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in which every sentence [nP° is true and every sentence [n] for n>1 is
false (4).

Proof. Let 4 and B be arbitrary finite sets of positive integers
and minB > 1. We shall show that there exists a model M for ZF' o
U {m]*: ned}o {T[n]: neB}) Let py,..,pr be prime numbers such
that every element of the set B is divisible by at least one of these numbers.
From the assumption it follows that there exist prime numbers g, ..., g
such that (p%—1)/(pi—1) are prime numbers: greater than the numbers
of the set A. By lemma 2 there exist groups G, .., Gi such that the
index of every proper subgroup of the group @; is divisible by at least

E

one of the numbers of the set C; = {p¥, (p¥—1){(p:—1)}. Let G = ﬂlGi.
s

Using lemma. 1, we infer that the index of every proper finite subgroup
3

of the group @ is divisible by at least one of the numbers of the set | J C;.
=1

In virtue of theorem 2 there exists a model in which the propositions [n]°
for 7 € A are true and the propositions [n] for » ¢ B are false. Using the
compactness theorem we obtain the assertion of theorem 4.

{4) The famous conjecture on the existence of infinitely many Mersenne primes
(i.e. the numbers 2" —1) is a particular case of the conjecture stated in the assumption
of the theorem.
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Some properties of convex metric spaces
by .
B. Krakus (Stockholm)

1. Introduction. A point » of a metric space (X, p) is said to be
a frontier point (see [6]) if there exists a point y ¢ X' such that for every

‘point z € X\{z} we have

ey, z)+elz,2) > oy, .

The aim. of this paper is to give a topological characterization of
a frontier point of a compact strongly convex (1) finite-dimensional metric
space (X, o) without ramifications () (denoted by (X, o)« SCWR).
Holsztynhski and Kuperberg have proved (see [4]) that every frontier
point of a space (X, g) e SCWR is a labile point in X (3). It follows from [3]
that the set of the frontier points of a space (X, g) ¢ SCWR is a boundary
set (see [8] tao). In the present noteé it is shown that this set is compact.
I give some remarks concerning the set of the stable points (3) of the
SCWR -spaces.

2. Property of a ball. Let (X, ¢) e SCWR. Then there exists exactly
one function i: X xX X I—+X where I = (0,1) such that

Q(my Aw, Y, t)) = to(z,¥) Q(yrl(w7y7 t)) = (l'_t)@(mi y).

It is not difficult to see that the function 1 defined above is continu-
ous. Let us write |2, y| = A((x, y) x I). This means that z e jz,y| if and
only i

and

oz, 2)+olz,y)= a(w,y);

() A metric space (X, g) is said to be strongly convex (see [1]) if for every two
points %, y « X there exists exactly one point z ¢ X such that ¢(x, 2) = o(y, 2) = }e(z,¥)-

() A metric space (X, p) is said to be without ramifications if for all points
z,Y,%,8 « X the conditions o (@, y)+ 0y, 2) = e(%,2), e(=. ¥)+ ey, 8) = elz. 8), el@. 2)
= g(x, s) imply 2= s (see [6]).

(*) A point p of topological space X is said to be a labile point in X if for any
neighbourhood U of p there exists a homotopy h: X xI—+X such that the following
conditions hold: (i) h(x, 0) = = for every » ¢ X, (ii) h(z, t) = = for every x e X\U, t ¢ I,
(iii) h(z, t) e U for every w e U, £ eI, (iv) h(w, 1) # p for every z ¢ X (see [2]). A point
of topological space X is said to be a stable point in X if is not a labile point.
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Let L(X) and F(X) denote the sets of labile points and frontier
points of X, respectively. We put §(X) = X\F(X). Since the set L(X)
is a boundary set (see [3]) and L(X)D F(X) (see [4]), for every point
p e 8(X) there exist numbers 7, > 2r, > 0 such that a closed ball K;
with centre p and radius 7; is contained in 8(X) (i = 0, 1). Let K,= K, n~
~X\K; and K;=ENE; (i=0,1). :

LemyA 1. For every point a € Kl there exisis a homeomorphism h: Ky —K,
such that h(a)= a and h(K)) = K.

