icm

On the µ-invariants of cyclotomic fields

by

KENKICHI IWASAWA (Princeton, N.J.)

Let p be an odd prime. For each $n \ge 0$, let k_n denote the cyclotomic field of p^{n+1} -th roots of unity and let p^{e_n} , $e_n \ge 0$, be the highest power of p which divides the class number of k_n . It is known (see [1]) that for all sufficiently large n, the exponent e_n is given by a formula

$$e_n = \lambda n + \mu p^n + \nu$$

where λ , μ , and ν are integers $(\lambda, \mu \geqslant 0)$, independent of n. In the present paper, we shall prove that

$$\mu < p-1$$
.

Let Z_p denote the ring of p-adic integers and let Λ be the ring of all formal power series in an indeterminate T with coefficients in Z_p : $\Lambda = Z_p[[T]]$. We shall first prove a lemma on Λ -modules (1).

A Λ -module Y is called elementary if Y is the direct sum of a finite number of Λ -modules of the form Λ/P^m , $m \ge 0$, where P are prime ideals of height 1 in Λ . Let X be a noetherian torsion Λ -module. Then there exist an elementary Λ -module Y and a morphism

$$f: X \to Y$$

such that both the kernel and the cokernel of f are finite modules. Let

$$Y = \sum_{i} A/P_{i}^{m_{i}}$$

be the direct decomposition for Y and let

$$\mu = \sum' m_i,$$

where the sum is taken over all indices i such that $P_i = pA$. The integer μ is then uniquely determined for X by the above and hence is denoted by $\mu(X)$.

Lemma. Let X be a noetherian torsion Λ -module with $\mu = \mu(X)$. Then the order of X/TX is at least equal to p^{μ} .

Proof. Let $f: X \to Y$ be as above and let Z = f(X), the image of f. It is clear that the order of X/TX is not less than the order of Z/TZ.

Now, if Y/TY is infinite, then so is X/TX and the lemma holds trivially. Hence we may assume that Y/TY is finite. In such a case, we see easily that $P_i \neq TA$ for every index i in the direct decomposition of Y so that the map

$$Y \to Y$$
, $y \to Ty$

is injective and that

$$Y/Z \simeq TY/TZ$$
.

Since Y/Z and Y/TY are both finite, it follows that the order of Z/TZ is equal to that of Y/TY. Therefore it is sufficient to show that the order of Y/TY is at least equal to p^{μ} . However, this is an immediate consequence of the fact that if $U = A/p^{m}A$, $m \ge 0$, then the order of U/TU is equal to p^{m} .

Now, let $k=k_0$ and let K denote the union of all k_n , $n\geqslant 0$. K is a Galois extension of k and its Galois group is isomorphic to the additive group of the compact ring Z_p . Let L be the maximal unramified abelian p-extension over K and let X be the Galois group of L/K. Since L/k is also a Galois extension, Γ acts on the abelian group X in the obvious manner. Fixing a topological generator γ of the compact group Γ , we can then make X into a Λ -module module so that $(1+T)x=\gamma x$ for every x in X. Furthermore, we can show (cf. [1] and [3]) that X is a noetherian torsion Λ -module and its invariant $\mu(X)$ is equal to the second coefficient μ in the formula for e_n mentioned above: $\mu=\mu(X)$.

Let J denote the automorphism of L which maps each α in L to its complex-conjugate $\overline{\alpha}$. Clearly J also acts on X. Let X^+ (resp. X^-) be the set of all x in X such that Jx = x (resp. Jx = -x). Then X^+ and X^- are Λ -submodules of X and

$$X = X^+ \oplus X^-$$

Hence we have

$$\mu = \mu(X) = \mu^{+} + \mu^{-}$$

where $\mu^+ = \mu(X^+)$ and $\mu^- = \mu(X^-)$. It is also known (cf. [2]) that

$$\mu^+\leqslant\mu^-$$
 .

Therefore

$$\mu \leqslant 2\mu^-$$
.

Let h^- denote the so-called first factor of the class number of k, the cyclotomic field of pth roots of unity. It is proved (see [1] and [2])

⁽¹⁾ For the theory of A-modules, see [3].

that the order of X^-/TX^- is just equal to the highest power of p which divides h^- . Hence, applying the above lemma for X^- , we see that

$$p^{\mu^-} \leqslant h^-$$
.

