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§ 1. Introduction. Let ¢ denote the arithmetic function of Euler,
i.e.,, ¢(n) stands for the number of positive integers not exceeding » which
are relatively prime to n. The distribution of the values taken by 9 can
be studied from inany points of view. In this paper we talke the following
approach. h :

Let @, denote the nmumber of positive integers n with @p(n) = m.
(This number is finite, since ¢ () tends to infinity with =.) Tt is a familiar
phenomenon that a,, is usually zero and on. the other hand is occasionally
very large. Accordingly, in order to get stable results it iy Teasonzble
to consider the summatory function . ' '

Alm) = Zam.

(Thus 4 (=) i.s the number of positive integers » with p(n) < ®.) :
The foilowing numerical data were obtained from Table II of [6]:

@ 100 200 300 400 500 600" 700 800 900 1000
Ax) 198 39s 588 790 971 1174 1357 1569 1759 1941
A(z)/w 1.980 1.975 1.960 1,975 1.942 1.957 1.939 1.961 1.954 1.941

These data suggest that 4 (»)/z has a finite limit « a8 @ — -+ eco. In addi-
tion a simple heuristic argument suggests that this should be so with
a = {(2){(3)/{(6) = 1.9435064... Namely, since the arithmetic function
njp(n) is the multiplicative convolution of the two arithmetic funetions 1
and. : :

ofn) = lu(n) [] 0 —1)"",

rln
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we see that njp () has a mean-value equal to

G 5 [y ORI LU
ZT“Q(H p)“ljlfm—l) to "

d=1

Thus the number of positive integers n with ¢(n) < # should be near to
the number of positive integers # with #fe < », which i8 [az].
Two actual proofs of the relation

(L.1) - lim A@)

T+ ok &

are in the literature. The first procf, given by Trdds [B], is based on one
of the earliest theorems in probabilistic number theory, namely, the the-
orem of Schoenberg [10] that n/p(n) possesses a distribution function.
Erdss’ proof as such proves only the existence of the limit in (1.1), but,
a3 explained in the next seetion, it is comparatively trivial to evaluate
the limit once ity exigtence is knowmn. The second proof was given by
Dressler [3]. It is completely elementary and is based on density-the-

oretic ideas. As we ghall also explain in the next section, (1.1) also follows -

immediately from the Wiener—Ikehara Theorem.

The main purpose of this paper iz to illustrate the use of several
technigues in analytic number theory by applying them to obtain esti-
mates for the error ferm A4 (z)—ax. The methods which we shall use are

(A) application of results of Nyman, Malliavio, and Diamond in
Bemrling’s theory of generalized integers,

{B) the Nyman-Malliavin method of using the Plancherel formula,

{C) the classical method of contour integration.

The results obtained are ay follows. If we use the prime-number
theorem with the de la Vallée-Poussin form of the error term, Method A
gives '

(1.2) A(w) = aw--0{wexp{—ec(logm)'™})

for any positive constani ¢. The exponent 1/3 could be increased slightly
by wsing sharper forms of the prime-number theorem. Method B gives

(18} A () = aw+0(woxp{~ §(1—¢)(logalogloga)"}

for any f_iﬁe'd positive number . Method O gives the best result, naniely
(14) Az} = ar+O(wexp{— (1 ¢)(}logaloglogz))) |
for any fixed positive numbér e. In particular the result

A(2) = oz + Olwexp{ —R(logzloglogz)})
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follows from (1.4) but not from (1.3). Those readers interested only in
(1.4) as an end-in itself can omit the discussions of Methods A and B in
§3 and §5. _

The result (1.4) is undoubtedly not the best: Possible, but the optimal
estimate for A(:z_:)gam may be somewhat elusive. The analytic function
represented by Ma,m ™ for Res > 1 has no singularities in the half-plane
Res > 0 other than a simple pole at s = 1, but the precise determination
of its growth pattern in the stwip 0 < Res < I does not seem easy. It
is probably true that 4 (2) — gz = 0 (m exp{— (logz)'~}} for every positive e.

Erdos [4] has proved that there is a positive number ¢ such that
@, > m° for infinitely many s, so that in particular A(#)—az £ o(x).
In addition he conjectured that if i is any number less than one, then
a,, > m* for infinitely many m. Thus it would be reasonable to make the
slightly weaker conjecture that 4 (#)—ax 5 o(z) for any 2 < 1. Frdss
has suggested (in a private communieation) that possibly | A () — ax|
is infinitely often as big as zexp{—clogz/loglogx} for some positive e.

