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1. The aim of the present note is to prove the following theorem which
was -announced without proof in our paper [1). Denoting by ¢ explicitly
calenlable positive numerical constants {(not necessarily the =same in
different occurences) there exist U,, U,, U,, U, numbers for 7 > ¢ with (1)

(1.1) logy I' < Ugexp(—1og™ " U) < U, < U, T,
(1.2) log, ' << Ugexp(—log"™ )< U, < U, < T
‘such that
(1.3) > logp— > logp > VT,
Uy <p<Usy Ty<p<lz
p=lmod4 p=3mod4
and
(1.4) D logp— D logp < VT,
Ug<p<Uy Uy<p<Ty i
p=imodd ) p=3mod4

‘The esseritial part i3 of eourse (1.1)-(1.3). As we mmentioned this implies
also for T > ¢ the existence of consecutive primes P, and p,.; both =1
mod 4 and satisfying the inequality '

(1.5) logg T<<p, < poyy < T

The somewhat weaker fact that we have infinitely aften
(1.6) P =P = 1mod 4

could have been derived from Littlewood’s deep theorem

(1.7) - lim(n(z, 4,1)—n(z, 4,3)) = +oo

(") log, T stand for »-times iterated logarithm.
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194 8. Knapowski and P. Turén

but not cheaper; in particular no arithmetical approach can prove
{(1.6) at present. The natural farther conjeeture that for arbitrarily large w
we have for infinftely many »’s '

Py =Py = oen =Py, =1lmod 4

(to mention just one of the analogous conjectures) is at present beyond
all posgibilities, even for o = 2,

We want to emphasize again — as in [1] — the inberest of (1.1)-(1.3)
from the point of view of the facts that — as proved by Hardy-Little-
wood and Landau -- the assertion

lim (—1)#-VE Jogp e = —co
=00 P2

and - as proved in [3] — the assertion

tim 3 (=1Ylogp-oxp| 1oL ) = — o

)
are equivalent .to the assertion

_ f(8) 20 for e>1%.
which 1§ an unsolved speecial case of Riemann—Piltz conjecture.

2. For the proof we shall need three lerumas. Leb 2, 4, ..., B N
be complex numbers such that

!zllr; A=
and a 6 < # < nf2 guch that
% larezl<Kw, §=1,2,...,n

and be given @ positive number m. Then we assert the
Lvsaa I. There ewist indeger v, and v, such that
MK vy, 0y K M N (B )

and the inequulities

1 N
Re Y iz { y ) } 2]

3N | 8e(m -+ N (3 +n/u)

a1 1 N w o
RQZ%‘ < 8N{86(M~{—N(3—}—w/x)}} e |

hold.
For the proof see [2].
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3. Further we shall need the

LunwA 11, Tet “ay, dgy ouny ey fay .ne
for which, with fized positive finite U, V and y we have

19h

two sequences of real constants

1

{3.1) le,] 2 U,
1
3.2 e
(3:2) 1+l
Then for real A and A > 1/U we have in the inlerval
(3.3) ALe<it 4
a &-value such that the fractional part of (a,&--8,) is for all v-indices bet-
ween
1 .
{(3.4) 1

24 V(1 +|af)

For the proot see [3] (with the nnnecessary restriction y > 1.)

24V (1+|a)

Let ¢ = a4+t and f(s) should be defined for s> 0 by

oo (=
(8.5) 1ls) = g—w T
Then for ¢ > 1 we have
=f o _ N7 Am) (e
(3.6) () —’%”ﬁ*—
We need the

Loyuma TIT. There is o continuous broken lime 1, consisting of alter-
nately horizontal and vertical segments running in the strip

2 1
PR og

Jrom —oofo 4 oo such that on 1 the inequality

’

T o)

3.7 —
(8.7) 7

holds.

]

< elog(2 1 1))

The proof follows from standard theorems on I-funetions.
We shall algo use the integral formula

2

(3.8) —}—— f exp{r(s+ b2 —sa}ds =
e )

if only = 4, b =100 say. .

2V rr

exp {

(e 2br)?

|

4y
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4. Now we can turn to the proof of our theorem. We have from (3.8)

{4.1) —-1—, f-f:(s)expr(sml»b)%ls

2
1) & f

2
ebr

S — A {(—1) exp {w
2V wr -

(logn — 2br)?
4 !

