest common factor of two parts of
g(#) and hence a binomial. We prove that gé~' is non-reciproeal, Indeed,
otherwise, we should have

(21) dw) =" te, ¢ 1,
(22) £ {ae”-1b2"+ ca® L d){ea” +1) = (da™ 4 ea™ P+ 2™ "+ a) (" + )

and either

(23) o2} = (@™} ba", ca® - d)
or

(24) d{x) = (az™ -+ ex®, Ba™ 1 d)
or )

(25) $z) = (ax™ - d, ba" - ex?).
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It follows from (22) that
(26) d-ae = d

thus by (21) 8(z) cannot divide az™--d and (25) iy excluded. If (23) or
(24) holds we have m = n+p, since otherwise
b d _ ¢ d

6(m) =a’;m"'"—i——£; =$p+—0‘ or 5(9}') = p+; =’l’.’n—|——5
and g{z) is a product of two binomials. We may assume withont loss
of generality that m >#n-+p. II < p then comparing the coefficients
of ™ on both mides of (22) we get Lo = ed, which together with (26)
gives ¢ = 1, contrary to (21). If # > p then en the right hand side of
(22) oceurs the term cx™ 7" lacking on the left hand side. If v = » then
comparing the coefficients of ™ on both gides of (22) we got

(27) +o =detec.
If (23) holds then ¢ = d/¢ and since fae =d we get La = ¢ de = 0
a confradietion. If (24) holds, then &(@)|aa™+ ex? gives

"
=1

pim, ola=—(-—¢?
- m
and by (26} and (27) ¥4 (—e)* T = 1, which has no rational solution.
Proof of Theorem 3. In virtue of Theorem 2 L(a™ -+ ea™ 4 co? -+ d)
is reducible if and only if at least one of the conditions specified in the
agsertion i3 satisfied.
' ™ -l e - c” - d

L™+ en” + cx® 4+ d)
ﬂ.m_l'.'e)un*FGlﬁ“'}“d — 0 — Z_m“;'“‘ij.“?_"—kﬂﬂwp-l—d.
Thus dA™H™ 4 eV P L g™ L 3" = 0, eA™4 A"+ ¢ei? +d = 0, hence
F(A) . dﬁm“i"”+cf"'+"‘?’— ﬂaﬂ.ﬁ—d&‘ = 0.

By a theorem of A. Cohn [1] (p. 113), the equations F{z) = 0 and
a™ = P (27" = 0 have the same number of zeros inside the unit circle.
We have

Jmebn—lpt (ﬂ—l) — lm-ln'n—l{d (m+ %) 11~m—n+ c(m—l— 7 _p) ALFEm—n 06_’!9;!.1_"")
= A(m )+ e(m 41— p) AP — aepA+TD.

Suppose that iy non-constant and let

Assuming |A| <1 we obtain _
ld{m+n)] < lo|(n+m—p)+elp = lel(m~+n),

which is impossible.
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Consequently # has no zero inside the unit circle and since F is reci-
procal all zeros are on the boundary of the unit cirele. It follows that
o e e L 4
L{x™ - sx” + ca® +-d)
is monie with integer coefficients, thus by Kronecker’s theorem all its

zeros are roots of unity.
Therefore (o™ + ex™+ ca? 5- )
of the theorem is complete.
Proof of Corollary. In virtue of Theorem 3, o™+ ez + ea®-+d is
reducible if and only if either one of the conditions specified in the theorem
is satisfied or #™4-ex™+ea®+d has a proper cyclotomic factor. Now,
by a theorem of Mann [7] if a root of unity A satisfies

the saime is true for . However the last polynomial

= L(asm + e+ cx® -+ dy and the prdbf

WML+ edP+d =0

then either the left hand side can be divided into two vanishing summands
or 207l — 1 The firgt possibility corresponds to the first three equa-
lities specified in the corollary, the second. gives

E e el d = 0,

where 2* =1, 6 = (m, n, p).
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