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1. Introduction. We shall prove a result about the distribution of
an arbitrary sequence of numbers in an interval. '

Lett T be the unit interval consisting of numbers & with 0 < £ <1,
and let o = {£;, &, ...} be a sequence of numbers in this interval. Given
an « in I/ and a positive integer n, we write Z(n, a) for the number of
integers ¢ with 1<<i< » and 0<C & < o, and we put

Dn, a) = |Z{n, a)—na|.
The discrepancy D(n) iz defined by

Dn) = sup D(n, a).
aelf

The sequence  is ealled uniformly distributed i D(n) = o{n). In
answer to a question of Van der Corput ([3], remark after Satz 6), Mrs.
Van Aardenne-Ehrenfest [1] showed that D(n) cannot remain bounded.
Later [2] she proved that there are infinitely many integers = with
D(n) > c;loglognflogloglogn where ¢, > 0 is an absolute eonstant. This
was improved by Roth [8] who showed that D(n) > ¢;(logn)* for infi-
nitely many #. In the present paper we shall show that D(n) > ezlogn
for infinitely many values of #. _
TaeorEM 1. Suppose N = 1. There is an integer n with 1 <u < N
and :

) Din) > 10"log V.

A result of this type, with the right hand side of (1) replaced by
¢,(log N}, had been shown by Roth [8]. The theorem implies that
(2) D(n) > 10 2logn

for infinitely many n. ‘
~ Now let 6 be irrational and let »(f) be the sequence {63, {26}, ...
where { ! denofes fractional parts. For sequences c(f) an inequality of
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the type (2) has been known for some time: Ostrowski [7] and Hardy

and Littlewood [5] had shown that for sequences

8 (n 2 {&}—1)

satigfies |8{n)] > ¢;logn for infinitely many =, and sinee |8(n) << .D(n)
by a result of Koksma [6], this gives D(n) > ¢;logn.
Ostrowski ([7], page 95) showed that

w(6) the function

D(n) < 36Alogn

if @ = w(f) and if the partial denominators in the continued fraction of ¢
do not exceed 4. Later Van der Corput ([4], Hilfssatz 4) constructed
another sequence o with D(n) =< ¢logn. These results show that ezcept
for the value of the constant (namely 107%), the estimate (2) is best possible.
No effort is made in the present paper to obtain a good value for this
constant.

THEOREM 2. Suppose P, = (&, m), .
the unit square Q. defined by 0 <L E< 1, 0K n< 1. For every (a, B} in @
put Ela, f} = |v(a, f)—- Naf| where v(a, f) is the number of points P, in
the recltangle 0 < £ < a, 0 < n << f. Then there is a point (uy, fy) tn Q with

(3) | Bag, o) >

Roth [8] had proved this result with the right hand side of (3) re-
placed by ¢, (log N)'%, and he showed that the right hand side may not
be replaced by c logN with arbitrarily small ¢, > 0. He also showed that
Theorems 1 and 2 are essentially equivalent, and that the truth of Theo-
rem 1 with some function f(¥) on the right hand side of (1) implies the
truth of Theorem 2 with 1f(¥) on the right hand side of (3). (Namely,
this follows from the inequality M™ < 7M in [8], §5.) Wence it will
guffice to prove Theorem 1. Our proof will be similar to but simpler than
& proof of a related result given in the preceding paper [9] of this series.

It appears to be difficult to improve the known cstimates [8] of

the discrepancy of sequences in the unit cube of k- dimensional space
. where k> 1.

vy Py= &, ny) are poinis in

(700)"log ¥ .

2. A proposition which implics Theorem 1. By I,J,... we shall

- denote intervals of the type @ < » < b where a, b are integers with 0 < a

<. b. The number of integers in such an interval I is equal to its 1ength
HI) = b—a. If » is & positive integer and a is in U, write

- fn,a) =Z(n, a)—na,
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so that D{n, a) = |f(n, a)l. For arbitrary « write f(n, «) = f(n, {a}), 80 that
fin, o) is periodic in « with period 1. For intervals 7 and arbitrary « put

"I, ) =maxf(n,a), ¢ (I,a) = min fln, a)

nel nel

R(I,e) =g (I, a)—
ProposITION. Suppose 1 i8 a positive integer and § is arbitrary. Let I
be an interval with 1(I) = 4. Then

4t

(4) 4 MBI, g e 2 270
i=1

and
g (1, a).

