ACTA ARITHMETICA XXI (1972)

On the coefficients of the 2^n -th transformation polynomial for $j(\omega)$

b;

KURT MAHLER (Canberra, Australia)

In memory of Professor Waclaw Sierpiński

Let $j(\omega)$ be the modular function of level 1. It is well known that there exists to every integer $m \ge 2$ an irreducible polynomial

$$F_m(u, v) = F_m(v, u)$$

with rational integral coefficients such that

$$F_m(j(m\omega), j(\omega)) = 0$$
 identically in ω .

As m increases, the coefficients of $F_m(u, v)$ soon become extremely large. But how large they do in fact become does not seem to have been studied in the literature.

We shall consider here only the case when

$$m = 2^n$$

is a power of 2. Let the abbreviation $F_{(n)}(u, v)$ stand for $F_{2^n}(u, v)$, and let $L(F_{(n)})$ be the sum of the absolute values of the coefficients of $F_{(n)}(u, v)$. It will then be proved that

$$L(F_{(n)}) \leq 2^{(36n+57)2^n}$$
 $(n = 1, 2, 3, ...).$

I hope to establish in a later paper an analogous estimate for the general polynomial $F_m(u, v)$.

1. The following notation will be used.

If P(u, v, ...) is a polynomial with complex coefficients in the indeterminates u, v, ..., then $\partial_u(P)$, $\partial_v(P)$, ... denote the exact degrees of P in u, v, ..., respectively, and we put

$$\Delta(P) = \partial_u(P) + \partial_v(P) + \dots$$

Further L(P), the *length* of P, is defined as the sum of the absolute values of the coefficients of P. This length evidently has the properties

(1)
$$L(P+Q) \leqslant L(P) + L(Q)$$
 and $L(PQ) \leqslant L(P)L(Q)$,

and it can also be proved (Mahler, [1]) that, if P allows the factorisation

$$P = P_1 P_2 \dots P_r,$$

then

(2)
$$L(P_1)L(P_2) \dots L(P_r) \leqslant 2^{d(P)}L(P).$$

Next let $\omega = \xi + i\eta$ be a complex variable in the upper halfplane $H \colon \eta > 0$,

and let as usual q denote the expression $q=e^{\pi i \omega}$, so that 0<|q|<1. We shall be concerned with the basic modular function

(3)
$$j(\omega) = \left\{1 + 240 \sum_{h=1}^{\infty} h^3 \frac{q^{2h}}{1 - q^{2h}}\right\}^3 \left\{q^2 \prod_{h=1}^{\infty} (1 - q^{2h})^{24}\right\}^{-1}$$

of level 1, and also with the modular function

(4)
$$k(\omega) = 4q^{1/2} \prod_{h=1}^{\infty} \left\{ \frac{1+q^{2h}}{1+q^{2h-1}} \right\}^4$$

of Legendre and Jacobi of level 4. These two functions are connected by the identity

(5)
$$j(\omega) = 2^{8} \frac{\{k(\omega)^{4} - k(\omega)^{2} + 1\}^{3}}{k(\omega)^{4} \{1 - k(\omega)^{2}\}^{2}}.$$

We shall further make use of Gauss's formula

(6)
$$k(\omega/2) = \frac{2\sqrt{k(\omega)}}{1 + k(\omega)}.$$

2. It is proved in the theory of modular functions that, for every positive integer n, there exists an irreducible polynomial

(7)
$$F_{(n)}(u,v) = \sum_{h=0}^{3 \cdot 2^{n-1}} \sum_{k=0}^{3 \cdot 2^{n-1}} F_{hk} u^h v^k$$

symmetric in u and v, with integral coefficients, and with the highest terms $u^{3\cdot 2^{n-1}}$ and $v^{3\cdot 2^{n-1}}$, such that

(8)
$$F_{(n)}(j(2^n\omega),j(\omega))=0$$

identically in ω .

We shall establish in this note an upper estimate for the length

(9)
$$L_{(n)} = L(F_{(n)})$$

of the polynomial $F_{(n)}(u, v)$, thus for the quantity

$$L_{(n)} = \sum_{h=0}^{3 \cdot 2^{n-1}} \sum_{k=0}^{3 \cdot 2^{n-1}} |F_{hk}|.$$

The coefficients of $F_{(n)}$ become quickly very large, and such an estimate does not seem to have so far been obtained. The proof will depend on the relation (5) between $j(\omega)$ and $k(\omega)$ and on Gauss's formula (6).