On the other hand, the classical class number formula for k states that

$$h^{-}=2p\prod_{\chi}\left(-\frac{1}{2p}\sum_{a=1}^{p-1}a\chi(a)\right),$$

where the product is taken over all Dirichlet characters γ defined mod pwith $\chi(-1) = -1$. Since

we have

$$\left|\sum_{a=1}^{p-1}a\chi(a)\right|<\sum_{a=1}^{p-1}a=\frac{(p-1)p}{2},$$

$$h^- < 2^{2-p} p (p-1)^{(p-1)/2} \leqslant p^{(p-1)/2}$$
.

It then follows that

$$\mu^- < (p-1)/2$$
 $\mu < p-1$,

q.e.d.

Instead of the above elementary argument, we may estimate $h^$ also by using

$$|L(1; \chi)| < 2\log p, \quad \chi \neq 1.$$

We then see that for any given real number $c > \frac{1}{3}$, there exists an integer N(c) such that

$$\mu < c(p-1)$$

whenever $p \geqslant N(c)$. It is also clear that by the same method, we can find an upper bound for the μ -invariant of a so-called Z_p -extension K/k in many special cases. In particular, if K has only one prime divisor which divides the rational prime p (as in the special case discussed above), then

$$\mu(K/k) \leqslant \log h/\log p$$
,

where h is the class number of k.

References

- [1] K. Iwasawa, On T-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), pp. 183-226.
- On the theory of cyclotomic fields, Ann. of Math. 70 (1959), pp. 530-561.
- [3] J.-P. Serre, Classes des corps cyclotomiques, Seminaire Bourbaki, Exposé 174 (1958/1959).

PRINCETON UNIVERSITY

ACTA ARITHMETICA XXI (1972)

О числе решений одного сравнения

Г. И. Перельмутер (Саратов), А. Г. Постников (Москва)

Памяти В. Серпинского

Пусть $n \ge 1, m_1, ..., m_n$ — целые положительные числа

(1)
$$F(x, x_1, \ldots, x_n) = f_0(x) + f_1(x) x_1^{m_1} + \ldots + f_n(x) x_n^{m_n},$$

где f_0, f_1, \ldots, f_n — полиномы от неизвестного x с целыми коэффициентами. Мы будем изучать число $N_{\mathbb{F}}(p)$ решений сравнения

$$(2) F(x, x_1, \ldots, x_n) \equiv 0 \pmod{p}$$

при растущем простом p. Случай, когда все $f_i = \mathrm{const}$, рассматривался А. Вейлем в работе [3].

Для формулировки результата введем некоторые обозначения: $\delta_i = {
m H.~O.~II}$. канонических показателей при разложении полинома $f_i(x)$ на множители над полем рациональных чисел $(0 \le i \le n)$, причем полагаем $\delta_i = 0$, если $f_i = \text{const}$;

допустимая система $a = (a_1, ..., a_n)$ — это система рациональных чисел $a_1, ..., a_n$, удовлетворяющих условиям:

(3)
$$0 < a_j < 1, \quad m_j a_j \equiv 0 \pmod{1}, \quad \sum_{j=1}^n a_j \not\equiv 0 \pmod{1};$$

$$r_{\alpha} = (a_1 \delta_1, \ldots, a_n \delta_n, \delta_0 \sum_{j=1}^n a_j), \text{ r.e.}$$

$$(4) \quad r_a = \prod_q q^{\gamma_q(r_a)}, \quad \text{fhe} \quad \gamma_q(r_a) \, = \, \text{Min} \left\{ \gamma_q(\alpha_1 \, \delta_1), \ldots, \gamma_q(\alpha_n \, \delta_n), \gamma_q \left(\delta_0 \sum_j a_j \right) \right\}.$$

Будет доказана

Теорема. Предположим, что выполнены исловия:

- 1) Полиномы $f_0(x), \ldots, f_n(x)$ попарно взаимно просты;
- 2) Для всех допустимых систем а (если они существуют)

$$(5) r_{\alpha} \not\equiv 0 \text{ (mod 1)}.$$