We ave going to show that this proposition implies Theorem 1. Suppose
at first that & > 4°. There is an integer ¢ = 0 with 4 < ¥ « 4"+ Let T
be the interval 0 < » < 4%, Then (4) will hold for every 5. The truth of
this inequality for any particular § shows that there is an a in U with
h(I, a) = 27%1. There are integers #,, n, in L with f(ny, a)—f(n,, a) = 27°t.
Hence either f(n,, a) or f{n,, a} is = 27% in abgolute value, and there
is an integer n with 0 << 4£ < N and D(n,e) > 27%, hence with
D(n) » 275%. Since ¢ > 9, we have ¢ > (9/10) (t+1), whence

D(m) = 2759/10) (£ + 1) > 275(9/10)log ¥ flog4 > 10 *log N.

To deal with the case when 1 < N < 4°, it will suffice to show that D(1) >}
But f(1, $) equals { or —} depending on whether & liss in 0<C &, <
or in 1 <C & <1, and this implies that D(1) = D(1, §) = 4.

J_L
F

3. An inequality. We have to infroduce more notation. Write

fin, a, 8) = fln, g)—f(n, a),
g (I, a, f} = max f(n, a, ), g (L, a, B) :1nj-;1f(ﬂr a, f),
nel e,

and for a pair of intervals J, J' put

RJ,Ja,8) = HlEI:X(g_ (J,a,f)— g+ (J'ya, B9 (Jls ay f) — QAA(J: a, ﬂ))-

Tumva. Suppose J, J are subintervals of some interval I. Then
(5) R, a)+h(I, B
= h(J,d,a, B+ AT, a)—.—h(J BRIy @)+ b, BY).

Proof. This lemma had already been proved in [9]. For comple-
teness, we shall reproduce the proof. We may assume without loss of
generality that

W, T 0y f) =g, 0y B)—g™ (s @, B).
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BT, Iy a, f), ie
= h(J,dJ, a, #)

Then we have f(n,a, f)—fn', o, §) =
{6) fln, B)—Fn, a)=fw, f)+flw's o)

for every wed and every m eJ . Let my, n,, My, n, be integers in J with

flmg, a) = 9+(J7 a), fing, a) = g~ {J, o), f('mﬁ: B = gﬂi‘(J: 8), f(nﬁ: ]
—¢~(J, f). Then

™ F{00; a)—fimy, @) = B(J, @),
{8) flmg, B)—flng, ) =h(J, B).
Similarly, there are elements m,, n,, My, ng of J* with
(9) flmg, o) —flng, a) = h(d', a),
{10) flmy, B)—Fimg, By = B(J", B}
Applying (6) with # = m,, n' = my we obtain

Fimay BY—Fflmey a)—flmy, B)--Flmp,a) = 1(J, T, a, §).
Apjglyiug (6) with = = nﬂ,n =m, we oblain

Fing, BY~F(ng, a)—F(m, B)+Flng, &) 2 h(d,J'; a, ).

Adding these two inequalities and the four equations (7), (8), (9), (10),
we get

Pty @, =

where

T, Iy a, B+ h(T, @)+ M, B)+ R, a)—l—h(J 8,

U2 =f(m,5: a) —f(ng, a),
Py = flmg, B)—F( :ﬁﬁ)-
I:ﬁ)

1 :f ma! 0:) f( Y C!)',
P3 = f(mﬂ’ By — f('”’ﬁ: ﬂ)
h(l,a) = ¢,

Bince A(I, a) = ¢y, 9;3, h(I £ = ¢, the lemma

follows.

4. Proof of the propogition. We shall proceed by mduei ion on t
First we notfe that

fon+1, B ) —fim, 54 3) {fr 1, H—Fn, B

is an integer minus (n+1) B+ —n(f+H—(n-+1)B-n8, hence is
an integer minus 4. Therefore every I with {(1) = 2 has h(I, B4-4)+A{Z, B)
= 4. This shows that '

| Zh(l,ﬁﬂj/et)) = (AL, By +h{L, B+1)) + (T, B+ 1)+ (L, B+1)
' = %+%$ 4.978

and the proposition is true for ¢ = 1.
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Now suppose the proposition is true for a particnlar ¢, and let T be
an interval of length I(I) = 4"\ If I is given by a< n < b, say, let J
be the interval a < n < a--4' and J' the interval ¢+ 2 4 < n < a-1-3-4%
By our hypothesis, the Inequalitiy (4) ig true for J and for J'.

If we extend the definition of Z(n, a) to every « by putting

Z(n, a) = Z(n, {a}}+nla—{a}},

then Z(n,a) is always an integer, and we have f(n, a) = Z(®, a)—nea
The function Z(n, a) is non-decreasing in n and in «, and the identity

Zn, a+1)—Z(n, ¢) =n holds. In particular we have
(11) Zia+2-44 g +1)—Z(a+2-4, B —(Z(a+4 p+1)—Z(a+4, B)) = 4.
‘Write :
: a = B (1=10,1,2,..)
and

2 =Z(a+2 4, q)—Z(at+2-#, 0 )= (Z(a+4, o) —Z(a+ 4, _y)).

