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On the analytic theory of quadratic forms
by
K. G. RAMANATHAN (Bombay)

Dedicated to the memory of W. Sierpidiske

1. The analytic theory of quadratic forms, as developed by Siegel [6],
leads to a fundamental formula, now called the ‘Siegel formula’, which
ig ‘an identity for m > 4 between the theta series associated with the
genus of a quadratic form in m > 4 variables and the Bisenstein-Siegel
series apsociated with it. In a beauntiful reworking of the theory, Weil [10]
has obtained, among others, a proof of the Siegel formula for m > 4 by
an analytic method which Jends itgelf to important generalizations (see
the recent paper of J. Igusa, Inventiones Math. 1971).

In this note we present a proof of this formula for m = 3 by using
an idea due to Hecke [2]. In the case m = 2 a similar formula is proved
by Hecke [27 for definite forme and by Maass [4] for indefinite forms.
However the smmmation in these cases is over all classes of forms with
a given determinant. The result for summation over classes in a given
genus is, in general, false. In case m = 1, this formula is proved by Siegel
[8] and Maass [3]. In [6] Raghavan and Rangachari have extended
‘Weil’s methods to the case of quadratic forms in 4 variables with index < 1.

An interesting consequence of the analysis is that one proves, analy-
tieally, that the Minkowski-Siegel constant (for semi-simple algebraic
groups this is called the Tamagawa number) is two. However one has to
prove it first in the case m = 2. This i3 well-known by the clagsical re-
sults of Dirichlet-Minkowski—Siegel. .

Generalizations of this formula can be obtained for quadratic or
hermitian forms over srbitrary algebraic number fields and over guaber-
nion algebras. The generalization where one deals with representation
of matrices by matrices seems difficult and is related to the analytic
continuation of Hisenstein series in the Siegel half space. '

2. Let 8 be & semi-integral non-singular m rowed symmetric matrix
go that 28 is an infegral matrix with even diagonal elements. Pub

@ i = |28.
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Tiet 8 have signature n, m —n and H a matrix in the majorant space 7]
of §. Put
(2) F(8, H, 2

) _\ ezm(es-l-inﬂ)[n_t_v]

@

where # = £--y, > 0 i§ a parameter in the upper half complex plane
and & runs throug‘h all m-rowed integral columns.

Let 7 o= ”I;”
tends to the point z = r on the & axis, f(, H, 2) has the behavionr

(@, ) =1, b >0 bo arational nomber. When 2 == iy

™ '
T (m—2m)
(3) F(8, H,2) ~e T |d|—-1/2b—m >1 s, »«m.fz

u(mmlb)
o
For every rational number r = L (@, ) =1,b>0, put

(zn m)

(4) y(r) = e ) |d[_1[2b_m 2 gimirsi]

(o)

‘We then define the Higenstein-Siegel series asgociated with § ag
— \ (m“n)
B) @S,z s) =14 DBy e—r) G T

where the sum. runs through all ratiomal nuwbers and s i3 a complex
variable with

(6) Res>2—f;—

and the radicals ((s—r)™™", {(Z—7)"*)"®=™ are taken with their prin-
cipal parts. In the region (6), the series ¢(8,#,s) converges absolutely
and represents for » > 0, an analytic function of s. Since

] @ :
'y(};-) = y(—i—-) for @ =o' (modd), (a,b) =

we have, in the region (6)

oo
: AR a
®(8,2,8) =1+ E 2 b“”'y(—)x
0=1 g (odb)
(D) sl

a —_(‘n+s)12 ... @ ] e G N
X 2 (z—~b— —\—k) (z——b—n}-la) .

b

|
|

SR

RS

m—— o e e Aot S e e < e
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The Poisgon summation formula gives

3’11 a —tts)fzy —(m—n--8)/2
(N Z (z—-—b——l—k) (z—mbw-l—k)

Tow= 00
kad emial — i
- ¢
o b
- zgf ._i (w -I-z)‘"“’m(w+5)(m—“+awdw'
Usmg {7) we get '
(8) BB,y 0) =1 an "’141—1’“ 3 Bt )4l 5, )
t=—c0
where
g e-ufri:ct
9) - ) Aty 5,2) = f (m+z)(n+s)/2(m+E)('m—n-i-s)['l die
and )
(10} Bit,s) = Y 6,157,
b=1

2rtia .
= (8[a]—1)
Gb, 1) =b™ P

% (modd) a(gt}gili)

3. We shall now consider (9) and (10) separately. Using the estimate

L’”Es[ 2]

e ‘ < ¢, ™
w{modb}
where ¢, is o constant, we get
[G(B, 8)] < 6, b7 ™ 2o (B) < 06" ™2

where ¢, is a constant and ¢ (b) is Euler’s funetion. Beeause of (6) therefore,
the Dirichlet series B(t, s) converges absolutely. Furthermore we have

in this domain
5) = [ [ Byt 9)
»

where the product runs over all prime numbers and

(0, 5) = ZG (p*, t)p~™.

