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(la|+B] > 0) may have at least » integer solutions (n given) for
¢ = 2(ab)F @ and appropriately chosen d, viz. # = ap®, ¥y = b’
2 = aFripH L pE A where p, g are complementary divisors of 4,
ie. d = pq.

4. The equabion

(BT) o (@b I0) = g (g 1) oo (1) The representation of real numbers by infinite
o T series of rationals
has & solution for every & and n: @ = ", y = I"
by
Roforeness A, OppeENHEIM {Legon, Ghana)

[1] A. Gérardin, L'intermédiaire des math. 18 (1812), p. 7.

Waelaw Sierpifiski 4n memoriam
(2] L.J.Mordell, Nole on the inleger solution of 22— I* = ax® -+ byd, Ganiba 5 (19584},

i3 ip' 0103“1%4', On the di . T - 1. Tn a recent note Galambos [1] has obtained some remarkable
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pansion
Recetved on 18, 8. 1071 208 1 4, 1 A, ay 1
208) (1.1} B o~ : 4+

@ b, d, | biby dy

he refers (Ref. 9 in Galambos [1]) to unpublished work of mine on this
expansion. It seems appropriate now to give detailed results.

The expansion for any » > 0 (not necessarity confined to the interval
(0,1)) derives from the algorithm

(1.2} o=, & =1+l @ = Ld+{a/b)a,
for i =1,2, ... Herein
@ = ay(dyy Gy oony By, By = Di(dh; dyy -5 4)
are positive numbers (usnally integers).
Several guostions arise:
(i) to give conditions to ensure that the infinite series (necessarily
convergent} in (1.1) has sum #;

(ii) to obtain the conditions induced by the algorithm on the integers
d; 7z 1 (one such condition is

(1.

o

gy > (@yfbr) di(dy—1))3

(iif) to obtain necessary and sufficient conditions that & convergent
jnfinite geries (1.1) shall be the expansion of its swm by the algorithm.
(A simple set of sufficient conditions iy given by

(14) A1 —1 2 (/b d;{d;—1}.)
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It the sequences {a},{b;} are both scquencey of natural numbers,
a further question may be proposed:

(iv) determine the kind of expansion which occurs for rational .

Tt will be observed that the series of Sylvester, of Tingel (both originally
found by Lambert) and of Litroth (for these sevies seo Pervon [37], 116-127),
the infinite product of Cantor (sce Perron [3], 116-127) and its goner-
alisation (Oppenheim [2]) ave all special cases of the expansion (1.1).

Two main cases avise: (i) when. the sequences {a;}, {b;} are preseribed,
i.e. the same for all #; (ii) when the members of the sequences are (‘hOHmL
in succession as described above.

The first case itself splits up into two casces according ay the soried
of positive terins

A =Lt S

(1.5) 4= bbb,

is divergent or convergent.

I 4 = co, then the algorithmic expansion (1.1) always converges
to @ If 4 < oo further conditions are needed. Lot 4, == 14 (a,/b)) A,
Ay =14 {ayfby) 4y, cte. Then provided that A,=3/2 (i~ 1,2,...)
and »e(0, 4,] the expangion (1.1) does have gum .

In all cases (whether the a,, b; ave prescribed initially or not} we
obtain

(1.6) 8 o= Uty 'u,%--l— Pyg
where ‘
U=ty oos ty_yfby o D yd; (4 =1,2 g = by == 1
(1'7) 1 ’Ll/l =1 ( !(? ) (ﬂ 0 )7
0y = vy d : (4 =2,3,...).

oo
The series - Zu converges to uw <&, w - 0, v; tends monotonically

decreasing t0 v 2= 0 and w+» = @ If = 0, which is cor Lcunly he caye
if the sequence {x;} hag a bounded raubsoquonw then % =, Lo ilm gorios
{1.1) hasg sum .

Complete (but complicated) necessary and sufficiont conditions can.
be given for the expansion. When for each 4 the numbor (a,/b,)d,(d,—1)
is an integer these conditions reduce to the set (1.4 4.

_ The natare of the expansion for rational o (when the soguences {a.), {b;}
- are both sequences of natural numbers) can be sebtled in cach of the follow-
ing cagses

bld, (i=1,2,3,..),

(18) =1, b =de (0= e(d) unique)

By = by _y =1

(1=1,2,..),
(i =1,2,..).

by = Uoi 1y
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In the firgt and third of these cases we have nltimately
dioq—1 = (a;/b)d;(d;—1);

in the sccond case the sequence {d,} is ultimately periodic. The first case
(8;14; all 4) includes the series of Sylvester and of Engel; it ineludes also
the infinite product of Cantor. The second case includes Engel’s series
and Liiroth’s series. The third case appears to be quite new.

Nevertheless there are simple cases not ineluded in the above which
appear to be very difficult to decide. Thus take a; — 1, b, = 2 (all %)
each z¢(0, 2] has the unique expansion

# = 1/d,4+1/2d, +1/4d, +1/8d, ...
* where the positive integers d, satisfy the conditions
i

=12 3d;(d;—1),

these conditions being both necessary. and sufficient. I believe but T -
c,mnot prove that for & rational, 0 < # < 2, we must have eventually
dip1—1 = $dy(d;—1).