This paper originated in discussions with Harold G. Diamond and

Robert B. Dressler. The author would like to express his thanks to Pro-

fessors Diamond and Dressler for their helpful comments.

§ 2. Further preliminary remarks. Analytical approaches to our
problem naturally involve the Dirichlet series with coefficients Gy gy ...
This ean be rewritten

e = [ [ +00) o)+ () +...)

1

{21} - Eam.m‘s =
m=1 n= »
| =[]0+ -1 -1 L (p—1)p .,

where the products are over all the prime numbers and absolute con-
vergence prevails if Res>> 1. If in the last expression (p—1)"% were
replaced at each oceurrence by p~*, we would geb the ordinary Riemann
zeta-function

to =JJa—py

»

Accordingly it is reasonable to factor oub £ (s) as a fivst approximation
to onr generating fanction. Thus

(2.2) 2 @™t = E(s)f(s)  (Bes >1),

=1
where

(2.3) fls) =[]+ p—1)=—p3.
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The Dirichlet series for f has abseizsa of absolute convergence one and so
our generating funetion cannot be obfained from the zeta-function by
a corparatively trivial modification, i.e., by multiplication by a Dirichlet
series with small abseissa of abselute convergence. Nevertheless the prod-
et representation (2.3) converges uniformly on compact subgets of the
half-plane Res > 0, sinee

(2.4) i(p—1)"—p™ =[s [ o | < jsi(p — 1) R,

"Thus f is an analytic funetion in the right half-plane.
Let us recall the following abelian theorem, given as Supplement IT
~of [7].
DiricHLET—DEDEKIND THEOREM. If ¢, G4y ..
plen numbers such that
lim #~* Z Oy =

E—++00 M

. i$ o sequence of com-

for some complex number y, then e, m™ converges for veal s > 1 and

1]111 (5——-1) v(‘ i - Yy

§-+1) M= 1

where the latter limit is taken over veal walues of s greater than 1.

Sinee
Iim(s—1) S’umm"s = lim (s —1}E(8)f(8) = F{L)
gt m=I §—1+ .
R v E2)E)
=[J0r—07=p™) = =

the Dirichlet-Dedekind Theorem tells uy that once we know the existence
of the limit of A (¢)/z, e.g., from Brdts’ proof, we can immediately conelude
that the value of the limit must be a = £(2)£(3Y/¢(6).

Now let us also recall the following powerful tauberian theorem ([11],
B 127), which is a corrected form of the false converse of the Dirichlot—
Dedekind Theorem. :

WIRNER-TKBHEARA THEOREM. Suppose ¢;,¢,,... is a seguence of
non-negative real numbers such that 3 ¢, m™° converges in the open half-plane
- Res > 1. If there exists a constant y and a continuous function h on the
olosed half-plane Res>1 such that

Zcmm s:""y(s_'l) 1W ()

=1

icm

The distribution of volues of the Buler function 333

or the open half-plane Res > 1, then

: —1

lim » 2 b = ¥
) oo M
Now for Res> 1 we have

Zamm f—a(s—1)"

M=l

b=~ (1) {f () —FLHs — 137,
where both terms on the right are analytic funetions in the half-plane
Res >0, except for removable singularities at s = 1. Thus the Wiener—

Tkehara Theorem gives (1.1) immediately.
§ 3. Method A. Method A is based on Beurling’s theory of genera-

- lized integers, specifically on the inverse theorems to the prime-number

theorem obtained successively by Nyman [9], Malliavin [8], and Dia-
mond [2].

Suppose we have a sequence of posﬂswe mumbers s, ., ... such that

l<o Sy iy ..y 7ty — oo,

The product

[+

H (Lo L)

ﬁ lm’r
=1

may be forinally expanded into a general Dirichlet series

]
”ﬁi?’i_sa
i=1

where v, = 1, v, 95, ... i8 an ineveasing sequence of positive numbers

containing the distinet elements of the multiplicative semigroup generated

by @, @, ..., and where f, =1, fs, fs,... are non-negative integers. -
Beunrling [17 showed that if

‘“‘ >,

bhehaves sufflmently like a constant times @, then we hfwe analogues of
the prime-number theorern for the counting function of the sequence

Ty, Moy «ery L€, fOT
St
T

In the opposite direction if this counting function behaves sufficiently
x . .