» and b to be determined Iater. Shifting in (4.1) the line of integration
to 1 @ routine reasoning using Lemma IIT gives

logn — 2br)?
(42) > /1 'J? (n——l)l2exp {_ ’(—ngl;:—l—}
nndd

=21/E»2’ exp {r(o” + 2ba)} +0 (Vrlog'h)exp (LLrb),

1]
where 3 means that the summation on the right has to be extended to
all nontrivial zeros
{4.3) o = o,+i,
Cof f(s) right to I only. Since further the contribution of zeros with
I, > 2V
ig evidently

< ¢ E exp(1—1+2b)r<<e¢ Zmexp(méﬁg) < ¢,
L2V ty> '

restricting b by _

(4.4) ' T b+

we get from (4.2)

(log n— 2br)®
4r

(4.5) Z Aw) (=1 Vlexp {
nodd
— 2V Re 2 {exp (g 2bo)} + O (Vr)loghr- exp (Lo,
[gl2v'®

5. Next we determine b by applying Lemma II choesing the a,
respectively S, numbers ag

: 1 1
(.1} —TIme respectively ——ITm(g® -
: T 2m

in the right-hand. sum in. (4.5), and by choosing
(5.2) ' A=t and Ad=1
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with the 7 in (4.4). Then we can put (as known)

- U =2,
further

11
Y=, FV =¢t.

Hence Lemama II gives a b == b, satisfying (4.4) soch that for all of our
remaining pe’s the fractional part of

%
o) )
18 between
(5.3) cr ™M and 1 —erT R0,
But thiz means that choosing as 2;’s the numbers
(5.4) exp (28, ¢+ 0%
we have

b,
larcz;] 2 min 2x -—t +
ein{4.5) T

1 2
Linie} o,

i.e. we may choose for the x in (2.2)

{(5.5) x = ey iU
in our case.
6. Putting
(6.1) Z(r) = Re > {exp(2hoe+ )Y
itl=evT

we shall estimate it from below by 2 positive (resp. from above by a nega-
tive) quantity by suitable choices of r. Choosing

(6.2} ' v = log'*T

the sum in (6.1) is a power sum of fixed complex numbers and with the
choice of x in (5.5) Lemma I is applicable and for b, we have

(6.3) Tog'* T < b, < log™ T 1.
For the number & we have
(6.4) N =c/tlogz or = N = log*T(loglogT)?
for I' = ¢ and we choose
logT

(6.5) ' m o=

20,
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For » we have for T > ¢ from (5.5), and (6.2)
(6.6) % = log™ ™M T (loglog T)™;

hence using also {6.3)
logT N log** T
2(1+10g?T) log T 2,

— = log™™ T(loglog T) <

Thus », and », from (2.3} will have the form
(6.7} . (1+0(1)) Hlog**T.

Further from (6.4), (6.5), (6.6) and (6.3) for T > ¢ we have

Ir N .

. = —log* T (loglog T)*}.
(6.8) (Se(m-{—N(S-i—n:/x)) exp{ —log"" T (loglogT')*}
Now let
(6.9) gF = ot it

be any zero of f{s) among the ones in (6.1) or — a bit stronger — any
zero of f(g) with

(6.10)
Then

=4, [ < flog"'T.

0"+ 2b,6")] = {exp (2b,1,)}" expy, (o — )

and owing to 2y, > 2bym = logZ, (6.7), and (6.10) the right side is

[t 2 |expa(

(6.11) > T exp(—31og®™T).

Thus choosing v = v, (2.4} gives for T > ¢

(6.12) Z{r,) < T7exp(—3log"™T)
and analogously (2.5) gives
(6.18) Z(v;) < —T”exp(—ilog"™T).

