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Comments on some formulae of Ramanujan
by
Fwvin Grosswarnp* (Philadelphia, Penn.)

1. Introduction. It has been shown (see [1]) that if ¢ (s) stands for
the Riemann zeta function, then one has for integral = > 1,

(1) ) ’ C(2n+-1) == ﬁznd{l?ﬁn—!—l - S?a?

with rational ., and

8, =2 mz;lﬂb—(ﬁn-:«l)(eznm —1) (2n/n) (1 +(— 1)11) T"'Z:;waln £ (T 1),

Formula {1) pufs into evidence the relevance of the arithmetical
nature of sums of the form

2 (ﬁm)_aeﬂmnb (ezmn . 1)—6

m=1
and of some of their Iinear combinations. For # = —k 0 < kecZ we
still define S_; formally as above and for # = 0 we understand hy S,
the sam

oo

8y = 2 m (™" 1)1,

m=1
It is rather remarkable that for # = —k'<< —1 one has the explicit
formula
2) 8,=8_,=2 2 ,m"zkﬂl(ewm_l)-l_
mw=1
_ 21‘(?6”1(1 T ( - 1)!::) Z mzk 627:7)?.(62117??. _ 1)—2 — .Bg]\./gk;
m=1

here the B,,’s stand for the Bernoulli numbers in the customai*y normali-
zation so that B,,/2k = — {1 —2%k) and is rational. No corresponding
result seems to be known for positive n. :

* This paper was written with the partial support of the National Science Founda-
tion through the Grants GP-13349 and GP-23170.
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For % odd, (2) hag been stated by Ramanujan (see [4], v. IL p. 171,
Oor. iv) and hag been proven by Watson (see [6]). For % cven, (2) does
not seem to oecur in the liberature, but it iy, like Watson’s resalt, an easy
consequence of the following Theorem A. Here and in what follows, «
and g stand for real, positive numbers.

TEEOREM A. For of = n? and integral k> 1 one has

17 -
— (=B (% E(L—2F)+ 2 e
]
Theorem A has been stated by Ramanujan ([41, v. I, p. 259, No. 14)

and hag been proven by Hardy [3] For & odd and ¢ = f == = one obtaing
from (3) that

(3) (l‘C(l ~—27{3) - y P (e_ma

T 1

l(eﬂmﬁ_l)—-l) = {),

b 2k—1 .
: 2“1 i B,
(2 ) 27th = : ?
: g 4k
=]

in agreement with (2) for odd k.

For &k even, and ¢ = § = n the left hand member of (3) vanishes
trivially; but if one first divides by e—f# and then lets ¢ — w, while
observing that «f = =%, a simple computation yields

nd 2k—1 9 it 2k ST
@) D Y e =,
Ll 67— Ie e, (™ — 1§ 415
ie. (2) for even f.

A most remarkable result, involving precisely the sums S, (> 0)
here under consideration has been stated by Ramanujan (see [4], v. T,
D. 269, No. 15 and v. I, p. 177, No. 21) and reads (in the present nota-
tiong) as follows;

THJJOR}JM B. Po:r off = =% and rational, mtagml n>1,

@) (day- ﬂ{%g(zﬂ, 1 +2m o g _ 1)_1}__ |

— ( méﬁ)l_n{%f(ﬁﬂm 1) + mzz: m1—2n(62,8m_“ 1)_1} "l"
2]

+ (-1

k=0

')J-: ﬁzk' sz B2n—~2k

(2k)! (2n - 2%)! {(—a)1'”2"’+ﬁn—2k} —0

Here and in what follows [#] stands for the greatest integer funetion
and the dash 3" means that for even n, the last term is ( 12 2™ (B, /n 1)
rather than twice that value
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2. Main resulis. All statements quoted so far are immediate corolla-
rieg of the main result of the present paper, which may be formulated
as follows:

TamorEM 1. For real positive o, f with af = =* and s = o+ (o,
real) consider the funetion

I R N N S

— R ) e~ 17—
La]
%2 ‘)v)é' ..aé’wg'p) 2r—2s {(_a)sﬁ2v+ﬁs-2v};

where the last sum is empty (i.e., equal to zero) for o < 0, and where ( —a)'~°
48 defined by exp{(l—s)log(—a)} with some definite (but arbitrary) de-
termination of the logarithm. Then F(m;a, B) = 0 for all rational integers
7 == 1.