Iike [(logu) " du, we ean expeet 3'5; to behave very much like a constant

. 2 PG

times #. The known results are as follows.
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NYMAN-MALLIAVIN-DIAMOND THLOREM. In the above notation Suppose

31 21 —f(logu 1 oy - O (wexp{—-b(logz)™),

J\:t

where b> 0 and 0 < a< 1. Then

(3.2) Eﬁi = B+ 0 (x{logz}~*)

PE

(3830 D=

L]

Jor every M >0 (Nyman),

Bz + 0 (zexp{—o(logz)* ) for some ¢> 0

(Ma,lliapvin) ;
(3.4) 26, Ba- 0 (zexp { —o{loga)¥ ) for every o> 0
L]
(Diamond).
Here B z's o positive number given, for example, by
[« =]
B =lim(s—1 —a; 9 =1 —p" —p 8y
Y ]J 25 °) silﬂ{n(l 2 )g(l 7

In order to apply this theorem to our problem we return to the expan-
. sion (2.1). In § 2 we noted that a rough approximation to the generating
function iy obtained by replacing (p —1)~* throughout the lagt line of
{2.1) by p7°. An even better approximation i obtained if we turn things
around and replace p~° fthroughout the last line O;E (2.1) by {(p—1)7°
(excopt when p = 2). In fact we have

;a = [T+ -0+ (p—1y>+(p—- 17, }dek_

D> - =
o0
= ~4, -8
= Zbll Z‘ a1,
I=x]1 Jy==1

where dek“s hag abscissa of absolute convergence not excoedmg 4. The
- precige values of d, d,, ... are not required, but they can be determined
recurswely from the product representation

%) Z’ zf'"’)

Sk oesai) [T g2

p>2 =g
(Actuaﬂ]y, sinece

o
vdkk_s == 2_8-"-2 Z 2(?—1)_81)“”']'1)3’

41 e pe=3{modd) =0

it is easy to see that the abscissa of absolute con -y
exactly }.) o vergence of X d k™ is
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We apply the above theorem with = = p;,, —1, »; = 4, and §; = b;,
where p; is the jth prime-number. For this purpose we recall that

f lowu)“ldu—ko(mexp{ b{logx)"*})

p2in—1l<n
from. de la Vallée Poussin’s version of the prime-number theorem, b being
a certain pogitive constant. Combining this with Diamond’s result {3.4),
we obtain
(3.5) B(z) = sz = B+ O{zexp{—ec(logz)'}) |

<
for every positive ¢, where

§ —lim H{l—zf‘s} H{l (p—1)""

== [J1-pH—-171"

Sinee ' d,k™° has abseissa of absolute convergence (at most) §, an ele-
mentary argument then gives

—

]

Afx) =

[\
=

I

]
=

B(z/k) = a8 Z dy k7 + O (wexp{ — c(log )}
k=1 )

for every positive ¢, where

S [T sl S50

k=1 p>2

Thus (1.2) is proved. (In view of the remarks in § 2 centermg around the

" Dirichlet—Dedekind Theorem, the last caleulation is not actnally neces-

sary, bub it is a usefal check on the work.) :

It is easy to verify that (3 d,%~)~" hasa Dirichlet series whose abscissa
of absolute convergence ig less than one. Thus the improvements on (1.2)
obtained later on in this paper will imply corresponding improvements
on the estimate (3.5) for B(x)— fa.

Use of the gharpest known error term in the prime-number theorem
would give a slightly higher exponent on logz in (3.5) and (1.2), but not
results nearly as good as (1.3) or (1.4). In fact the results obfained by
Methods B and O are roughly what we get from Diamond’s result (3.4)
if we simply assuwme the Riemann hypothesis. This is fo be expected, since
(3.4) i3 a general aggertion based only on (3.1). In applying Methods. B
and C we are able to take account of the specific information. that here
we are dealing with a sequence of generalized primes obtained from the
ordinary odd primes by moving each one a bounded distance.
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§ 4. Estimation of the generating function. Tn order to apply either

Method B or Method O we need a “reasonable” estimate for our gener-
ating function (2.2) in as wide a region as possible to the left of the line
Res =1. Here a “reasonable” estimate means an estimate in terms of
Ims which is of lower order of magnitude than any positive power of
iIms| when [Im s| is large. Since the behavior of the zeta function iy familiar,
our main tagk will be fo estimate the function f(s) defined by (2.3). For
brevity we nse the eustomary notation ¢ = Res, ¢ = Ims. We shall ges
that if § < 1, it is possible to get a “reasonable” estimate for f(s) provided
oz 1—6(loglogit)/(logt]) when [¢| is large. Howover it 63x 1, the csti-
mate obtained by our method would not be satisfactory.