3. Put

$$j(2^h\omega) = j_h$$
 and $k(2^h\omega) = k_h$ $(h = 0, 1, 2, ...)$.

Firstly, by (5),

$$2^{8}(k_{0}^{4}-k_{0}^{2}+1)^{3}-j_{0}k_{0}^{4}(1-k_{0}^{2})^{2}=0.$$

or, say,

$$f_{(0)}(j_0, k_0) = 0,$$

where $f_{(0)}(u, v)$ is the polynomial

$$f_{(0)}(u,v) = 2^{8}(v^{4}-v^{2}+1)^{3}-uv^{4}(1-v^{2})^{2}.$$

By (6), the consecutive function values k_0, k_1, k_2, \ldots are connected by the recursive formulae

(12)
$$k_n = 2(k_{n+1})^{1/2}(k_{n+1}+1)^{-1} \quad (n=0,1,2,\ldots).$$

Let us therefore define a sequence of polynomials $\{f_{(n)}(u,v)\}$ by the formulae

(13)

$$f_{(n+1)}(u,v) = egin{cases} 2^{-4}(1+v)^{12}f_{(0)}\left(u,rac{2\sqrt{v}}{1+v}
ight) & ext{for } n=0\,, \ 2^{-2}(1+v)^{12}f_{(1)}\left(u,rac{2\sqrt{v}}{1+v}
ight) & ext{for } n=1\,, \ (1+v)^{2 ilde{artheta}_v(f_{(n)})}f_{(n)}\left(u,rac{2\sqrt{v}}{1+v}
ight)f_{(n)}\left(u,-rac{2\sqrt{v}}{1+v}
ight) & ext{for } n\geqslant 2\,. \end{cases}$$

Then

$$\begin{array}{ll} f_{(1)}(u\,,\,v) &= 2^4\,(v^4+14v^2+1)^3-uv^2\,(1-v^2)^2\,,\\ f_{(2)}(u\,,\,v) &= 4\,(v^4+60v^3+134v^2+60v+1)^3-uv(v+1)^2(v-1)^8\,. \end{array}$$

Generally, for all $n \ge 2$, $f_{(n)}(u, v)$ becomes a polynomial in u and v with rational integral coefficients, of the form

(15)
$$f_{(n)}(u,v) = \sum_{h=0}^{2^{n-2}} \sum_{k=0}^{12 \cdot 2^{n-2}} f_{hk}^{(n)} u^h v^k$$

and, naturally, with the property that

(16)
$$f_{(n)}(j_0, k_n) = 0.$$

4. Put

(17)
$$A_{(n)} = L(f_{(n)}) \quad (n = 0, 1, 2, ...).$$

Thus, by (11) and (14),

(18)
$$\Lambda_{(0)} = 2^{8}3^{3} + 2^{2}, \quad \Lambda_{(1)} = 2^{16} + 2^{2}, \quad \Lambda_{(2)} = 2^{26} + 2^{4}7.$$

We shall now determine a recursive inequality for $A_{(n)}$ and by means of it an upper estimate for this quantity.

Let already $n \ge 2$. By (13) and (15),

$$f_{(n+1)}(u,v) = (1+v)^{2\cdot 12\cdot 2^{n-2}} \times \left\{ \sum_{k=0}^{2^{n-2}} \sum_{k=0}^{12\cdot 2^{n-2}} f_{hk}^{(n)} u^k \left(\frac{2\sqrt{v}}{1+v} \right)^k \right\} \left\{ \sum_{k=0}^{2^{n-2}} \sum_{k=0}^{12\cdot 2^{n-2}} f_{hk}^{(n)} u^k \left(\frac{-2\sqrt{v}}{1+v} \right)^k \right\}.$$

Here, for both signs $\varepsilon = +1$ and $\varepsilon = -1$,

$$(1+v)^{12\cdot 2^{n-2}} \sum_{h=0}^{2^{n-2}} \sum_{k=0}^{12\cdot 2^{n-2}} f_{hk}^{(n)} u^h \left(\varepsilon \frac{2\sqrt{v}}{1+v}\right)^k = \sum_{h=0}^{2^{n-2}} \sum_{l=0}^{6\cdot 2^{n-2}} f_{h,2l}^{(n)} u^h 2^{2l} v^l (1+v)^{12\cdot 2^{n-2}-2l} + \varepsilon \sqrt{v} \sum_{h=0}^{2^{n-2}} \sum_{l=0}^{6\cdot 2^{n-2}-1} f_{h,2l+1}^{(n)} u^h 2^{2l+1} v^l (1+v)^{12\cdot 2^{n-2}-2l-1}.$$