Proof. Let r; > 7, > g(a, p) and K, be a closed ball with centre p
and radius 7, and let K, = K, n X\K,. Since X is without ramifications,
for every point z e K\{p} there exists exactly one poinbt ¢o(z) such that

o(p, %)+ o, wo(@) = 0[P, gul@) =10 .
Let gi(x) = |p, qu(@)] 1 Ky for 4 =1,2. Tt is easily seen that the

function @iz KN\{p}—K; is continuous and ¢iz) == for every zeK;

(i=0,1,2).
Let t, = (r,—1)/(ry—72). Then for every point z e K., we have
Z(J‘U Pa() to) = gu(2) .
Putting
z e EN\K,,
zeK,

we obtain the mapping h: K;—K;. It is not difficult to see that & is
a homeomorphism. Since a € K,, we have h{a) = a.

}.(.’1:, @), to) for

® for

h(@) =

3. r-points. A point p of a space X is said to be an »-point if each
neighbourhood of p contains a neighbourhood U of p (is called a canonical
neighbourhood) such that for each ge U, FrU = U ~n X\ U is a deforma-
tion retract of U\{g} (see [5]).

THEOREM 1. 1{’1 is a canonical neighbourhood.

Before giving the proof, we establish the following

LenMA 2. For every point q ¢ Ky, K, is a deformation retract of E\{g}-

Proof. Let K, be a closed ball with centre ¢ and radius r, where
o(p, @) < r,<r;. We define a map ¢: E\{g}—+K, by the formula

%€ lp(®), q -

It is worth noting that ¢(z) = for every z e K,. Let a map &
EN{g} ~EnE, be such that

for  zeK\{g},
for zeKN\K,.

E) = {i(w)

Some properties of convex metric spaces

Then a map f: (EN{g}) X I—KN\K, given by the formula
flz, 1) = )*(xa E(w)yt)

is o deformation retraction of EN{g} onto EnE,. We define a map
g: EnEe»x I —+K, pubting

gz, t) = EA{w, polx), 7)
where ¢, is the map defined in the proof of lemma 1. Since |p,q| ~

~ B, = 0, we have g ¢ AENK, X KN\K,xI) and g is well-defined.
We easily see that g is a deformation retraction of E\K, onto K,. Putting

f(@, 21) weE\g) 0<i<},
g(@, 2t—-1) weRpnKs, 3<i<1

for

hol, 1) = {

for

we obtain a deformation retraction ke of Ko\{g} onto K,. This completes
the proof of the lemma and now we are ready for the

Proof of theorem 1. Let aeﬁl. It follows from lemma 1 that
there exists a homeomorphism h: K,—K, such that h(a) = a and h{Ky)
= K,. It follows from lemma 2 that K, is a deformation retract of Ena)-
Hence K, = h{K,) is deformation retract of K;\{a}= h(EN{a}). This
means that fl is a canonical neighbourhood.

4, Locally homogeneous spaces. A metric space (X, o) is called Tocally
homogeneous (see [7]) if it is connected and Jocally compact and if for
every point ¢ e X there exists a neighbourhood U of ¢ such that for every
&> 0 there exists a 6 > 0 such that if @ e U, be X and ¢(a,b) < $ then
there exists & map h: U xI—X which satisties the following conditions:

(a) h{z, 0) = for every veU,

(b) for ¢ fixed, %(z,?) is a homeomorphism,

(e) A({a,1)=10, 5

(@) ofw, bz, 1) < & for every (z,1) e UX I

Now let us prove the following

THEOREM 2. Kl is locally homogeneous.

Proof. It is plain that K isa connected and locally compach space.