Lmyva 4.1, If [ =8 and o= oy(t), where o(t) is some Funotion
of 1 such that 1 < op(f) < 1, then

17(5)] < exp{50 "~ *@1oglog 1]}
Proot. We may agsume o< 2. The estimate (2.4) which we uged

tio establish the analyticity of f(s) for Res > 0 is weaker than the trivial
inequality

{4.1) ip —1)-%10*31 <2p—1)"°

when p is small relative to [f. We use (2.4) when p > |f| and (4.1) when
p < |t|. This gives

loglf(s)l = > Tog{l+2(p— 1)+ N log{l+(2+1il)(p—1)"""4
p<|ti Cop=li
< 2\ 2p =1 Y (e -1 < 4 Y p g5l 3 prot,
<y : b bl 2-"’=£[t| ) p“\ﬂ
Now, since

#(@) = 'logp <

frg]

(v—3)logd (w32}
and (u"tlogu)™* deere&ses a8 u increases, we have by two integrations

by parts
I 4

4 2 P 4 f (u0logu)™ dd (u) < 4 f (wlogu)~*(log ) du
p<ld a2 3/2
1

ST [ (ulogu)™ du < 20 1P~ "sloglog F].
: 3/% )
On the other hand,
- Bl
B[] PO LB u” iy =
pg(:; - mfl o oy ([t —1)%
< 30 [t “0loglog |t .

Thus the assertion_ of the temma follows.

=< 201
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LevMa 4.2. If [t 8 and o > oy(1), where o,(t) is some function of ¢

“such that 1/3 < oy () =5 1, then

12(5)] < 47D log ft].

Proof, From the familiar formuls

N oQ
_ 1 1 [}~ 2
£(s) = £ e +(3——W +8N de (Ree>0, s 5 1),

we have
: N
1 1 a4t
)< ) s T + o
n=1 .

Now the right-hand side of the preceding inequality is a decrea,sm,g fune-
tion of . Thus if o3> ay(f), we may replace ¢ by g, and obtain

(60, 0.

N
I—a 1 Rl
L)< N {Zn T

1 3m}

1 1 1] }

Nl”"O{logN—i—l—i— + —

Ui
Taklng N = [[#|] and using the assumption that || >
£(s) < [t~ {log |t + 5} <

Lemma 4.2 gives a “reasonable” estimate for £(s) as long as g(f) =1
as [t| - +oo. However, in order to get a “reasonable” estimate for f(s)
from Lemma 4.1 we must place a more stringent restriction on ot
namely that

- 8, we get
4 [t %0log |¢].

loglog it — logloglog |t — {1 - (t)}log [t > 400

a8 || -+ -+ co.- The choice _
loglog|t
ooll) = 1— g 208108l

log 1]

where 0 is 2 fixed positive number less than one, satisfies thiz restriction.
At the same time it would be easy to check that a more contrived choice,
such ag

loglog [¢} — 21ogloglog [1|
log [¢i

?

go(t) =

would not give us better results than {1.3) and (1.4) in the end.
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- Lievia 4.3, Suppose 0 < 0<<1 and ¢>0. If [t|=8 and o= 1 -

— B(loglog [#))/(tog [¢]), then
£ (s)f(8) —asf(s — 1) << DL(6, &} I}*,

where M (6, £) is a pos’r,twe niwmber depending on 0 and s.

Proof. Since 1--(loglogll)/(log[¢)) = 1—e¢™' > 1/3 if |{l > 1, we may
apply the two preceding lemmas. On the ret specified we have

[f{s)] < exp {50 (log |z[)"loglog |t}
by Lemmsa 4.1 and
1 ()] < 4(log f3)”
by Lemma 4.2. Thus our result follows.

§ 5. Method B. By writing Ya,,m
grating by parts we obtain

% ag a Stieltjes integral and inbe¥

20

N [ A)
E1f(s) = ”; . slf e 0 d (Res>1)
and hence _ ‘ ‘
. e
e [ =L (Res > 1).