The summation condition on » shows that F(s; a, f) iz not holomoz-
phic (not even continuous) in s. In view of the fact that in the proof we
shall congider separately the cases << 0, # =0, > 1, one may skill
sugpect that F(1;a, p), properly interpreted, would vanish. That this
ig in fact not the cage is born out by

THEOREM 2. For off = =* and veal s,
(6") lim F(s; , f)
8=»1"r

i

Hog(—ffa)+ (f—a)f12+1 Y m™{coth am — coth fm),

m=1

(6") HmMF(s;a,p)
=17

= zlog(—pfa}+(

For a=pf =mn, in particular, lim F(s; =, x) =
81

determination of log({ —1) being consisient with that in Theorem 1,

Theorem 2 may he formulated differently, by using the following,
apparently new result, which may have some independent interest. .

THROREM 3. Kor reql, positive a, define

G(a Z ’”n’lu

then, if af = =%,

B—a)f244-1 Z’ m™ (coth am — coth fm).
m=1
tlog{—1) £ 0 the

1)~ —*l—loga + aj12;
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Taking particular values for « and § one obtains any number of cor-
ollaries, such as, e.g., the following one which corresponds to g = 2r,
a = T/2;

COROLLARY 1.

Zm‘l{e"’“ me Y™ —1)7 = (m—log16)/8.

m= =
For k = 0, {2) is meaningless; instead, the following theorem holda.
THEOREM 4.
oo

5’ (ezmn_l)w1+ 2‘ (Bmmul)":z = (m—

=1 m=1

3)/24x.

Using Theorem 3, Theorem 2 may be reformulated as
THEOREM 2. For real s, a > 0, 3> 0, ¢f = =,

. a 1 .
lim F(s; a, f) = ——+—log(—1),

g1

—a 1
Hm F(s; a, f) _f=e + - log(—1},
8§17 8 4‘

the determination of log(

—1) being consistent with that in Theorem 1.

The statements of Theorems 1-4 and some related ones will be proven
in the following Sections 3 to 8. No significant contribution iy made to
the determination of the arithmetical nature of the sums §, for # > 0,
which wag the original motivation of this investigation. The author grate-
fully acknowledges his indebtedness to Professor C. L. Siegel, who sti-
mulated this work and was- instrumental in the correction of some crrors
in an earlier version of this paper.

3. Proof of Theorem 1 (Flrsl Par&) In what follows # stands for

the set of rational integers.

(a) Gase 1, 0> neZ. For s = n < 0, the last sum in (3) iz empty
and, setting s =1—%,1 < keZ, (5) reduces essentially to tho left hand
side of (3). The result now tollows from Theorem A, proven by Hardy
(3] and (2), (2"") immediately follow from it, ag already seen.

{b) Case 2,8 = 0. The cage § = 0, & =1 ig gpecifically excluded

by Hardy. Formally, setting s = 0 in ( ), the assertion of Theorern 1 be-
comes '

a0 Y =1 43— 14 Mm@ = -,
m=l1 m=1 X
and, uging {( —1) = —1/12, the statement to be proven reads as follows:

icm

-we obgerve that ’_Dheorem 4 and Corollary 2
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THEOREM 5. With a> 0, > 0, af = n?,

{7) aZm(egam Tﬂzm wm__qy=1 — M%_!_ Ol-f-ﬁg
m=i

Formula (7) oceurs in Ramanwujan (see [4], v. I, p. 257, No. 9 and v. 11,
. 170, Cor., 1), a8 does algo the

COoROLLARY 2.

Dl (T —1)" = (m—3)/24n.
==l
Although. Hardy’s first method of [3] works without any difficulty,
no proof of (7} seems to exist in the literature; for that reason ome such
proof will be gketehed in the next section. Before doing this, however,

combine to yield the rather
curiously looking.