- Let qu{’I and let U= K be a closed ball with centre ¢ and radius

= 1 —eo(p, ). Let &> 0 and let 6 = min(e, ), @ ¢ K, bek, such that
fihi—elp, q

ola, b) < 6. Since F(X) ~n K, =0 and K, is a compact subset of X there
exists a point ¢ « K, such that b e |a, ¢| and e(g, ¢) = 3r. It is plain that
la, ¢| C K,. We define a map f: K—I putting f(z) = e(a, b)e(z, ). Then
for every # ¢ K we have :

9(“7: Z-(m’ G:f(w))) = o(a,b).
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It is not difficult to see that f is continuous and f(z) 1 for all z¢ K.

Now let a map h: K X I-—K, be defined by the formula
B, t) = Az, o, tf(2)) .

It is clear that conditions (a)-(c) hold. Moreover, we have

9($7 h(z, t)) < @(wi h(z, 1)) =po{a,b)<é<e.
Thus it is shown that the condition (d) holds and the proof is finished.

5. Invariability of area. Kosiniski has shown (see [5]) that

(5.1) If U is an n-dimensional canonical neighbourhood of p in
a space X and V is a canonical neighbourhood of p such that the closure
of V' is contained in U, then the set Fr¥ = 7 ~ X\V is the carrier of an
(n—1)-dimensional essential cycle z which is homologous to zero in ¥
and not homologous to zero in any proper subset of V.

On the other hand, Montgomery has shown (see [7]) that

(5.2) If X is a locally homogeneous - dimensional space and p a point
of X, then there exists a neighbourhood U of »p such that if 4, B are
compact subsets.of U and B carries an essential (n—1)-eycle z and 4 is
minimal with respect to the properties {a) BC 4, (b) # is homologous
to zero in A, then A\B is open in X.

We now prove the following

Lemma 3. If F and G are homeomorphic subsets of ﬁl and G is open,
then F is open.

Proof. Let dimK; = » and let i: G—>F be a homeomorphism onto F.
Let a < ¥ and let K be a closed ball with centre h™(a), K C & and h(E)
CUCKE, where U is from (5.2). Let K=K ~X\K. Since GCE,, we
infer by theorem 1 and (5.1) that h(K) carries an (n—1)-dimensional
essential cyele z which is homologous to zéero in h(K) and is not home-
logous to zero in any proper subset of h(K). It follows from (5.2) that
R(E)\R(K) is open in X; hence F' is open in X, i :

6. Frontier points of X. Let F,(X) denote the set of all points # e X
such that for every point y e X\{z} we have
e, 2)+ ez, y) > o(p, ) .

COROLLARY 1. For every point q € Fp(X), the set X\{g} is contraciible
in dlself.

“Proof. The mapping h: (I\{gh xI —X\{g} given by the formula

]L(CL‘, )= Z(m’P: ?)
is the desired homotopy.

icm
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Lemuma 4. If AC K, andae Int A, then the set A\{a} is not contractible
in gtself.

Proof. Let K be an open ball with centre a such that K C IntA.
Sinee K C 8(X), we infer by theorem 1 that K is a canonical neighbour-
hood. For every point @ e A\{a} there exists exactly one point f(z)e K
= K ~ X\K such that

{a) @ < |f(), al
(b) f@) e |z, a]
The mapping f: A\{a}—>K is a retraction of A\{a} onto K. It follows
from theorem 1 and (5.1) that K is not contractible in itself; hence A\{a}
is not contractible in itself.

Let us prove the following -

THEOREM 3. Fp(X) is homeomorphic with K,. )

Proof (4). Since X is without ramifications, for every point # K,
there exists exactly one point y ¢ Fy(X) such that z |p, y|. Then K, is

for

we K\{a},

for 2e¢A\K.