Hence $f_{(n+1)}$ has the rational form

$$\begin{split} f_{(n+1)}(u,v) &= \Bigl\{ \sum_{h=0}^{2^{n-2}} \sum_{l=0}^{6\cdot 2^{n-2}} f_{h,2l}^{(n)} u^h 2^{2l} v^l (1+v)^{12\cdot 2^{n-2}-2l} \Bigr\}^2 - \\ &- v \cdot \Bigl\{ \sum_{h=0}^{2^{n-2}} \sum_{l=0}^{6\cdot 2^{n-2}-1} f_{h,2l+1}^{(n)} u^h 2^{2l+1} v^l (1+v)^{12\cdot 2^{n-2}-2l-1} \Bigr\}^2. \end{split}$$

Now

$$L(2^k(1+v)^{12\cdot 2^{n-2}-k}) = 2^{12\cdot 2^{n-2}} \quad (k=0,1,...,12\cdot 2^{n-2}).$$

It follows therefore that

$$A_{(n+1)} \leqslant 2^{2 \cdot 12 \cdot 2^{n-2}} \left\{ \left(\sum_{k=0}^{2^{n-2}} \sum_{l=0}^{6 \cdot 2^{n-2}} |f_{k,2l}^{(n)}| \right)^2 + \left(\sum_{k=0}^{2^{n-2}} \sum_{l=0}^{6 \cdot 2^{n-2}-1} |f_{k,2l+1}^{(n)}| \right)^2 \right\},$$

whence evidently

(19)
$$A_{(n+1)} \leqslant 2^{24 \cdot 2^{n-2}} A_{(n)}^2 \quad \text{for} \quad n \geqslant 2.$$

On applying this inequality repeatedly, we find easily that

$$A_{(n)} \leqslant 2^{12(n-2)2^{n-2}} A_{(2)}^{2^{n-2}} \quad \text{for} \quad n \geqslant 2.$$

Here, by (18),

$$A_{(2)} < 2^{28}$$

and therefore

(20)
$$A_{(n)} < 2^{(3n+1)2^n}$$
 for $n \ge 2$.

This estimate is not valid when n = 0 and n = 1. It would have some interest to decide whether there exists a positive constant C such that

$$A_{(n)} \leqslant 2^{C \cdot 2^n}$$

for all sufficiently large n.

5. Let again $n \ge 2$. Put

(21)
$$a_k^{(n)}(u) = \sum_{h=0}^{2^{n-2}} f_{hk}^{(n)} u^h \quad (k = 0, 1, ..., 12 \cdot 2^{n-2}),$$

so that, by (15),

(22)
$$f_{(n)}(u,v) = \sum_{k=0}^{12\cdot 2^{n-2}} a_k^{(n)}(u) v^k.$$

Here the $a_k^{(n)}(u)$ are polynomials in u with rational integral coefficients, where the inequality (20) implies that

(23)
$$\sum_{k=0}^{12 \cdot 2^{n-2}} L(a_k^{(n)}) < 2^{(3n+1)2^n}.$$

Both $a_0^{(n)}(u)$ and $a_{12\cdot 2^{n-2}}^{(n)}(u)$ can be determined explicitly, as follows. Firstly, by (11) and (14),

$$a_0^{(0)}(u) = 2^8, \quad a_0^{(1)}(u) = 2^4, \quad a_0^{(2)}(u) = 4,$$

while by (13),

$$a_0^{(n+1)}(u) = f_{(n+1)}(u, 0) = f_{(n)}(u, 0)^2 = a_0^{(n)}(u)^2$$

It follows therefore that, for all $n \ge 2$,

$$a_0^{(n)}(u) = 2^{2^{n-1}},$$

hence that $a_0^{(n)}(u)$ is for all n independent of u.