Since in (4.5) owing to (6.2) and (6.7) for T>¢,j = 1,2,
exp (f o) < exp{(1+o(l)) n-tlogT} < o8 og4 T

(4.5) gives for T > ¢ using also (6.12) and (6.13)

S A -1y -

nodd

(logn — 2by#, )

6.14
(6.14) s

) > T exp( —31og™™T)
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and
- (6.15)
E A{m)(~ 1) exp ( _ Logh — by} ;zbm)z) < —T"exp( —log"™'T).
nodd
7. Putting
(7.1) 2byy; = logz;, j=1,2,

(6.14) and (6.15) take the form

1 .
(7.2) 2(—1)‘“‘1”2A(n)exp (—4:—10g2 g—) > T exp{ —§log*™T)
Y1

1

nodd
respectively
1 n
n—1}/2 Rt 2 _ at 3 1920
(7.3) Za;l(—l)f A(ﬂ)exp( oy log 2)< T exp{ —ElogP?* T),
no

What can be said on #, and 2,? From (2.3), (6.3), (6.
(6.2) we have for ' > ¢

6), (6.4) and

logT
log T < 2By < 2b.,{ (;i +log"® T (log log T)%(8 + = log"*®® T'log logl’)}

< logT +log®T,
ie. for j =1,2
(7.4) Ty
8. Putting for j =1,2
. _ 1 &
8.1) Y (—1)" I Aw) = G(a), eXP(—v_logz?) == H;()

modd ) 'f.
iasst

the left side of (7.2) and (7.3) can be written as

< Texp(log™™T).

(8.2) [ Hy(@)d6(@) = — [ Glo) Hy(z)da
1 1

Since ¢(z) = O(z), putting for j =1, 2
(8.3) & = myexp (—3Vwloga,),

we can easily see that

|fG 2) da| <H,(§)0(§,) = o(1),

IfG(w

(8.4)
) dax] = o(1).
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Farther
n

zy 1
— [ G@H@de — — [ @) H{(@)ide+ [ ¢)|H; @) do
R 51 51 i1

) i
< — min 6() [ |Hi(e)lde+ max Ga) [ |H;(2)de
R 5 Fyssn )

7

= { max G(x)— min &(z)} f}H;(m)ldm— max G (w) f Hy(o)dx
£ 1

Ty Ty fsesm 2Ky

= 0(1)+{ max G(z)— min G(z)} [ H;(v)do.
1

TrTTy f1KTsa

Bince for T> ¢ .
1

[ Hi@)ds = 1+6(1) < 2
g ’

and ‘
(8.8) max G(z)— min Ga)<max D (—1) D2 (n),
Ty LWL ey nodd
Ui1€ngly

where the max refers to U,, U,% with
s T, < U<y,
(7.2) gives with (8.2), (8.4) and {(85)for T' > ¢

(8.6) max (=102 4 (n) > T exp( —2log™°T)
LTI<Upsn aoug
. Uliﬂ-ﬁvz
and analogously
(8.7) min M (=) Y () — T exp(—Llog™™ Ty,
HSUz<Ug<ny  noda '

Uysn<Uy :
“We remark further that from (8.3), (7.4) and (6.7) we have for j = 1,2

(8.8) £ > Texp(—1logh"oT),

9. Now in order to complete the proof of our theorem we have to
distinguish two cases. ’

Case I. 7 > ¢ and there is at least one zero of f(8) in the parallelo-
gram
(9.1) . o= $+log™0, < T
Choosing such & zere as ¢* the right side of (8.6) respectively (8.7) is

> VT exp (log® T}

7y <2 Texp(logh®67),

respectively
< —VTexp Llog® T},

icm

Further developments in ihe comparative prime number theory, VII 201

Since owing to (8.8) we have for 7' > ¢

: Z (—ul)u’a‘”’ﬂlogp} < oV Uylog? U, < eV log?y, < VTexp (log®e 1),
Ulég%vz
{1.3) is proved for this cage. Analogously (1.4).

We may remark that the localisation of Uy and T, is in this case
much sharper than in (1.1) and amounts to

(9.2) Texp{—2log® D)< U, <« U, < T.

We counld alse prove by small modifications in thig cage the corresponding
theorem for

M o1~ ¥ g

d L
U1<u<lls M<p<lly
P=1mod4 pe=3modd

with the {9.2)-localisation.
Case IL. T > ¢ and all zeros of fl&) in

o=

y ST

23]

satisfy
0_,€ %—-}—log“lml’.

Since the treatment of this case is rather long, it is based on ideas
of Littlewood, Tngham and Skewes and it is similar to our treatment
of the sign-echanges of m{x, 4, 1)—x(x,4,3) in [3] we ghall postpone
it to the forthcoming English version of the book [4] of the second named
anthor.
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