THEOREM 6.

S,’ (eFm _1)~1p
=1

In faet, Theorem 6 is guite trivial being nothing but the particular
ingtance & = € of the easily verified formal identity

3 @1

4. Proof of Theorem 5. Let f(x) = 2a/(e* —
and geb

2( Zm 2rom L

o oo
=1 =1

= 2 (m—1)(z™—1)71,

m=1

1) for @ =0, f(0) =1

glz) = 9/7-)1 fft)costmdf
Then

e

g(0 f S (6 —

= (2m)7' f yle&—1)""dy = (2m)RI2)2(2).

Here the last equality follows from the classical (see, e.g. [5], p. 18) formula

T(s)¢(s) f ¥ 1)y

It follows that -
h g(0) = (2=)*%/24,
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in formal agreement with Hardy's formula with % = 1. In particular,
for ab = 2=, one hag

(8) all? {12| fj f(mob)} = b“ﬂ{(fzn)ﬂfﬂ/m + Eg(%b)},

m=1 b= ]

Proceeding essentially as in [3] (observe the extira factor 2),

0
d ginte a ,
== Yo b e Ll = (20— (1) — () R
7(e) = (8/m) dwaf S = () (1) () )
== (1 (1) -+ ga (@) -
Here .
. d ‘ .
ga(@) = —(%)”%((m)"l—%) = (2fm) Pt
- s0 that
ghzm Jm B (2)
=1
and
P Y ga(nb) = (2nfbyR2' 2R 6 = aF[12.
=1 .
Next,
d 1 : {91
91(?17) — (Bn)mﬂ(g’m*l) — {g )ly‘.d_(_i)[_ > TR m']‘t(?ﬁ’i‘t)”" 2 e EE
m= e=l
and
bll'“Zg (nb) 3": Lz plf2 Z Z D
- =l n=1m=
— _ana-l/‘z HZITnB—mmb/(l_e——mnb) = —9g a—l/l ‘é\:zm(emnb 1)—-1
e T

Substitnting in (8) and using ab = 2x, we obtain,

1/1{%+2a2m e

M=l

5 —1j2 3/2 1/2 *
Al T8 BT o N1y,
12 12 2 id

Niwa ]
or
1 O - . N gy
3 2@2 m{e™ — 1) = (=" -+ 6*)/12a ~ wb Z m ™™ —1)"1,
n=1 m=l
With o =@, § = ¥=b, one has. off = ymab = =* and we proved that

no
1 W, 2 2
m+2a . :‘.’CTG
2 Zem—l

?_71*1

Le. (7), holds. Setting in (7) @« = § = = we obtain Corollary 2.

Zﬁzizw - ~ﬁF“-w;LQW

el
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5. Proof of Theorem 1 (End).

~Case 3, s =#n>1, In order to plove( ) for 1< s =necZ, we re-
caIl the following result of [1]. Let o.(n) = } & and define F(x) =

” din
Zo;a m)e™™; then one has for £>0, 7 =it and odd a = 2p+1:

m=1

(9)  2{F(@)—(—1y"t" P/ = (—1)"‘“1{ (a )(coseo~2— —get ) -t

(27:)“’ 41

+ ( — 1}'& m g ( - 1)v taﬁzy (a;;l) Bsza-)-l—z;;}’ .

One observes that
bl (?:t) — E m.—a(ezrzmt_ 1)—1 ,

m=1

g0 that
Fafty = Y mm (g™ —1)72,
. =]
T we write also wt = o, ©/f == §, so that of = =% (9) beoomes

(10) {‘?‘m 1) (e 1) ] Y‘m-a(emﬂ -

= (—1y>1 {c(zoz,+1)((—1)”— (afx) 2’=)+
. 1 r’n+1 w1

(2 u n—32» n+t2
+( (9ﬂ+2 y(_ O:f 2 2+1( )Bszzn 2v+2}

We now multiply (10) by %a"”, use n*/a = f, replace n by » —1 and obtain

1 i ym 21, "'mﬁ 1)—

m= l 'm,,...