Next $f_{(n)}(u, v)$ is reciprocal with respect to the variable v,

(25)
$$v^{\theta_v(f_{(n)})}f_{(n)}\left(u,\frac{1}{v}\right) = f_{(n)}(u,v),$$

whence also

$$a_k^{(n)}(u) = a_{12 \cdot 2}^{(n)} - 2(u) \qquad (k = 0, 1, ..., 12 \cdot 2^{n-2}).$$

For all three polynomials $f_{(0)}$, $f_{(1)}$, and $f_{(2)}$ are reciprocal; and if $n \ge 2$ and $f_{(n)}$ is reciprocal, then the same is true for $f_{(n+1)}$ because, by (13),

$$\begin{split} v^{12\cdot 2^{n-1}} f_{(n+1)} \bigg(u \,, \, \frac{1}{v} \bigg) \\ &= v^{12\cdot 2^{n-1}} \{ 1 + (1/v) \}^{12\cdot 2^{n-1}} f_{(n)} \bigg(u \,, \, \frac{2v^{-1/2}}{1+v^{-1}} \bigg) f_{(n)} \bigg(u \,, \, \frac{-2v^{-1/2}}{1+v^{-1}} \bigg) \\ &= (1+v)^{12\cdot 2^{n-1}} f_{(n)} \bigg(u \,, \, \frac{2\sqrt{v}}{1+v} \bigg) f_{(n)} \bigg(u \,, \, -\frac{2\sqrt{v}}{1+v} \bigg) = f_{(n+1)} (u \,, \, v) \,. \end{split}$$

It follows now from (24) and (26) that also

(27)
$$a_{12,2}^{(n)} - 2(u) = 2^{2^{n-1}} \quad \text{if} \quad n \geqslant 2.$$

The term of $f_{\{n\}}$ of highest degree in v has thus for $n \ge 2$ the form

$$2^{2^{n-1}}v^{12\cdot 2^{n-2}}$$

and so is independent of u.

6. The functions

$$j_0 = j(\omega)$$
 and $k_n = k(2^n \omega)$

are connected by the equation

$$(28) f_{(n)}(j_0, k_n) = 0.$$

It follows further, from (5), on replacing ω by $2^n \omega$, that

$$i_n = i(2^n \omega)$$
 and $k_n = k(2^n \omega)$

satisfy the equation

(29)
$$f_{(0)}(j_n, k_n) = 0.$$

Denote therefore by

$$R_{(n)} = R_{(n)}(j_0, j_n)$$

the resultant relative to v of the two polynomials

$$f_{(n)}(j_0, v) = \sum_{k=0}^{12 \cdot 2^{n-2}} a_k^{(n)}(j_0) v^k$$

and

$$f_{(0)}(j_n, v) = 2^8(v^4 - v^2 + 1)^3 - j_n v^4 (1 - v^2)^2.$$

This resultant is a polynomial in j_0 and j_n which does not vanish identically. For the coefficients of the highest powers

$$v^{12\cdot 2^{n-2}}$$
 and v^{12}

of v that occur in these two polynomials are never zero; and whatever the value of v, it is always possible to find a value of j_n such that

$$f_{(0)}(j_n,v) \neq 0$$
.

As usual, $R_{(n)}$ can be written as a determinant. For this purpose, let

(30)
$$f_{(0)}(j_n, v) = \sum_{k=0}^{12} b_k(j_n) v^k,$$

so that evidently

$$b_0(j_n) = b_{12}(j_n) = 2^8, \quad b_2(j_n) = b_{10}(j_n) = -3 \cdot 2^8,$$
 $b_4(j_n) = b_8(j_n) = 6 \cdot 2^8 - j_n, \quad b_6(j_n) = -7 \cdot 2^8 + 2j_n;$
 $b_1(j_n) = b_3(j_n) = b_5(j_n) = b_7(j_n) = b_9(j_n) = b_{11}(j_n) = 0.$

Further

(31)
$$\sum_{k=0}^{12} L(b_k) = 2^8 3^3 + 2^2.$$

The resultant $R_{(n)}$ takes now the explicit form

$$(32) \quad R_{(n)}(j_0, j_n) = \begin{pmatrix} a_N^{(n)}(j_0) & a_N^{(n)}(j_0) & \dots & a_0^{(n)}(j_0) & 0 & \dots & 0 \\ 0 & a_N^{(n)}(j_0) & \dots & a_1^{(n)}(j_0) & a_0^{(n)}(j_0) & \dots & 0 \\ \vdots & & \ddots & & \ddots & \vdots \\ 0 & 0 & \dots & a_N^{(n)}(j_0) & a_{N-1}^{(n)}(j_0) & \dots & a_0^{(n)}(j_0) \\ b_{12}(j_n) & b_{11}(j_n) & \dots & b_0(j_n) & 0 & 0 & \dots & 0 \\ 0 & b_{12}(j_n) & \dots & b_1(j_n) & b_0(j_n) & 0 & 0 & \dots \\ \vdots & & \ddots & & \ddots & \vdots \\ 0 & 0 & \dots & b_{12}(j_n) & b_{11}(j_n) & \dots & b_0(j_n) \end{pmatrix} \begin{bmatrix} \mathbb{Z} \\ \mathbb{$$

