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1. It 4 (= kA’ A" primitive in R,) is' an ideal in ap order E; of
a quadratic field, and ¥ (4) = be, then (see [17) if 4 is prime to the con-
ductor the number of ideal divisors of 4 with norm b equals the number
of ideals of norm (k, b, ¢). The present paper grew out of the desire to
remove the hypothesis that 4 is prime to the conductor. This was found
to be far from trivial, and required a substantial study of ideals not prime
to the conductor.

2. Let d, denote the dlserlmmant of a quadratic field. There is a nnique
order :

By =[l,0] =Z+wZ,
said to be of diseriminant d, 'conesponding to each eclement d of ED
= {dys*{ > 0,5 in Z}. Here Z is the ring of integers, o = (s—l—ﬁ)/ﬁ&,
e (=00r 1) = d(mod 2). We write d - w. Each nonzero ideal M in By
s {[2], p. 32) 2 Z-module
(1) kim,r+o] = kmZ+k(r+w)%, where miN(r+ o).

Here k, m, r are integers, ¥ and m positive; and k%, m, and the residue r
modulo m are nniquely determined by Ry and M. If ¥ =1, M is called

primitive in Ky,

We call I dnvertible in B, if there iz a nonzero ideal ¥ in R, such
that M N = kB4 b in Z. It is shown in [2], p. 34, that M is invertible
in B, if and only if

(2) (m, d, N (r+ w)fm) = 1.

A nonzero ideal M in R, is invertible in a unique order, whose diseriminant
is necessarily a divisor of d. Further ([2], p. 34), the ideal M in (1) is inver-
tible in B, if and only if MM = k*mR,; and then k?m is the norm of M,
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Lemvma 1. Let 4; = [my, v+ w;] be an ideal in Rdi (7 =1,2). Then
the product (as Z-modules) of A, and Ay is anideal in Ry, where d — (d, dy).
Proof. Lebt d; — oy (1 = 1,2). We can write d; = donj, b = (ny, n,),
ny = hg; (1 =1,2), d =d % Thus (g,,¢,) =1 and integers s; can be
found such that ‘
(3) o T = S,
and integers »; such that #,4, + 9.4, = 1. Hence d -+ @, 0 = v, 0, + 0,0, +
+k (kinZ). Thus @, 4, © 4, 0,4, c dy, v d 1 4y c 9, 4,4, (i=1,2)
wd, A, = A, 4,, henece 4,4, is an ideal in [1, w].
- CororrLary 1. If A; 45 an ddeal in [1,0;] (¢ =1,2), then 4,4,
= 4,4,[1, w]. Alse, [1, 0] =11, w,][1, w,]. Hence
(4) Apdy = A1, w]- 4,1, w].

Here A,[1, wy] and 4,[1, »,] are ideals in [1, o].
The following result appears ag Lemma 3.1 in [2].

Lmyra 2. If A = k{my, 7o+ o] 48 an invertible ideal in [1, w,],
then

(5) A1, 0] = ke,[myfer, v+ ],

where e, = (My, 8y, §,), mife; i3 an integer; and v is defined by

Ta-twg = S+ o005

(8)  gir =5l (modmyed), whero 0 = ei)-

COROLLARY 2. If A;is an invertible ideal in [1, ;] (1 = 1, 2),

!
81 = 618,

(7) - A4y = eey[mafe], o] [mafe;, s+ ],
' gir = s (mod myfe]), g5 = s; (mod mye),

with ¢;, ¢;, s; defined as shown in Lemana 2. Tf, in particular, (m,fe, mo/el)
= 1, we ean choose r = ¢ and have

(8) Ay Ay = eje [mymyf(e,¢,)%, 7+ w].

The problem of multiplying two ideals in any of the orders is
thus reduced to that of multiplying two ideals in the same order. Tf
A = [m, 7+ w] is an-ideal in [1, w], and m == []p° is a produect of powers
of distinet primes p, then A iz the produet of the ideals [p% #+ w]. In

view of Corollary 2 the problem is reduced to that of finding the produet -

of two ideals [p% 71 0] and [p% s+ o] with p a prime.