Instead of inverting the transform (5.1) and then moving the contour
of integration (as in the next seetion), the method of Nyman [9] and
Malliayin -[8] involves differentiating (3:1) a large number of times and
then invoking the Plancherel formula. Although this method may be a little
more cumbersome than the more familiar method. of econtour integration
and although it 3eems to give resulty which are poorer by a factor 22 /3
= 0.9428... in the exponent it iz worth study hecause of the tremendous

advantage that it can be applied (as Nyman and Malliavin did) in cascs

where analytic continuation to the left of the line Res = 1 is imposgible.
By differentiation of (5.1) we obtain

g e ?A(m)m—am dz o

(%) Aty = P [ — E —"'t N

[ (u‘+‘ ) J — (Floga)at— (g >1)
The Pla.nchelel fermula then gives

o«

(5.2) f Eg(k)(o+zt m

—nd

f{A - y}2 (o> 1).

10%,‘”)2)5
¥
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Our first task will be to estimate the left-hand gide of (5.2) as a funetion
of & miformly in ¢ for ¢ > 1. Given a number & with 0 < & << 1/10, we
choose the number 8 in Lemms 4.3 so that 0 = 1 —¢/2. If [t} is sufficiently
large, the dise

{#: j#— (o4 14t)|

is contained in the set

< (1 —e)(loglog [th)/(log [2])}
{#: [Imz| > 8, Ree > 1 — 0 (loglog|Tme])/(log Tmz|)}.
In view of Lemmsa 4.3 we therefore have

9] < A g7

on the above disc jpfmv"ided [t > T,, where A, and 7T, are positive nwmbers
depending only on e. Thus by Cauchy’s inequality for the coefficients
of a power series \

5.3) 10804 i)| < Bl 1081
(83) g (a+in) < k'l(l—snoglogm

Omn the other hand, since g is regular in the right ha,lf-plane, there is a eon-
stant B, such that | J(z)} <L B, on the set :

< T,+1/2}.

] .
Pamee =101

{z: Rez=1/2, Imz| <
Thus by Cauchy’s inequality again

(5.4) g¥ o +it)| < RI12°B, < B (20 (0> 1, Jtj <T).

From (5.4) we get

' :
(5.5) [ 1™ (o +ila < 27, BX 20 (o> 1).

—TG

Freom {5.3) we obtain

-7, +o00

[ e rinras [ g0 +inpa
—oR Tz . B

g . % gy
g,‘ZAﬁ(kI)zft"”"{#ﬂ——} A
g V= g)loglogt] . ¢

2k+1 ol . % .
< 242 L9 u—l*e(u_—_mg“ ) du

(1—g)t+1 loglogu | u '’

Pl efiL
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where we have made the substitution ¢ = «"+*?C-9 Now for large %
the maximum of {logu/loglogs)®w ™ occurs when logu is somewhere
between. 2 {1 —2/(log2k)} and 2k. Hence for large ¥ we have

logu \*1 ok \H k B\
(____) _<( )exp{_2k+4k/(1og2k)}g(1+a) ozt

loglogu | = = \log2k

Algo (B1)* < (14 )*E*¢™ for large k. Thus for large k& we have
’ =T, oo
6:6) [ ¥ orinfa [ 1g% (o

1 e\ 2 )zrsj” L
2 *du.
< 2A‘(1--s) (ezlogZ?c ; “ v

Combining (5.5) and (5.6), we obtain

(1. + 6e) (2K)

2l
>1
26*log 2% } (0>1)

(5.7) f 1% (o it)Pdt < 03{
—00
for all positive integers %, since the constant ¢, can be adjusted to take
~care of any finite number of values of &,
Combining (5.2) and (5.7), we have

~ {A(y) —ay) w0y { (14 62) (2)* }2"
(5.8) fT(I B O

2e*log 2%
for any ¢ > 1. It is clear that (5.8) implies some sorti of bound on [4 (%) — ax|.
The specific deduction is based on the following simple lemama.