‘2 1-1 image of F,(X). It remains to show that F,{X) is compact. Let

X —K, be a homeomorphism of X into K, given by the formula
Jla) = Az, p, 1)

where 0 < f, < 1 is such that f(X)C K;. Let us write B = J{F5(X)) and
let @, € B. Tt follows from corollary 1 that the set f(X)\{x} is contractible
in itself, and by lemma 4 we infer that z, e Frf(X) = f(X) ~ I\f(X).
Hence B C Frf(X). . B

Now let @, ¢ B and let g # @, be such that ¢ « B and f_i(ﬂco) elp,f 1(_q)].
Then there exists a 0 < ¢ < 1 such that f () = A(p,(g), t,). Putting

@) =f(Alz, (@, k) for  zefX),
we obtain a homeomorphism of f(X) into f(X) such that
g(p) = f(AMp, £, ) = F(f (@) = 2o -

Since p e Intf(X), we infer by lemma 3 that eIntg(f(X))‘ C Intf(X).
This means that B D Frf(X), we conclude that B = Frf(X). Since Frf(X)
is compact, Fp(X) is compact. This complet‘es the proof.

Let us observe that K, is a cone over K, with a vertex p (%); hence
theorem 3 implies that

COROLLARY 2. X is a cone over Fy(X) with a verter p.

8.
() By the same method as D. Rolfsen [ ) )

(5)) LZt I=1[0,1]. The space obtained from the Cartesian pl:od.uct X Zial‘?;
identifying the set X x {0} with one pointis called a cone over X. The point corresp g
to the set X x {0} in the identification space is called a cone vertex.
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CoROLLARY 8. X is homeomorphic with K.

Kositiski (see [5]) has shown that if U is a canonical neighbourhoog
in a finite-dimensional space X, then every point x ¢ U is stable in [,

Since L(X) D F(X) D Fy(X), from theorem 3, corollary 2 and corollary 3
we obtain the following

THEOREM 4. If X « SCWR and dim X = n, then the set T (X) of frontier
points of X is compact, (n—1)-dimensional and identical with the set L(X)
of labile points of X.

From theorem -2 and lemma 3 we infer

THEOREM 5. If X ¢ SCWR then the set S (X) is identical with the set
of stable points of X and is locally homogeneous. If F and @& are homeo-
morphic subsets of 8(X) and F is open, then @ is open.

Since for every point p ¢ §(X) we have Fp(X)=F(X), we obtain

TerorEM 6. If X € SCWR, then the set S (X) of stable points of X is
CONveEr.
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Coreflective subcategories in general topology

by
H. Herrlich (Bremen) and G. E. Strecker (Pittsburgh)

§ 1. Introduction. There are several standard methods of representing
a given topological space by something with more convenient prop-
erties, e.g.:

MrTHOD I. Determine its image under a functor into a more ame-
nable category (e.g. mth homotopy, homology and cohomology funectors).

MeTHOD IT. Embed the space in another which possesses the desired
characteristics (e.g. compactifications, realcompactifications, completions,
and H-closed extensions).

MrrHOD ITI. Modify the topology of the space to obtain a new space
with the desired properties (e.g. Arhangel’skil’s %- modification, Franklin’s
sequential modification, Gleason’s locally connected reﬁ;uement,_ ‘You'ng’s
a-, ¢, lc-, and r-modifications, and Katétov’s semi-regular mOdlﬁca_tlon).

In order that the changes imposed be not too drastie, it is desirable
that a method of type IT or ITT actually determines a functor from the
category of topological spaces into itself. “Nice” embeddings‘ are of.ten
characterized by universal mapping properties which automatically yield
reflective functors, whereas “nice” modifications of the topolqu usnally
yield coreflective functors. Interestingly enough, every coreflective 'hmct(‘)r
from the category of fopological spaces into itself can be obtained in
this way.

In this paper, which is the second in a series, we concern oul'sehtes
with “nice” modifications of topologies, i.e. with coreflective subcategories
of the category T of topological spaces and continuous functions apd Fhe
category $ of Hausdorff spaces and continuous functions. In the ‘ﬁr‘st
paper, “Coreflective subcategories” [11], results were presented within
the framework of general category theory. It will be shown here that
many topological results are simple consequences of some of the gengral
theorems of that paper. Most of the topological results are of a fairly
recent ndture: )

(a) In 1946 Young [15] discovered that the topology of a given space
can be modified “in a natural way” to obtain a locally connected space.
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