_ (~1>“{%¢(2n“«1)({ it

(11) al -1 ;\1 1 Zn,( Zma__l)-nl_

2.11 1 2 .
+{— 1)71« (_9_ y ) o 2 1~;-fw—-_,:n (2%) Bn,,Brm,ov}
’ﬂ 0
Clearly, 3, =4 >+ M} and the last term becommes
=0 v=0 pemqy
( - 1)11.—-1 ;n_,‘ S B Bﬂ,, Bm_.,,,
— —— g -1 e e 14220 I A Zv T L1 2 o
g ;;5?( e e )
( - 1)9!—1 = .. : B25' BZﬂ;ﬂu‘

— 8 _‘(21_:)2?% 2 (.__l)v _E--ZV(ﬂ‘zv—-'fw,ﬁ*w ( W_l)na‘_’vv'n)

p=20)

(20! (2n— 29}
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T we now roplace By/(20)! by (~1)7'20(20)(2=)"" and similarly for
Byn_n/(2n— 20}, a simple regrouping shows that (11) is equivalent to
(8) with 1 < seZ. This finishes the proof of Theorem 1. Ramanujan’s
Theorem B (i.e. (4)) can be obtained directly from (11) by taking bo-
gether the terms with » and n-—» in the last sum, multiplication by 4'~"
and gome trivial regrouping of terms.

6. Proof of Theorem 2. I'(s; «, ) may be written as

T {(28 —2) (28 1)} H(—a) T D mt (@ —1)

m=1

-1 —a)t

—pt-s §m1m25(625m_1)—1 1 Z‘ (

O£ v

—1YE(20) (25 2 B —a)" T 4],

Letting s — 1%, one obtains

. (_ a)l—s—ﬂlﬁs * 1 1 B 1
3151% 4(s—1) * ,Z m\em—1 -1

*%5(0)5(2){#((%)%)~_((——a)"1+ﬁ"1)}
1 ﬁ ki 1 gl __ glem
= ZlOg(—E) +7§E (ezamwl)(ezﬁm__l) -+
1 2
R (C R )
- llog(_ﬁ) +%2 1 (eoth am — coth fm) 4-%‘1,

thus proving (6'); We observe that for s — 1™, the last sum contains only
the term corresponding to » = 0; this yields (6”) and finishes the proof
. 0of Theorem 2.

7. Proof of Theorem 3 and Theorem 4. By Mellin’s integral for the

~ exponential one has (see [37]; the present formula is easily verified direct-

ly, although it corresponds to % = 0, not covered in [3]; see alse [7])
for 0w, :

. zﬁmrl(e‘zmuwl)_l — !
“ 2y
m=1 . .

"The shift of the line of integmtion' (with due regard to the residues of
poles crossed) to ¢ = —1—¢ is easily justified. The poles are at § =1
simple pole, residue R, ={(2)/2a = =~?/12a); at s = 0 (double pole,

j I()E(s) £ (s +1)(2a) " ds.

14 e—ico
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rosidue B, = {log(e/w)); and at s = =1 (cimple pole, residue F_,
= —{—1)E(0)(2a) = — af12). Consequently,
e 1 a 1
2 = —_——— o — L —— 5.
(2) 9l = gty ety | Tl DR

In the last integral we replace s by — ¢ and use the functional equations
of the I' and the {-functions. Setting =?fa = § the integral becomes

1+e41c0

- T(s){(s)C(s+1)(27°(a) " ds = (f)

2w

and (12) yields

Emwl(62ma __1)—1 _
m=1

i.e. Theorem 3. One may rewrite the statement of Theorem 3 as

o«
Z m-—-l(62ma — 1)-—1 —
m=1

for a = B == =, this holds trivially, but if we first divide Doth sides by
B—a and then let ¢ - = (with § = =n?/a), Wwe obt&m the sta,tement of
Theorem 4. :

8. Proof of Theorem 2’

aff = n?