.LEMMA B.1. Suppoese F is « non-decreasing- funection on [L, -+ oo)
such that F(y) = O(y'*) for every positive § and suppose G is a real-valued
Ffunction on [1, +oo) suek that |G (y+u)—G )| < Bu for y =1 and w3z 0.
Then, if #>2, we have

4

{F() G(y o WY
f e Gogy
L2\ {F @) —a@)y { e\E (B (r) =6 ()
g "s‘(‘é") S o) i [T, 1}_

'

Jor any o> 1.
Proof. We distinguish three cases.
(i) I F(x)—@&(x) = 0, there is nothing to prove.
(i) I ¥(x) —6G(x) > 0; we replace the integral of the lemma by an
integral over the interval

[ oo R0 1]
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In that interval we have

—G(y) > F(2)~G(2)— K (y—a)

=6 = 1 > (P -0 ()2,
and so
{F ¥l — o ?7‘
9 lo
f O (10gy) !
2{ 3 } G (log #)*min {_EK__‘E,_;_}

(iii) If F(x) —G(x) << 0, we Teplace the integral of the lemma by an
integral over the interval

[o-nin {2000 2 ]

In that interval we have

Fly)—Gy) < Fo)—G{y) < F(w)_G(w)-;_K(m——y) < A{F(z)—G(x)}2,

and so
> {F () G () .
tf { (y)qzu (y)} (].Ogy)“k
Fal—@)* 1 ¢ o . [1F(x)—Gz)] =
'>’{ ) } a;2“+1-(1°g§) mm{ Y ’5}'

In either case we get the inequality of the Lemma.

We apply Lemma 5.1 with F(x) = Ax), G{x) = ax, and K -= 2.
Oombmmg the regult obtained with (5.8) and then letfing o approach 1,
we get .

1 { A(z)—azx }2 [ 14 () az] } (1 -+ Be)(2k) 125 @\~
S min {— 11 g 2n@, Jon T SR —

27 { T . | 2z ’ 0 { 2¢'log2k } (IOgZ)
for any positive integer k. By bolding k fixed and letting = go to mﬁmty
we gee that {4 (#} —ex}/z — 0. Thus for large # we have

A{z)—az P (L+6e)(28) 26 ( g\~
@ 26 log 2k } ( _) ’

(5.9) < 108no,{

0

2
Following Malliavin, we choose % as & function of # in such a way as to
make the 1-1gh1: -hand side of (5.9) as small as possible. Specifically, we

chooge .
1 x 2
ko= —1
.[2 (log2 oglogm) ]

and obtain.
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3 27
A (0) —an < 108C, (}_"2@) < Dlexp{—2(1—3¢)(logrloglogz)~2}
& | & ‘

or .
|4 () —ex| < D,zexp{— (§— 2¢) (logxlogloga)*#},

‘where 1, is & constant depending on . Bince s I8 arbitrary, this gives (1.3).

In Nyman’s use of the above method he did not derive an explicit
dependence of his estimates on k. This approach would have saved us
a lot of work, but would merely enable ug o got the wealkoer egtimate

| A{w)—az [P @ ‘”2’“)
—_— | =0 ({log 5}

T
for any positive integer &, which of course also follows from Nyman’s
result (3.2).

§ 6. Method C. Method C also begins with formula (5.1), but instead
of uging the Plancherel theorem one uses an inversion forrunla. Although
it would be possible to use the straightforward inversion formmla

o 24"

A 0) 4 A(x~0 1
@+0)+A@-0) aly = - lim 2fg(s)ds,
9 R7d s :
2—iT
it is more convenient to use the smoothed inversion formula
. & 241co
) A (%)~ au 1 oy (s
(6.1) f () = % gy L f 94 gs,
; i 2 e S

in which the infegral on the right is absolutely convergent. (Note that
one factor 1/¢ has already been absorbed in the definition of g{s} in (5.1).)

Given a number s with 0 < & < 1/10, we choose 6 = 1—e. In view
of Lemma 4.3 we may move the path of integration on the right-hand
gide of (6.1) from. the line ¢ = 2 to the contour

" loglogmax(|f[, 100}
: logmax (|t|, 100)
By Lemma 4.3 we have lg(s)| = O(#]7""%) on the part of the path of
integration with ¢ > 100. Thus .

Aw)

o =1

. T

ey f

= O.(m f exp{—(l—— g)log

loo

dnt — al

- loglogt 0;2“[2 . .