. Primes p can be classified as follows relative to a discriminant d:
() those such that (d@|p) = 1; (ii) those satistying (d| p) = —1; (iii) those
for which p{d but dp* is not in D; (iv) primes p such that d/p® is in D.
-The first three types are familiar in the literature, nsually with reference
to the maximal order, in which case type (iv) does not ocenr. If (d1p) = —1,
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then in any order the only ideals whose norm is & power of p are expressed
by p*Rz;. I (dip) =1, there are two ideals, P = [p,r+w] and P
= [p,r+ ], of norm p; PP = pR,; and any ideal of norm p* which is
primitive in R, is P* or P™ If p is of type {iii), there iz a unique ideal
P =[p,r+ol, and P = pR,. But ideals [p*,r+«] with p of type
{iv) have been neglected. Their theory at first seemed chaotic, and we tried
to bring some order into this chaos. We like to speak of such primes as
bad.

3. Let » denote the largest integer for which 4, = 4/p™ is in D.
Let p be a bad prime. Then # > 1, The module [p%, 2+ »] is an invertible
ideal in Ry if and only if p'| ¥ (g + w), ie.

(9) dp'(2a+e) —p™dy, 4T (24— 5™ dy.

Notice that (9) is impossible # I iz odd and < 2n; if pld, and I > 2rn+1;
if (dy|p) = —~1and 1> 2n; orif I = 2n when p =2 and d, = 1 (mod 8),
Henee there are four types of invertible ideals [9, z -] when p is odd:

1 =2k <20, 2zt =p"m, (m,p) = 1;

ag: T =20, 22+e == p"m, m*—d, prime to p;

ag: | =2n4-1, pldy, 22+e = p"m, p|Mm; ' - _
@ 120, {dp)=1, 2z+s=p"m, Ltm =m, L+ sp"*" with (¢,p)=1.

In the last type, m, denotes a fixed solution of mi = d, (mod p' ),
and we note that if (d,|p) =1 and %> 1, the two solutions +m, of
2? = d; (mod p**!) satisfy 4* = d, (mod p¥), and the only #’s that do
not serve as an & are those given by 4 (i, +sp*) with (s, p) = 1; a simi-
lar remark applies to §, below. If p — 2, (9) reduces to 2']2* —2™ %,
and we subdivide the cases in which this holds inte five types:

Bt 1l =2k << 2n—2,2 = 2%m, m odd;

fir 1 =202,z = 2""'m, m %= d, (mod 2);

Bt l=2n,5=2""m,modd if d, =5 (mod8), m =2 or Omod 4

acc. as d, =8 or 12 mod 16; '

Bt l=2n+1, 2 =2"""m, m =0 or 2mod4 ace. a5 .d, =8 or

12 mod 16; .

Bz 1> 2m, dy =1 (mod 8), 2 — 2" Lm, +m = m,-+ 27", ¢ odd.
Here m, is a fixed solufion of m} = d, (mod 2Vt5—*").

We wish to count the invertible ideals [p% r--w] with nerm p%
Here r is determined modulo p% and so for example if a = 2k < 2n,
2+ s = ptm’, (m',p) =1, p odd, we must ecount 27+ smod p™, hence
m’ mod p*, and have ¢(p") residues m’. In this manner we obtain _

" Lenvma 3. The number p(p®) of primitive invertible ideals of morm p®
in By is zero if a is odd and < 2n, or pld; and a > 2n--1, or {d;|p) = —1
and a>2n, or (if p =2) @ =2n and d; =1 (mod 8); and is ¢(p™) if
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a = 2h < 2n, or if & = 2n and p|d;; and is
(10}  p ifa = 2n+Landp|d;p ifa = 2nand(d;|p) = —1;p" " {p-2)
if @ = 2n and (d,]p) = 1; 2¢(p") if a> 2n and (d,|p) = 1.
Here ¢ is the Buler phi-function and (dy|p) the Kronecker symbol,
Summing (p9+w(p“ *)+... we have
Lunoaa 4. The number x(pY) of invertible ideals in R, of norm 9! (so
thatt = 2 - 8 in monncgative integers v, 8) is zero if tis odd and (4, |p) = —1,
or if t (< 2n) is odd; and is " if t = 2R < 2n; and is
(11)  piftz2nandp|dy; p"+p" " if L (= 2n) is wen and (d;|p) = —1;
(t—2n--1L)e(p™ if 12 20 and (d|p) = 1.
The following remarkably simple formula for the product of fwo
ideals holds even when p is of type (i) or (ﬁi). _
TeworEy 1. Let p be a« bad prime. Leat A = [p%,r+w] and B
= [p® s+ w] be invertible, and b= a> 0 (henoe a2 2 if p is bad), and
set t = r+s-+e Then B = A if and only if p® 1, and in this case