Jo=0

Let 4,%(8,?) denote the number of mod p"® incongruent solutiong
of the congruence

S[u]—t = 0 (mod p).
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Then
{11) G(p*, 1) = p" ™ A(S, 1) —pE ™ A e (S 1),

By Siegel ([6], Hilfssatz 13), it follows that G{p", ) = 0 for all sufficiently
large &, if ¢ 5~ 0. This means that B,(4, s) is a mtwml funetion of p”’
Tt == 01b also follows that [9] (1 —p* ™ *)8,(0, ) 13 a polynomial in p~*
More exp]mmly it mz2 and pt Zd’ then :E01 1 a0

(12)
_1..'.11-—3 ! I lw-m—ﬁ
(L-ylop * )( DM b3 )), m oven,
fe=0)
By(t, 8) = 1H1’"3§“9 s ’ [(~1)/2] ’
-"W‘T__“—i;a‘___s(szwm—zsnxﬂ(ﬁ) E jazmm—zs)’ wm odd
Leglpp = " =
and for ¢t =0
L
1 e 2
&(*M“wr““, m even,
. o ls
o
"—'"""11:'2'("' """""" m . odd
1-p
where y{p) and y,(p) are given by
—1 m/zd
g(p) = (L—r) ), m even,
m=1
—1y* 24
%(p) = (w( )Ew ), m odd,

~ where #* is the discriminant of the quadratic fiold Q(Vi) and p* is the

highest power of p dividing ¢ # 0,
Let ug denote the L-series

14 ' : _ Nzl
(14) L,(s) RZI T
fo=1]
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for Res > 1. Since

B(t,s):ﬂ (t:8) = [ Botty &) [ [ Bulty 9,

»l2d pizd
we get, for t # 0,
] Fp(s)
u_gz_lgﬂm____’ m even,
(15) Bl s) = 1
- :
g
o (1—p 2)y"PF,(s), m odd
;’(s+—5) »I2d

where I'(s) is 2 polynomial in p7° with rational coefficients and (s)
ig the Riemann zeta function.
If ¢ =0, we have

m
LZ(8+—§ _1)
T (1—p2~m—2s)—1Ep(s)’ m even,
(18) B(0,s) = Lx(er?) 2
t(28+m--2) R
| t{2s+m—1) !]MY By(s), m odd.

4. From formulae (15) and (16) it is obvious that B(f, s) has an
analytic continuation. throughout the s-plane as a meromorphiciunction of 5.

‘We now wish to study the nature of B(i, &) in a complete neighbour-
hood of & = 0. We ghall assume that m > 2 and that #'Sx is not a binary,
ternary or quaternionic zero form.

Let wus first take the case § == 0.

T m > 4 then from (1) it is obvious that B(#, s) bas an analytic
continuation as & regular funetion of s into a full neighbowrhood of s ~ 0.
Tiob mow m = 3. Under the conditions above, (k) i3 a non-prineipal
character and so T z(H'l) is regular at s = 0. Therefore B(%, §) is regular
in a complete neighbourhaod of ¢ = 0. If m =2 then —d i8 not a square
since o' 82 is not'a zero form. Therefore (k) is a mon-principal character
and L(l+s) =0 at s = 0.

Let us take the case i = 0.

It m > 4 then (16) shows that B(0, s) can be continued analytically
to § = 0 as a regular fanction of s. Suppose m = 4. L, (s+1) has a pole
at 8 =0 if yx(k) is a principal character, But from our assumption 4 is
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not a perfect squarve and so x(k) i¥ a non-principal choracter. Mowoever
it d is a perfect square then sinee ' Sx is not a quaternionic zero fori,
B, (0, s) is zero at & = 0 for at least one p. This would mean that since
L, (s--1) has o simple pole at s = 0 when y is a principal chazacter, 13,(0, ¢)
will be regular in a full neighbonrhood of & == 0. Lot now m -= 3. Sinece 8
is mot the matrix of a ternary zevo form, B, (0, &) vanishes ab & == 0 fop
at least one p dividing 24 so that B (0, §) I8 rogulay ab & = 0. IC m == 4
and -4 is not a square then ' S is not a zero fortm. But i 24 has more
than one distinet prime factor, then, by (16), .B(0, s) has a pole of order
> 1 gince I, (8)/L, (s +1) is regular af 8 = 0. Bven if 17, () i8 zewo ol g v 0,
it will he a gimple mero. I @ > 0 and 2 iy the only prime dividing 4 then
B(0,s) ig regular ati ¢ = 0.