@ Togt _}t dt)—{-ﬂ(w )
- 1

mO(w f exp{-—(l——e) (logm—w-_oil'gotgt

100

+log t)} g1-el dt) +O0(a,
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Now if 22> exp10%, say, the minimum of
loga loglogt

logt
on [100, + oo) is taken when £ has a value f, = ty{z) such that

(logty)®
loglogt,—1

+logt

_ = logw.’
Sinee
2loglogt, —logloglogt,+ O (1) = loglogx
and accordingly ‘
logloglogt, 40 (1) == loglﬁglog:ia,'
we have by addition _ ‘
_ 2loglogi, = loglogz +loglogloga + 0 (1).
Thus -
logt, = {logz}"* {loglogt, — 1}
= {loga}"*{3loglogs + }logloglogz+ O (1)},
Hence for large x we have '
loglogt
logt

loglogt,
=220 Llogl, = vz
Togt, ogty = (2logzloglogr)

inf (1ogm

—1—10gt) = loga
=100

Using this in (6.2) Wel obtain
L A
{6.3) f —“’AE’,_)_ du = az -+ 3] (mexp{ —(1—e&)(2 logmloglogm)”’}) .
¢ 2 . .

" To derive (1.4) we put
6(Z) = exp{—(1— &) (2 Togzloglogm)"*}
and note that (6.3) gives

w{1+&(2)} 2 . .
Af@log{l F 3@} < [ A(wudu— [ At u™ du = awd (@) +0 (08 (=)
and. g ’ .
@ 2{1—6(c)}
A(x)log{l—d(z)} ' > fA(u)u‘ldu— A{wyu " du
: 0 4]

_ = azd(w)+ 0 {wd(a)).
Combining these two inequalities gives

A(m) = oz +0{2d(z)),
which is (1.4). :
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§ 7. Corresponding results for the sum of divisors funetion. It o(n)
stands for the sum of the divisors of the positive integer m, let af, denote
the number of pogitive integers » such that o(n) = @ and let

A* @) = Yap = D 1.
MEE o(n)=sm
Erdds [6] has remarked that the method which he used to prove the exis-
tence of the limit of A (z)/s would also work for A*(z)/e, ¢ince o(n)/n
is known to have a digtribution funetion. In a fortheoming paper in the
Journal of Number Theory, Dressler gives an elementary proof thatk

_Ate) 1 1 1 ! ﬂ%
Eir =£]Hkﬁﬂﬁ+p+1+pﬂm+1+ﬂ+f+ﬂ+l4

= 0!* .
However there iz neéessarily a congiderable difference in detail bhetween
this elementary proof and the corresponding proof for A(x) given by
Pressler in [3].

All the analytical methods discussed in this paper, inclading the use
of the Wiener-Tkehara Theorem, would work without subgtantial change
if p were replaced throughout by o. In place of (2.1) our generating function
would be

oo*—m . -8 2 —8& _1_ (3 2 T [ T DU SR O
%g@wa3~£1ﬂ+@+i)—H?%Pkl)%(ﬂ+ﬁPﬁ5 RS S

Accordingly, in order to apply Methods B and C, we would write

: co ) o
: Zaf;m‘s = bel“s-gd}’;h"s,
=l I=1 k=1 ‘
where 3 d;%~° has abscissa of absolute convergence not exceeding 1/2
and where the Nyman-Malliavin—Diamond Theorem is spplicable o
Do = [T -1 = [T+ @+ + -+ 1" 4.}
) I=1 » »
(In. fact :

'éfﬁk*=:IY{1+2§HPL+nu+p+1rfw«p+ixp*k+~~+P+1ﬂ"ﬂ}
g » Jom

_ for Res > }.) Thus Method A could be applied to give the analogue of
(1.2) for A™ (2) — o 2.

In order to apply Methods B and O to 4*(z) we would replace (2.2).

" and (2.3) by

 DldmTt = E(s)f*(s),
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whers

oo

P = [+ S+ 41— i rpy)

n

. J=
In place of (2.4) and (4.1) we would have (for Res > 0)

DT+ p I ) < sl Y () Ree
=1 . g=1

a’nd \<\ isJ (pRes+lm1)~l

DL ES T L R 2 2 (Pl )R
i=1 - : =t

< 2 (pRas_l)ul_

As_a result, estimates similar to those in Lemmas 4.1 and 4.3 would be
readily obtainable for *(s). Thus Methods B and O would give the ana-
logues of (1.3) and (1.4) for A*(2)—a*z. In particular

A¥#) = " 2-+0 (wexp{ — (1— &) $logzloglogz)?)
for any fixed positive number &,
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