(12) AB = (p%) = p“[1, w].
If 9%, let pbllt. Then 0 < e < a and p°|u where u = ys— (e —d)/4, and

a+b—2c) .

(13) 4B =p°[p*"* ", v+ 0], where v =uft(modp
Proof. If p°[t (take ¢ = oc if ¢ = 0) and m» = min (a, ¢}, then p™ [u.
since
(14) 78 = —s?—se = (¢ —d)/4 (mod p™).
Suppdse %1t Then m = ¢ and

(18) AR = [p"*, p"(s+w), p*(r+ @), w +te] ,
=p[p", s+, (r+w)p" (u+te)p™] = p"N, say.

Henee N must have the Z-basis [p*, s+ @], where p° i3 the g.c.d. of 2
and the two integers

| P ) —p T s+ w) = (r—8)p",

(wttw)p *—t(s+w)p™® = —N{s+w)p°.

Cleasly p°~* divides the latter precisely, and divides the former. Hence
AB = p°[p" " s+ w]. But a product of invertible ideals is invertible
and, since p'~*"! divides N{s+ ), AB cannot here be invertible unless

b =a. Henceb = a, AB'= p®[1, w] = A4, B = 4. Conversely, it B = 4
evidently p”|t. o
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Suppose 911, i.e. m =o. Then ¢> 0 since 2p1(2r+4-6)+ (254 &),
and )

AR = p [p*7 %, (3 + o)™, (r+ 0)p®~, (4+ t) p=].

Here 1p™° is an integer prime to p, and the module AR containg path—e
since this precisely divides each of

P — (up® “p~)(tp™") = p*°N (s + m)ft,
" — (up" P (p ) = 0 ON (r + ).
Henece (13) follows.

4. Let A = [p% v+ o], L = [p%, 2+ o] be primitive invertible ideals
mn Rg; a>0, I > 0, 0 a nonnegative integer. We call 4 a divisor of p°L,
and write 4 [p°L, if

{16) P°L =AB, for an ideal B in R,.

It B is primitive we call 4 a precise divisor, and write 4 ||p°L.

Lmamaa 3. If A°£ L, Ap°L if and only if p° Cllr—z; A|p°L if
and only if p*%ir—e. '

Proof. If (16) holds with B primitive, p°LA = p°B, LA = p*°B,
@z ¢, and, by Theorem 1, p* °||{—r—s)+(2-4¢) = 2—7. Conversely,
if @2 ¢and p**||r—»z, then LA = p°°B with B primitive by Theorem 1.
The last part also follows. .

THEOREM 2. Consider an dmwvertible primitive ideal I — [P, 2+ w]
in By, 1> 0. The following table lists in the various possible cases the values ¢
Jor which there exisis a primitive ideal A of norm p* which precisely divides
P°L, and gives in the third column the number of such precise divisors A for
each e listed therewith.

Case : Values ¢ Number for each ¢
a<1 10 (< 2n) even af2 w(p®)
a>2n, (dijpy =1 n,a—n @ (p™) each
1< 2n a— 12 w(p”)
“>1 {l>2n a+n—1, a—n p{p™) each
a-<< 2n e, 1,...,(af2r—1 - p(p") each
a/2 (p—2)p=?
= 2n 0,1,...,(a2)—1 o{p°) each
o =1 af2 {p—2—(d:p)}p°"
e =28n41,p!d, 0,1,...,% @(p°) each
a>2n, (dyip) =1 0,1,...,n—1 @ (p°) eack
" (p—2)p™"
a—n o(p™)
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Proof. Let p > 2. We set 2r+& = p“m/, where b = a/2 if < 20,
Bo=n if a>> 2n; similarly for 224 ¢ = p®m. We must study

o g —

when T, and A satisfy varionsly ey, ..., a.. :