Otherwise expressed, let # =, = p,/q, 2 = pifga for coprime
infegers p;, ;2 1, 0< @ << 23 leb

o - (_.’l:‘j_ ___1_), Q=1+ [Q’«c] (
/EER) /5 d; Py

Then the conjecture is: eventually

W

1).

Pr=1, 1= §q(g+1).

2. I give now in detail various theorems relating to these expansions.
Trgorrn 1. The algovithm defined by

(i.i =], -4~ [J. /ﬂfi]
= L (@b

(=120, @=2>0,

always yields o series (1.1) convergent fo a sum = @
The remuinder afier © terms

Vg = (Qyy oon /0Dy .. D)y

decreases monotonically to v = 0 and u+v = a.
If the sequence {w;} has o bounded subsequence or if infinitely many
dy = 2, fthen v = 0 and the expansion has sum .
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Only the last statement requires proof. If d, ;5 2 inkinitely often
then, for this subsequence of i,
e L Ay
e T ey gy — 1
which >0 as ¢ — co.

It however d; = 1 (all large 4) then (ay ... afb; ..
vy4y — 0 if the sequence {w;} has a bounded subseqmmm.~

TuroreM 2. The infegers &, satisfy the following tnequalities: if d; =1

s By

e ) A F - o0y

Uy ~en gy
(2.1) 1 . _{_ R + _{ e e e ‘. Lw.

(031, 53 0).
A1 17 d b, di [TESR T T

In partseular, for d;> 1,
i > (0/0;) 4y (d— 1),

an inequality triviglly frue for d; == 1.

The eonditions (2.1) ave also qufimmnb to ensure that a convergent
series (1.1) shall be the expansion of ity sum by the algorithin.

A simple set of sufficient conditions i given by

dipy — 1 2 (a3/b;) g (dy 1)

‘We need only prove the last two statements. Suppose that (1.1)
is convergent and that (2.1) i true. With an obviouy notation we require
to prove that for d; > 2

. 1
e 3 [y T e
di - 1. i * d{
(the inequalities being trivially true if d; == 1) But when § -+ oo, the
right-hand side of (2.1) ~ @; 8o that 1/(d;— 1) = o, while a; > 1/d, is trivial

As for the last statement in Thoorem 2 WO n.eecl only consider d; > l

- (and therefore all subsequent d; > 1) and noto ‘H‘Myt‘.

Lt o u@% A m;)
A1 T @ld~1) T b gy —1

§0 thot

l at - aa% ‘ 7 ,L (L.Jv: e ar;.{j "
—_ ":G e e b b ol 'I’i~i~j+1’
o U 1

=1 b bw
but the 11ght -hand &ude = 0. when § — oo, And the result follows,
As a deduction from Theorem 1 we have
TenorEM 3. Suppese that the sequences {ag, {b) are presoribed and
that the series )y ... a:fby ... b; is divergent. Then for every @ > O the series
(1.1) given by the algorithm has swwm w.

C?L+j+11 - Vb- P
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For, it d; =1 all large 4, the series reduces to the divergent series
200y s tyfby .. b, Whereas Yu, < @. Thus d; > 2 infinitely often. Theorem 1
applies.

The mext theorem considers the case 4 < oo,

TuporeM 4. Suppose that

alae

AzAﬁd+m+

1 1 2

+ ... << o0,
let

Ay =14 (a)/b)4,, A, =14 (ay/b) 4,

Then the necessary and sufficient conditions that every we(0, A,] be
represented by (1.1) are that
=32 (#=1,2,...).
If any one of these conditions is violated, theve axist #<(0, 4,7 which

cannot be represented: w(x) < .
Plainly the greatest number which canbe represented is 4,. Tfm, > 4.,

~then @, eannot be represented, and so on. Now if d, = 1 we have

oty @

R -1 4, -1 =b_lA2: By K Ay
1 1
If however d; = 2 we obtain

aq 1 < 1

_—'mﬂ S — —_—

by T d(di—1) T2

and gince we can take the left member as close to

1 @ .
Méwg»gf«AZ:Al—l, ie. - 4,=

Similar argument apply to A4,, 4, ...

% as we wish we require

Lo[o:

3. Expansions for rational x. I give separately the results for the
cases mentioned in (1.8). _

Truowrmy 5. Suppose that, for each 4, byld,. Then for w rotional we
have eventuully

Ay —1 = (ayfby) d;(d;—1).

With the notation used earlier each a; is rational, w; = /¢, (9;, ¢
coprime positive integers) and
P Pl
G aldble

Spdi—g<p,pi=F=
P =PrPd—yg,. Plg, P=1;

C0 < pid; g < Py

Henee 1 < pyyq < 1 all large 4,

¢ == d;—1
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and so
dipy—1 = ag(dyfb) (d—1)

a3 Tequired.

The case b, =1 (all ) includes Sylvester’s servies. Tho case b; = d;
(all ¢) includes Eng(él’s geries. The case b, = d;, @, == 14-d; yields Ofmim 8
prodact.