Summing up we have

Lemma 1. Let m =2 and let § be not the matriz of a binary, ternary
or quaternionic zero form. Then B (t, 8) can be continued analyiieally to o full
neighbourhood of 8 = 0 if m = 3. This is still true of m == 2 provided § =2 0.
If m =2 and t = 0 fhen, in general, B(t, s) is not regular at & = 0.

From the nature of the series B, (¢, 5) it is clear that, under the assump-
tions of Lemma 1,

an B, 0) = ” ap(8, 4
n
where
(18) (8, %) = ':Eﬁ P (8, 8.

It is known from fiegel’s theory [6], that «,(¥, ) i8 & rational number
for m =1 and that if m < 4 and the infinite product in (17) ia taken in
the ratural order of the primes, then the product converges. Furthermore,
ag Siegel has shown [6], B(¢, 0) iz zero if and only if at loast one B, (¢, 0)
i8 zero. )

5. We now discuss the function 4 (¢, s, 2) introduced in (9),
Let n(m—mn) s 0 so that m = 2 and 8 ig indefinite. Tt is then. known

that
) i m
— (m~—2n) ]
4 E;
(19) - Aft,5,0) = @) e le, 8)
| p(w pmonds)
2 2
where
g;l:v_ml M—tif-8
hy(z, 8) = ™% f » ° (@ —1) T gt g

i
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If we define the confluent hypergeometric integral
hia,b,n) mf a1 e s
' 0

where Rea > 0, Reb > 0, > 0, then

O m—n-+8 n-+8
e - 182n£csh(—’2_j‘_‘7_;‘__;4ﬁt"?)7 i> 6,
Bl , = fnt+s m—nts
hlz,8) = ()2 e 19‘”"&73("‘“;;"‘7”_""9_-:;'_”_7 ““475#77)7 t< 0,

P(%— 45— 1)(4m7)“T'

These formulae show that if m >3 and a(m—mn) = 0, then A%, s, 2)
are analytic in a full neighbourhood of s = 0. If however n == {(m—n) = 1,
then m == 2 and A(%,s,%) is analytic in a complete neighbourhood of
¢ = 0 provided ¢ = 0. Tf £ = 0 however A(f,s,2) has a pole at § = 0.
Tet now 8§ > ¢ go that m = n. Hecke [17 has shown that if ¢ £ 0

then 4 (t, s, z) represents an entire function of s and

o 2

6__':1‘_7”' (2715)"" t-?- —18271:1'-#2', t>0
(20) At,0,2) = T(m/2)

0, <0
Tft = 0, and m > 8 then A(0, s, 2) is Tegular even in the domain Res > —%
and
(21) A(0,0,2) = 0.
If now m = 2, again Hecke has shown that 4 (0, s, 2) is regular in a com-
plete neighbourhood of s = 0 and

(22) A4{0,0,2) 5 0.

Having diseussed the nature of the funetions B(l,s) and 4(%, s, 2)
ab § = 0 we go back to the geries (8). From the results in Section 4 and 3
and the behaviour of the I-series for inereasing moduli, we have
(23) IB(E, 8) = O(jt1"), [tf—oe

for 1= 0 in a small open, relatively compact neighbourhood of s = 0.
On the other hand, from the integral representation, it follows that

(24) |A(E, 5,2) = 0™y, §>0, [t > .
Therefore
(28) N B(t, 9)A(,5,2) = 0(2#3—“).

t#0 >0
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It m > 3 it follows that ¢(§, #, 5) is rogular in a complete neighbourhood
of § =0 and
(26) #{(8, %) =1iT.T(.)1 P(8,2,9)
g
exigty. Furthermore

HmB(t, 8) =] [ (8, 0).