Cases with a<l If a<2n, then pfm’ and k>7%, a—c =1
=a/%; if ¢ =2, I =2n-+1, and p|d,, then pim', p|m, -0 = n;
fo=2nand (dy|p) =1, m2z=d,m =d, (modp),e—¢c=mn;ifa>2n
and (d;1p) = 1, +m = m, +1p™ ™, (1, p) = 1, m = my+sp™ ¥ (m, fixed),
hence p* ™{m'—m and ¢—¢ = a—n, or p{n —m (sinee 2m, is prime
10 p) and & —¢ = #; note that ¢ is determined mod p” and has ¢(p™) values
in each case. :

(ases with ¢ > 1. Tf 1< 2n we consider p"m’ —p"m and have a—¢
= k = [/2 and the full number y (p“) of divisors. If I > 24 we have (m'—m)p™
with +m' = m,+5p** and m = m,+sp" ™ with s prime to p, hence
P m —m and a—e = l—n, or pfm’ —m and a—e = n, much as
before.

Cases with a =1 We consider p*°[|p" (m'—m) and count m’ mod p* .
Denote by v, the number of residues m' such that p’||lm’ —m £0 < f < a—h,
end let v,_, = 1; then ¢~-¢ = f4-A for such values w'. Suppose that m
satisfies ay, ay, Or a,. Then m' = m (mod p) implies that m’ satisfies
the like condition ay, dy, OF ag. Henece if f> 0 we can set m' = m -4 sp’,
(s, p) =1; counting s mod p**7 we have o, = p(p* ). Let f=10;
if ¢ < 2n,m' and m are prime to p, m' has p —2 residues mod p for which
ptm’ —m, v, = (p—2)p"Y; if a4 ==2n and p|d,, the same; if o =2n
and (dfp) = —1,m' is arbitrary, o, = (p—1)p""; if (d|p) =1, w
must not be O, m, or —mmodp, v, = (p—3)p" *; if ¢ =2n-11 and
Pldy, p|(m', m), and we set m' = m+ps, (8 p) =1, bhence v, = p(p".

Finally consider o, with @ > 2n, (di|p) =1, £m' =m,+1p* ", (s, p)
© =1, with { counted mod p* Thus m' —m = 2m,(mod p) and ¢—e¢ =n
with ¢(p") divisors, or m' —m = (¢ —~1)p" " and a—e = n-+(a—2n-e)
where p°|ls —1t, hence on setting == s+ gp°® with ¢ prime to p we get
V= (@") (6 =1,...,m), m = (p—2)p""". '

The same final formulas are found when p = 2, and the work is
usually much the same. We study 2°7°|r —2z = 2"m’ — 9%m, with .I and 4
satisfying fy, ..., f;. A few places are different: a = o, 1 =2n--1,
20dy, (m'=m)2"Y m'—m =2 (mod4), a—c¢=n =af2; a=29n =1
2dy, (' —m)2"Y, m' =m =2 or 0 mod 4 ace. ag d, = § or 12 mod 16,
thus .’ is unique mod 4, and if »; (0 < << n) is the number of residnes
m’ mod 2™+ for which 2! |m' —m,a —¢ = n—1+F+1, ebe.;if a > 1> 2,
(d:]2) =1, (m'—m)2"", Lm' = my+1-2977% Lo = -} g- 20
st odd, either m'—m = 2m, (mod 4), & —e = n, m' mod 24"+, ¢ mod 2%,
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@(2")  divisors, or
¢ = a—1l1n,p(2") divisors; and so on.

My = £.90 - —g- f_-){.l+1*“3"j 23—— n.HZ:u—l (?n: . ?ﬁ),

5. We are now in a position to establish a generalization of the the-
orem ‘which occupies the opening sentence of this article — without the
hypothesis that the ideal is prime to the conductor. We first proved
Theorem 3 by a mapping argoment in the ease where g{p") # 0 [and
might then have treated the exceptional case directly). But we feel that
much more is proved hy our present method, and that the light thrown
on the invertible ideals not prime to the conductor will be valuable for
other purposes.