where N stands for the abbreviation

$$N=12\cdot 2^{n-2}.$$

We apply now the following trivial estimate for the length of a determinant. Let

$$p_{hk}(u, v)$$
 $(h, k = 1, 2, ..., m)$

be arbitrary polynomials with complex coefficients in any two indeterminates u and v, and let D(u, v) be the determinant

$$D = egin{array}{ccccc} p_{11} & p_{12} & \cdots & p_{1m} \ p_{21} & p_{22} & \cdots & p_{2m} \ & \ddots & \ddots & \ddots & \ddots \ p_{m1} & p_{m2} & \cdots & p_{mm} \ \end{array}
ight].$$

It is then evident from the definition of a determinant that

$$L(D) \leqslant \prod_{h=1}^m \left(L(p_{h1}) + L(p_{h2}) + \ldots + L(p_{hm})
ight).$$

On applying this inequality to the determinant for $R_{(n)}$ and making use of the estimates (23) and (31), noting that

$$2^{8}3^{3} + 2^{2} < 2^{13}$$

we find that

$$L(R_{(n)}) < 2^{12(3n+1)2^n} (2^8 3^3 + 2^2)^{12 \cdot 2^{n-2}}$$

and hence that

(33)
$$L(R_{(n)}) < 2^{(36n+51)\cdot 2^n}.$$

In the determinant for $R_{(n)}$, the elements $a_k^{(n)}(j_0)$ are polynomials in j_0 at most of degree 2^{n-2} , while the elements $b_k(j_n)$ are polynomials in j_n at most of degree 1, where all these polynomials have rational integral coefficients. Therefore $R_{(n)}(j_0,j_n)$ is a polynomial with rational integral coefficients in j_0 and j_n , at most of degree $12 \cdot 2^{n-2}$ in j_0 and at most of degree $12 \cdot 2^{n-2}$ in j_0 . Hence, in the notation of § 1,

$$\Delta(R_{(n)}) \leqslant 24 \cdot 2^{n-2}.$$

7. The two equations (28) and (29) can only hold if

$$R_{(n)}(j_0,j_n)=0.$$

On the other hand, j_0 and j_n are also connected by the transformation equation

$$F_{(n)}(j_0,j_n)=0,$$

and it is known that the polynomial $F_{(n)}(u, v)$ is irreducible. Hence the polynomial $R_{(n)}(u, v)$ necessarily is divisible by $F_{(n)}(u, v)$. The latter polynomial is primitive because its highest coefficients are equal to 1. Therefore $R_{(n)}$ allows a factorisation

$$R_{(n)}(u, v) = F_{(n)}(u, v)G_{(n)}(u, v)$$

where $G_{(n)}$ denotes a further polynomial in u and v with rational integral coefficients. Therefore

$$(35) L(G_{(n)}) \geqslant 1.$$

The inequality (2) implies then that

$$L(F_{(n)}) \leqslant L(F_{(n)}) L(G_{(n)}) \leqslant 2^{A(R_{(n)})} L(R_{(n)})$$
,

hence, by (33) and (35),

$$L(F_{(n)}) \leqslant 2^{24 \cdot 2^{n-2}} \cdot 2^{(36n+51)2^n}$$
.

Thus we arrive finally at the following result.

THEOREM. For every positive integer n, the length $L(F_{(n)})$ of the 2^n th transformation polynomial $F_{(n)}(u, v)$ satisfies the inequality

(36)
$$L(F_{(n)}) \leqslant 2^{(36n+57)2^n}.$$

Actually, our proof gave this estimate only for $n \ge 2$. It remains, however, true also for n = 1 because the explicit expression for $F_{(1)}(u, v)$ shows that

$$L(F_{(1)}) < 2^{48}$$
.

It would be valuable if it could be proved that $L(F_{(n)})$ satisfies a stronger inequality

$$L(F_{(n)}) \leqslant 2^{C \cdot 2^n}$$

where C denotes any absolute positive constant. For such a result would enable one to prove that

$$j\left(\frac{\log q}{\pi i}\right)$$

is transcendental for all algebraic numbers q satisfying

$$0 < |q| < 1$$
.

It is, as yet, unknown whether this statement is in fact true.

References

[1] K. Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), pp. 341-344.

DEPARTMENT OF MATHEMATICS INSTITUTE OF ADVANCED STUDIES AUSTRALIAN NATIONAL UNIVERSITY Canberra, ACT. 2600, Australia