530 »

Therefore we have
Tmmwa 2. If m =3 and S satisfies conditions of Lemma 1, then

__(_a, ). o
o Mg N [T a8, 040, 0, 9.

fmoa

In particular, if §> ¢ and m > 3, then

{2y = 1
97 8 — —-1/2 Drelis
(27) »(8, 2) F_-——"(m/z § ! ! o, (S, 6 ¢

and if n{m—n) £ 0

mi2 | —1/2 *
08)  p(8,8) =1t —rl A N T s, e
e 2

(8,2 =1+

2
where h;(2) = Rk(t, 2, 0).
. 6. Let ug now consider the theta function associated with the quad-
ratic form a'Swm.
Let § be the majorant space of § and dv the invariant volume mea-

sure in §. Let I'(8) be the unit group of § and ¥ a fundamental region
for I'(8) in $. Let ¥ be the volume of F meagured with dv. We then pub

(8, 2) ___% ff(s,ﬂ,z)du
n

- where f(8, H, 2) is defined in (2). I n{m—mn) +# 0, Siagel [7] has shown,
that (m 2 2)

(20). F(8,8) =14 > a(8)h(e)
b=~
. Where - _
(30) g (8) = mm@ﬁa__m ]d|'11‘2 M8, t)v’
' #(8)

)

On the analytic theory of gquadratic formns 431

where M (§, t) is the measure of representation of t by § and u(8) is the
measure of the unit group. From Section 5 we have

— (21L—~m) g~ it (27'5)"”2
(31) o' f (4 2V (- 7)0m = o = " m—mn Byl2).
)

Wo ean therefore write for m = 2, under the restrictions on 8 given in
Lemma 1,

(32) F(8,8) =1+ 2 e M0

Lm0
In this set up the right side also makes sense for § > ¢. For, from. Biegel
[T}, we see that for § >0

M(S, 1) = gpy lsrmmt

’ ) —-—(Zn—m)

A, 0,2).

- A(S, 1)
B8

where A (§, ¢} is the number of representations of ¢ by § and & (8) is the
arder of the finite group I'(8). Further

—f} i =12

g [T
w(8) = S

and g, = 1. Also

We therefore obtain

M8, o imy -

12 ? o miz, e F) X

| & (27) 1“(2)1: A8, 1)

Using (20) we get

(33) || D) rimis 4,0, ) — A.(8, Do
#(8)

(38) shows that for § > 0, (32) reduces to
FU8,2) = 1 D3 A(8, 8)e™
=0
whieh iz equal to 2 &SIzl (39) thus makes sense for all § definite or inde-

finite; in case 8 is mdeflmte it satisfies conditions of T.emma 1.
Let now 8y, 84y..., 8, be a complete system. of representzutwes
of classes of the genus of § (== 8;). Put

(34) 2 p(85),

=1

M (8) ig called the measure of the genus of 5.
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' Siegel has shown that [6]
(8, §) = limpFr-DA (S, 8)

Jemco

exists for every prime ¢ and that further the product
(35) T w8,
»

converges when the product is extended over all primes in thoir natural
order. Pub

(36) 7(8) = M ®) [ [ o8, 9).

Minkowski and Siegel realized the importance of this number for the
analytical theory of quadratic forms. (If we put e, =« L for m = 1 and }
it m > 1, then =(8) is the same as g(8)/e,, in the notation of Sicgel ([6],
I, p. 563).

 Leb us now writo

(37 DT ——

where M {8, ) is defined in {30} and M (8) in (34). a(§, ¥) ko =(8) depends
only on the genns of 8. Put

I
- h% (85 F(8y, 2)
{38) P8,z = e

where (8, #) is given in (32). We call F(S, 2) the thele funciion associated
with the genus of 8. From (32) and (37) we get

=%

b2
(39) F(8,7) =1+ 2 a(, 1) A" es

(LAY

We now prove the main

.THEOREM. Lei m 23 and let 8 satisfy conditions of Lemma 1. Then
F(8,2) == p(8,2).

.- In order to prove the theorem we require cerbain aualytical and
arithmetical facts, -

(n—~m)
Aft, 0,2).

Congider the modular matrices M = (Z‘ gl) with  ay, by, 04, &
0 . . ' 1 I
integers satisfying a,d,—bie; = 1 and '

(40) . 20, ¢ =0 (mod2d).

.

On the analytic theory of gquadretic forms 433
. b
Siegel [7] has shown. that if M{z) = w, then
e, 2+ dy

() (o) T o3+ 8RS, J8) — (S, 2
1

43
where y (—1) =1 i ¢, =0 and a, = 1 otherwise.
1
mh omidy
@y 5 @n—m) ——>87u]
49 ey ALz e —mi § P
) 7 ( 01) el '

#(mod ey}

Also by the way the function ¢ (S, #, &) has been defined we see that
(43) (o 6) T ey 4 BTN (S, ML), 5) = y(%)qo(s, ).
1

By continuity therefore ¢(§,2) also satisfies equation (41) with ¢(8,2)
in place of F(8,2).