Given an invertible ideal »*L, L = [p', 2 +- ], and a mnonnegabive
integer ¢ smeh that v (p') £ 0, we wish to find the number g{p") of (neces-
sarily) invertible divisors of p*L with norm p% or, what is the same
thing, the number of ordered pairs 7, U’ such that P*L =TT with T
and U ideals in R; of given norms p* and p*, where t+u = 2k-+ 1. Since

g(p°) = g{p") we can suppose that 2¢ < 2k +1.

Any such divisor T must be of the form p®[p?, r+ w] with 2e+a — ¢ ;
and ¥ A = [p% r+ o] and Aip°L, then iz e-te Hence g(p) =0 if
I < ky, where k, denotes the minimum of the numbers e+ ¢ for all decom-
positions ¢ = 2¢+a {e and e nonnegative).

TrroreM 3. Let § = min(t, 2k +1—1). Then

{17) g(r") = 22",
where
{18) ¢ = min{s, &+ min(n, 1/2));

except that
(19) gl =0

Proof, We assume without loss that f= k3-{1j2). Hence s =1, and

when k< and 2k < s <.

(20) k=2 # 1<,
(21) a=1%t if 1< %n,
(22) a=min(t, F+n) i [>2n,

Except when o == [, Theorem 2 assures the fnll number w(p™ (or @(p™)
= »(p%)/2) of divisors for each value of ¢ for which c+e< k. If 4 = 1,
the p(p®) (or p(p™) divisors are spread over an interval of values of ¢:
in each such case it will be found that the largest ¢--e for the interval
aatisfies et e<< % under the. stated conditions — and so one can treat
these divisors as though they constitnted a single bateh of w(p%) (or o(p™))
divisors of norm p. : : .
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I ¢ 1, we will show that e+ e k holds for all allowable valuey
of ¢+ e, and the firgt part of Theorem 3 will follow from Theorem 2. For
t < I, we will see that if k, < & (%, defined above} then the values of ¢+
such that ¢+e <% yield, by Theorem 2, ¢(p') = x(»); i %k < %, then
g(p") = 0.

Caset< 2n,t< 1. Wehave ¢ = (t—a)/2 and ¢ = a/2 (by Theorem 2)
for each even ¢ = 0,2, ..., Thos e+ ¢ = /2 = k,. Hence

(23) gphy =0 ¥ EB<s/2<nand s<1,

Also, « = {, since when > 2n and % > £/2, min(?, k4+#) = ¢. The number
of divisors is Y w(p'™™) = y(p%). _

CCase I<t<2n. Thus a =8 If oo =1, ¢ = (1/2)—f and ¢ = (1—1)/2;
kzt2zete for all f20, If a<l, ¢ = a2, ¢ct+e =1/2< % TF a1,
¢ = a—(I/2), e4e = 1—(1/2) << k. For each a, Theorem 2 states that there
are p(p® divisors, ¢(p") in all. '

Case pl|d,, t =2n+1. Since a < 2n requires that a is even, only
@ = 2n+1 is possible. Also a =t if 1< 20, and then 4> 1, ¢ = a—(I/2)
=et+et-- (12} <k IT = 2n+ 1, then k > 1— (§/2) implies that & = n -1
and e =min(t, k+n) =1; also e=n—J, and k= a+1> n—f =¢c4e
(f=10,..,n).

There remain only {d,|p) == 1, ¢ > 2n, and one of

() I> 1, t < k+n (hence a = t);

(b) I>%, t> k+n (hence I > 2n, a = k+n);

fe) I<t, t<k+n (hence a = 1);

(d) 14,4 > k4+n (hence a = k+nand 1> 20).

Case (a). If o is even and < 2n, ¢ = af2, ¢+e =12 <t—n<<k.
Ifa>2n¢c=nora—n;nt(t—a)2 =2} +2n—a)2 <i2<i—n<h
a—n-+{t—a)/2 = (a/2)+(1/2) —n < t—n < k;hence ¢ + e << k for all values
of o. Note that k,= n, and n<(k since 2n << <Lk +n, 50 that k< k, it impos-
gible.

Case (b). Since > a, any a greater than 2% will have ¢ = n or a—n.
The minimum value of # + (¢~ )/2 here will be » and that of a — n - (t—a)/2
will be #/2 or (¢ -1)/2, both > n; and if tis even and a > 20, ¢+ e = #/2 > @
Hence % ==, and

(24) giph =0 i E<w,l>s> 9.