TrmoREM 6. Suppose that, for cach iy a; == 1 and by = die;, where o
is given uniguely as o function of dy. Then fm" rational © the sequence d;
is ullimately periodic.

Here we have

i = Pi
Givy 4;

Hence 1< @y ¢, ¢ = Q=1 all large 45 pyy = e (pydi— ). Two
cases avise: either d; = 1 (all large 4) (so that {d;} is ultimately periodic)
or else d; > 2 infinitely often. Bub in fhe later case p,(d;—1) = ¢; yields
p; <@ infinitely often. Hence there exist suffixes 4, j such that

Dr=Ppy  Go= =, <]
Clearly the sequence {d;} is now periodiec.

The case b, = d; yields Engel’s series; the case by = d~1 (for
0 < 2 < 1 so that each &; = 2) yields Liiroth’s sevies.

TuEoRENM 7. Suppose {hat
b‘n‘. == ;14 98 T DH¢_1 ==1 (’-’: = 1, 2, )

so that the expansion has the form
Vdi+ajd, +1/dy -+ afd, +...
Then for rational @ from some poim on
dyy—1 = G 1cln__,(d,, 1),
oy —1 == 1,((1,;*1 /wm 1

Tn the proof of Theorem & we showad. that the sequeucu {p;} is mono-
. tonic deereasing. Here we show first that the sequence {p,;.,} is uw:,t.mt(m.i.(z
decreasing. Tt ig sufficient to consider pfg; (4 == 1,2, 3). Here

P 1 padi—qy
Aro o AT 0 < pyd
s 4y iy ’ B

Ba _ m{peda—gs)
s Q’zdzl

— 1 % Py

s 0 <Py~ < .
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Leb (a;,gs) = g2 130, = g4, g = g€ where {4,Q) = 1. Then A [(p,d;~¢4)
and so for some integer A > 1

: AAj?z = pdy— <

Also
Ups = A(pody— ) < Aps

for some integer x> 1. Hence

P Appy <y

Repetition of the arguoment vields o, = p, = p; ... and so, for all large 4,
Dy = P z 1. Renumber so that p,, , = Piordi = 1,2,... Then AuP <P
g0 that each A and each u must be 1. And now Ap, = P, P = Pd,—q,,
P =14 =1 (each 4 = 1), p, =1 (each p,; = 1), whence finally

@ = G—1, o = Gy 1Gu-1@riyy  Grirr o1 = Guly

and Theorem 7 is proved. -
Ag stated earlier this theorem appears to be new.

4. I conclude with a theorem abount the expansion by the algorithm
1/dy Aty fdy -t L]y + Gy +

where each Infeger a,, a,, ... is chogen from the set {1, 2,3, 4}.

THEOREM 8. The necessary and sufficient conditions satisfied by the d;
are
2i—ld2iw~1 (dﬂi—l - 1) ?
/a”i. &

except in the following cases:

if
Oy = 3 omd dyy =2 (0A 3) and 3dyy, == L+ doy(dy—1),
then
dois — 1 2 Gy Qi (3t — 1); .
if

ty;_y = 4 and dy =2 or 3 (mod 4) and 2¢Z2,J+, =1+ 3dy,(dy;—1),
then '

d2i+2 1 2 gy d2i+1(2dzi+1 —1).

T omit the proof. It is plain that this result can be extended.
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ACTA ARITHMETICA
XX1 (1872)

On a linear diophantine problem of Frobenius

by
P. Erpos (Budapest) and R. L. Grazam (Murray Hill, N. J.)

Introduction. Given integers 0 < g, << ... < @, with ged (s, ..., 0,) =1,
k2

it is well-known that the equation N = >'z;¢; has a solution in non-
K=

negative integers m, provided N is sufficiently large. Following [9], we let
Gty ..., a;) denote the greatest integer NV for which the preceding equa-
tion has no such solution.

The problem of determining G{a,, ..., a,), or at least obtaining non-
trivial estimates, was first raised by G. Frobenins (c¢f. [2]) and has been
the subject of numerous papers (e.g., ef. [1], {21, [8], [4], [7], [8], [9], [11],
{127, [137). It is known that:

Gy @) = (e —1)(a,—1)—1  ([2], [11]);
Gy ey ) < (@~ 1) (@, —1) =1 ([2], [4]);

n—1
Gy eny ) < 2 O Qg [l
#=t
where d;, = ged(ag, ..., @) ([2]). The exact value of & is also known for
the case in which the a; form an arithmetic progression ([1], [13]).
In this paper, we obtain the bound

‘ Gy
G(alf R ) < 2, ["'q;b"] = Oy

which in many cases is superior to previoug bounds and which will be
geen 1o ho within a constant factor of the Dbest possible bound. We also
wonsider reveral velated extremal problems and obtain an exact solution
in the ease that o,—2n is small compared to n'%.

A general bound. As before, we consider integers 0 <Ta, <...<<a,
with ged (@, .oy d,) = 1.
THEORENM 1.

y :
(1) G(a’li v II,.‘,,) < za‘nwl [_(H/_] _?’n'