Let us-denote the number 7(8) by 7, (8) to show its dependence on m
the order of the matrix 8. A fundamental result due to Minkowski-Siegel
is- that for m > 2 :

7, (8} = 2

whether § is definite or indefinite. In order to prove the theorem, we
ghall agsume that by for binary matrices S, definite or indefinite
72(8) =17,

it independent of 8. Suppose therefore as inductive hypothesis that we
haive proved that for m—1 > 2; 7, (T) iz independent of the (m—1)-
rowed symmetric semi-integral matrix 7. Then it follows from fhe Ganss—
Tisenstein-Dirichlet—8mith-Minkowski—Siegel formula [8] that for §
of m rows, t#0 '

(44) (8, 1) = %n a (8, 1), m=3.
wm P

Let ns putb

" _ tmer
g(8,#) = F(8, ) Tm(S)tp(S’z)
50 that from (44), (39) and (32) we get

m

L
g(8,2) =utog *

‘where
(45) '

Ton—1 o -7 _Tm—a .
T uf(z ‘1.) (4r) 2 (M(S, 0~ ”ap(s, 0))

»

28 — Acta Arithmeiica XXI,
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Sinee F(8§,2) and qa(S ) %) satisfy the transformation formula (41) wo
see that ¢(8, ¢) also satisties the same formula. Tt should be noted that

sinee m > 3, for § > 0 the second oxpregsion » = 0 since A0, 0, 2) = 0,
T.et us now congider the case § = 0 and m 2 3. Since g mo L

satisties the transformabion forrowla (41), it follows thab

(46) Tm('g) #0 Tgesd,
and go for definite S
(47) Ty = Ty M2

and g = 0 which means that, from (47),
F(8,2) = p(8, 2).

Let us therefore assume that § iy indefinite so that w(m —n) 5 0.
We algo assume that & satisfies the conditions of Lemma 1. We can assume,
without loss in generality thabt n 3 m-—%. Fist lot % > #-—n =~ 0. Then

Since (2n—m)/2 > 0, all the tormy in (48) exeept (o2 - dy) """ (taken
with principal part) are non-analytic. Therefore

w=0, 9=20,

This again gives the theorem.
We have therefore fio comsider the case # == m—n > 0. Then

-

2 Oy 1~.ZI'..fi
l632 -+ dy| ™ |- "‘“’""37“"“'""2‘::;,; A el [T REDE
-y ¢

e,z O
Let us take oy > 0, ¢ = - iy > 0 and take tho limit ag # -> 0
1
Then .
v 2. & By
(49) - o (un“lwwnﬂ ) - y(wf‘v) (un® ),
o4 0y

© XIf m > 4 then when 7 -+ 0 the lett side of (49) tonds to infinity H n =0
wheread the right side in finite. Therefore

o= 0.

Again using (49) it follows that » = 0. Thug the theorem is proved in
this case,

8
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We are only left with the case n =m—mn = 2. Again from (41)
we get w = 0 and

a
(50) b= y(—c—l~)v.
1
‘We shall show that 4 ' # 1 at least for one M satisfying (40). Suppose
¢, P
thad y(%l-) = 1 for all M satisfying (40). Then by definition of y(ﬂl—),
1 : e,
2wy
1= y(ﬁ) = g Mer? 2 e SLE], o, > 0.
! wfmodcy)
Therefore
21““15[1‘1 12 .2
(51) D e T =a@td,
wdoney

Given any integer ¢, > 0 satisfying (40) and any &, > 0 prime to ¢, one

can always find a matrix M with (il) ag the first column. Thus (51)
1,

is true for any given ¢, and any ¢, prime to ¢;. This shows that the left
side of (51) is a rational integer. Thus & is a square. Sinee # = m—n = 2
this would mean that § is the matrix of a quaternionic zero form. This
has been exeluded in the statement of the theorem.

Our theorem is completely proved.

A% o corollary we have

7 {8) = 7,

for all m 2 2 and all 8. Further

(52) M8, 0 =[]a8,0), mz=3.
P

As a mafter of fact 7,,(8) =1, =2 as stated in the beginning.
This can be proved by using the Dirichlet method as Minkowski and Siegel
have done.

It is to be noticed however that Siegel hag proved that z,(8) = 2
for all m > 2 even in the cases of ternary and guaternionic zero forms
omifited in Lemma 1, This can be very easily proved by using a very
intercsting idea duve to Siegel (see [6], IV, pages 255-256).
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