Note that (23) and (24) together yield (19). We may suppose then that
Ezn, and set kb =n-t+v, 9320,

Let ¢ be even. The values @ which are even and << 2n have ¢ g =12,
and ‘will produce a batch of ¢(p™) divisors if and only if & 3 t/2. We will

verify that f & = 2n+2,...,t, and ¢ = % or a—m, then exactly » cases
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occur with ¢(p”) divisors if %> 1/2 and v+ 1 cases oceur if & < /2, thus
yielding z(p") = (k- n+1)p(p") divisors in all. Indeed, if t—2¢ = 2142
{(i.e. k< 1/2), then we have v+ 1 cases with ¢ = # (since n+(t—a)/2 <k
=#n+v if and only if ¢t a>t—20) and none with ¢ = a—n (since
a—n+t{t--a)2znto-r1loraz2n+2). I t—2p < 2942 (e k= t/2),
only (t— 2n)/2 cases oceur with ¢ = n; and putting a = 2n-- 24, (2n+2¢)/2 +
+(E/2)—n = n+v gives g = k—(/2) cases with ¢ — a—n, and g1+
+{E—2n)f2 =k—n-+1 as required.

Let t be odd. Tf £ 20 = 2n+1, v+1 cases already ocour with ¢ = 03
and none with ¢ = a-—-n, since @¢/2412—n=nletl if a = 2n-+1.
But if {—2v <2041, or t < 2k4-1, then ondy (£—2r+1)/2 cases occur
with ¢ ==n; and if we set o =2r+2¢-1 (¢ =1,..., —2n-+1)/2),
then there are 7 cases with /2 1-¢/2—n < a + o, given by (2n -+ 2r —1)/2 4
+U2)—n =n+wier =k-—-(t—1)/2; and P (f—20 4 1)/2 = k—n+1,
a8 required.

Case (e). We will show that there arve exactly {—2n-+-1 bhatches
of p(p") divisors corresponding to values of o such that %> ¢ +e.

Suppose I < 21, hence ! even. One batch comes from g = 0,2,...,2n
whentiseven. ffa <l c-te = {2 < ksince 2k +1> 2. Tfa =1, ¢ = a2 —
—f(=0,1,..,82),cte=12-Ff<t2<h Hl<ax 2, 6 = a—1/2,
¢+e=(t+a-—-1)/2< (H2)+n—1/2. In each case, k> e+ ¢, since %> 2n
implies that &> t—1/2 > (§2)4+n—1/2. Also, »(p™) = p{p™. We have
also to consider 2w < o<t a=1t(mod2), e¢=a—12, c4(t-—a)2
={a+1—1}{2 <t —-1/2 < k since t > 4. Bvery such a gives 2¢(p"™) divisors,
and the number of values a is [(t-+1-2n)/2], giving F—2n+1)p(p™
in all,

Suppose > 2n. Now a < 2n (i even) gives c+e = /2 < -2 <k
one bateh. If I > a> 2n, ¢ =nor a—n. If ¢ = n, n+t—a)2 <t—n<k
since n < af2 and @ < {/2. M ¢ =a—n, a—n+(t—a)2 <i—n <k since
a<t.fa=1>2nandec=a+u 1 thencte=a+n—1I+ F—a)2<t—n
< ksince 2n <l and o <15 ¢ = a—n goes as before. Thus, (£ —2n 4 L)g(p™)
divisors.

Gase (@). T a<2n (t even), cte =2 t—-12<k I 2n<a
<he=mn(orn—F) ora—n Here n-(I—a)/2 < t—1/2 holds for & = 2n,
hence for ¢ > 2xn, If 20 < ] < a4, ¢ = a+n—1 or a—n. Here a4+-n—I+
+{E—a)/2 = (af2)+n—1+1/2 <t-1+n < t—1/2 < | since 2n < 1. Hence
there are (#/2) —n -1 batches when ¢ is even, (£ — 21+ 1)/2 batches when ¢
18 0dd, not counting any with ¢ = @ —#. To attain the number % n4-1
of batehes we must verify that there are k— [t/2] batches with ¢ = a—mn,
2n < a<Ci If tis even it follows easily that there are k—1/2 values of a
such that 20 < o<t and a—n-+{(—a)/2 < k; and there are E—(F-1)/2
such values o when ¢ is odd. This completes the proof. '