The nambers #; are non-negative integers which have
i1
4

(12) Dy =4
=1
by (11).
For every » in J and every #’ in J' one has
Z(n'y ) —Z (W', 6;2) = (Z(n, o)) — By o)) 25 (J=0,1,2, o,
whence .
Fn's aipy o) —flo, @y, @)
= —(n —n)(a
This yields h(J, J’, a;, a;_,) 3= 5 — (8/4), and if 2 is positive then
(T, Ty 05, o
In conjunction with (5) this gives
(13) R, &) +R(T, q5_y)
= 3+ (00T, @)+ BT, g ) F R, @) + BT, 450)).

Obvionsly this inequality is also true if # = 0, and hence it is true in
general,
We divide the sum

Oy — ay_ 1)

24— 344701 = 2, — (3/4).

1)2%@;- .

1

(14) - D )

=1

into four parts which correspond to the four residue classes of j modulo 4.
Each of these four parts is a sum like the one on the left hand side of (4).

4 — Acta Arithmetica XX,
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Now (4) is true by induction for our particular value of ¢, and hence each
of the four parts has the lower bound 4'27%, and the sum (14) itself is
at least 4+4!275% = 27%4%. The same lower bound holds if #(J, ) in
(14) is replaced by k(J, a;_y), A{J, o) or h(J', ay_,). We now take the
sum of (13) over § =1,2, ..., 4", and we obtain

g1 PIEN)
2 Z h(I, o) = 52 534 (270) 2 4T 4 45 = 24 (27 (1 1))
F=1 gl

by (12). Dividing. by 2-4"" and recalling the definition of «; we obtain
{4) with ¢ replaced by £-+1.

References

11 T. Van Aardenne-Ehrentest, Proof of the impossibility of o just distribution,
ete., Indag. Math. 7 (1948), pp. 71-76.

[2] — On the impossibility of & just distribution, ibid. 11 (1949), pp. 264-269..

[3] J. G. Van der Corput, Fertellungsfunkiionen, I, Proc. Kon. Ned, Akad. v.

" Wetensch. 38 (1935}, pp. 813-821.

(4] — Verleilungsfunftionen, IT, ibid. 38 (1935), pp. 1058~1066.

[5] G. H. Hardy and J. E. Littlewood, The laftive points of a vight-angled triangle,
I7, Abh. math. Sera. Hamburg 1 (1922), pp. 212-249.

18] J. Koksma, Hen algemeene Stelling wit de Theorie der Gelifimatige Verdeeling
Modulo 1, Mathematica (Zutphen) 11 (1942), pp. 7-11.

[7] A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approsimalionen, I,
Abh. math. Sem. Hamburg 1 (1922), pp. 77-98.

[8] X.TF. Roth, On irregularities of distribution, Mathematila 7 (1954), pp. 73-79..

[9] W. M. Schmidt, Iregularities of distribution, VI, Compositio Mathematica
(to appear).

INSTITUTE FOR ADVANCED STUDY
Princeton, New Jersey

UNIVERSITY OF COLORADIO
Boulder, Colorado

Received on 10. 12. 1970 {126)

icm

ACTA ARITHMETICA
XXI (1972)

An application of Minkowski’s theorem
in the geometry of numbers

by

| L. J. MoRDELL |

In wmemory of Professor Waclaw Sierpinski

The classieal result in the geometry of numbers is given by Min-
kowski’s

TormorEM 1, dn n-dimensional closed convexr region symmelrical
around the origin and of volwme not less than 2%, eontains a point other than
the origin of every latiice L in n variables of deferminanl one.

Very few applications of this theorem are to be found in the usual
literature. They are mostly eoncerned with sums of powers of linear
forms or separate linear forms. As problems are rather searce, I notice
another application which may be of interest and which is given by

TEROREM 2. Let L be o lattice in 2n variables (@q, ..., %,) of deter-
minant one. Then the region given by

n

2 |@p_g == @ay| < 20, @ > b,

r=1

(1) Izl <a (r=1,...,2),

contains a point other than the origin of L if

g — — 1)
(2) bEn (i . % N 1 0 + ( ) )22—11.
7! 1-(n3-1)! 21(n+2)! (2n)!
The condition & > b is imposed to exclude the case when the lattice
I contains a sublattice of determinant one in @, @,; for if & < b, a trivial
solution may exist in which #; = ... = &, = 0. -
We have to express the condition that the volume ¥ of (1) is > 2*™
Make the substitution
ﬁmﬂ =¥ &gp_1 — Tgy

]/é-m%‘wl e m2r~1+w2r7 (‘}’ = 1, 2, ety %)..