14-5—1ico

N fee]
Hoga+aji2 = >'m™(&™ —1)"'—1log B+ /12,

Nim @™ 1) = —Hlog(pfa) + (5~ )/12;

m=1

Ag seen in the proof of Theorem 2, for

3 Z’m‘l{eot}mm—cothﬁm} = Zm‘l(ez“m Zm B (R §
By Theorem 3, the right-hand side equals }log(a/p)+(f—e)/12; making
the corresponding substitution in (6') and (6"') we obtain Theorem 2'.

9, Final remarks. In the evaluation of the Riemann. zets function
at odd, positive arguments (7 1) oecur the sums 8§, defined in (1), with
0 < meZ, and. one iy interested in the srithmetic eharacter of 7=~ G*TUgG, .
thiz does not seem to be known for any neZ (n>0). Reviewing preced-
ing results, we can make the following, somewhat related remarks.

(a) For —1>mneZ, 8§, = —B_;/2n is rational.

[}

(b} 8 = B m(e™

m=1
+ 2} 21‘:111

usmg Corollary 2, &' —3x" " —24(=" 8, )'— 0 and if =8, would be alge-
braic, also = would be algebraic, which is not the case.

_,_,1)—1 (: 2 2'1?71( )»—" Z (Bzmml)_l+

m=1 m=1

%) is transcendental and o is ©7 SQ for any integer 7. Indeed
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At this point it may be appropriate to recall also the following known.
(zee [2]) fact:

78

{¢) For n= 1, 8, = H,({) where H,(7) = ¢, (m)e* ™™ with ¢, (m)
= 21+ (14 (= 1)mmfn) o_ sy (m) (for a od_a H A7) = 2P (7).
H,(v;4) = L 2 (m) 6, (m) ™ righ

me=al

éh(m) =2(1+(1+(—1)”*“5)7cm/?m)a_(m,m(m}, where y(m) is a real,
primitive (non principal!} congruence character module %> 1 and
§ = (1—yg(—1))/2, then H,(i, )n ®+Y belongs to the quadratic field
generated by vk over the rationals. This result apparently cannot be
extended in any obvious way to y(m) a principal character.

Neither of these remarks seems to have any direct bearing uwpon
the rationality or transcendency of =~#"+U7 (204 1).

|l

If we define, more generally,
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Sur la résolubilité de I'équation 2*-+y°+2* =0
dans un corps quadratique

par

TryeveE NAGELL (Uppsala)

§ 1. Méthede nen-constructive

1. Imireduetion. Pour gque Péquation
(1} pityii-et =0

soit résoluble en nombres x,¥,# d'un corps algébrique K (hors le cas
¢ =y =z=20) i faut évidemment que K soit totalement imaginaire
{=t.im.). Pour reconnaifre si cefife équation est résoluble ou mon il
est naturel dappliquer le résultat suivans: '

LevvEe 1. Soit donné le corps algebrigue K t. im. Pour que Péqua-
tion (1) soif résoluble en nombres entiers o, 4,2z du corps K (le cas & =y
= g == 0 élant ewclu) il fout et il suffii que la congruence

E2+9*+ L = 0 (mod j)

goit résoluble en enliers &, n, ¢ de K pour tous les idéaux de K, tel g_fu on atl
(&7 41 =1
. Ce régultat est, bien entendu, un eas particulier d*un théoréme de
Hilbert sur les formes quadratiques; voir [2](}). Il est évident qu’on. peus,
dans ce lemme, remplacer Pidéal | par lidéal (¥} ol N parcourt tous
les nombhres naturels.
Or, si ¥ est 4mipair il est bien connu que Iz congruence
224+ y?+2? = 0 (mod N)

est toujours résoluble dans le corps rationnel de maniére qu’on ait (2, ¥, 2, N)
= 1; voir p. ex. [4], p. 192. Done, on peut remplacer le Lemme 1 par le

(1) Les numéros figurant entre crochets renveoient 4 la bibliographbie placée A la
fin de ce mémoire. :