Lo

70 Hubert S. Butts and Gordon Pall

6. Let 6[A, r+ @] be a fixed invertible ideal in Ry, § and 1 in zZ,
and let 7, ¢ be positive integers such that 621 = r6. We wish to determine
the number ¢(z) of divisors in R, (necessarily invertible) of &[2,r- w]
of norm v, i.e. the number of ordered pairs T, 8 of invertible ideals in By
such that d[4, i+ w] =18, N(T) = v. For each prime p define integers
Koy Lys Ty 8 By 2 90118, p'2|| 2, 97 ||(4, 0); leb m, be the largest integer such
that d/p™» is in D. ‘ ‘

Tt 9 = 0 in Theorem 3, i.c. it p is not a bad prime, then Theorem 3
becomes a special case of Theorem 1 of [11 If #z is a positive integer let
% (%) denote the number of invertible ideals in R, of norm z. By Theorem 3
and Corollary 2 we pow have

THEOREM 4. If there ewists a prime p such that by, << 1, and 2k, < 8, < 1,
then g(o) = g(v) = 0. Otherwise, .

g(e) = g(v) = x{[[p®), where @, = minfs,, &, min(n,, L,/2)). .

7. Tt may be of interest to' mention that the result in the opening
sentence of this article arose from a neat proof, essentially by descent,
that if a+bi is & Gauss integer of norm mn (m and » positive infegers),
then the number of nonassociate divisors of a4 bi of norm m is equal
to the number of Gauss integers of norm (a, b, m, #). There is a similar
result for gquaternions, and presumably a corresponding theorem for
factoring ideals in generalized quaternion orders, The analegous problem
in cubic fields seems to be complicated. In [1] we gave an afgorithm which
associates the factorizations of an element 7 (@, +z,w) in B; ag o product
of elements of morms m and » with represenfations of ¢ = (r, m,n) by
an explicitly given binary quadratic form ¢ of diseriminant d. How @
is naturally connected with the given elements wag left unclear. Hence
it may be worth mentioning that ¢ can be transformed by an integral
transformation into the primitive form associated in [2], Section 3,
with the module [m, i {w, - w,w)].
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1. Iniveduction. Let # be a differential ring of analytic funetions,
that is a ring closed under differentiation. We may assume without loss
of & generality that # contains the constants € and is therefore an algebra
over C. Tf 2, is a differential subring of # we can define the Ting
£ = [ D] of linear differential operators with coefficients in #, and con-
sider #Z as an #-module.

1.1, DeFINITION. The elements fi, fo, ..., f, of # are linearly depen-
dent over & if there exist Ly, ..., I, % not all 0 5o that Lifit e+ Tpfo =0
and Unearly independent over & otherwise. The dimension of & over ¥ is
the maximuwm number of linearly independent elements of # over #.

We are interested in the following general conjectures:

1.2, Conomeruvme. If £ is a ring of entive functions which i3 finite
dimensional over & then # is 0-dimensional over . That is, for every fe#
there exwists an LeF” (= Z\{0) so that Lf = 0.

The hypothesis that # be a ring of entire functions is certainly not
superfluous since the conjecture in this form does not hold for rings of
meromorphic functions (see §3). However David Cantor has suggested
the following two purely algebraic versions of our conjecture.

" 1.3. ConTECTURE. Let # be an abstract differenticl ring with DR = #
and define H#, and & as before. If & is finite dimensional over & then 58
is 0-dimensional over & (at least if D#, = {0}).

14. Congrerure. Let #, %, and £ be as in Conjecture 1.3 but make
the stronger assumption that L& =X for every L eZ,[D] whose leading
coefficient is a unit of #,. Then, if # is finite dimensional oper £ it is 0-dimen-
stonal over £, :

So far we have no algebraic attack on those conjeectures. However
we were able to show that there i3 an upper bound on the growth rates
of the functions of # which iy consistent with Conjecture 1.2 ([17).



