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CoROLLARY 8. X is homeomorphic with K.

Kositiski (see [5]) has shown that if U is a canonical neighbourhoog
in a finite-dimensional space X, then every point x ¢ U is stable in [,

Since L(X) D F(X) D Fy(X), from theorem 3, corollary 2 and corollary 3
we obtain the following

THEOREM 4. If X « SCWR and dim X = n, then the set T (X) of frontier
points of X is compact, (n—1)-dimensional and identical with the set L(X)
of labile points of X.

From theorem -2 and lemma 3 we infer

THEOREM 5. If X ¢ SCWR then the set S (X) is identical with the set
of stable points of X and is locally homogeneous. If F and @& are homeo-
morphic subsets of 8(X) and F is open, then @ is open.

Since for every point p ¢ §(X) we have Fp(X)=F(X), we obtain

TerorEM 6. If X € SCWR, then the set S (X) of stable points of X is
CONveEr.
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Coreflective subcategories in general topology

by
H. Herrlich (Bremen) and G. E. Strecker (Pittsburgh)

§ 1. Introduction. There are several standard methods of representing
a given topological space by something with more convenient prop-
erties, e.g.:

MrTHOD I. Determine its image under a functor into a more ame-
nable category (e.g. mth homotopy, homology and cohomology funectors).

MeTHOD IT. Embed the space in another which possesses the desired
characteristics (e.g. compactifications, realcompactifications, completions,
and H-closed extensions).

MrrHOD ITI. Modify the topology of the space to obtain a new space
with the desired properties (e.g. Arhangel’skil’s %- modification, Franklin’s
sequential modification, Gleason’s locally connected reﬁ;uement,_ ‘You'ng’s
a-, ¢, lc-, and r-modifications, and Katétov’s semi-regular mOdlﬁca_tlon).

In order that the changes imposed be not too drastie, it is desirable
that a method of type IT or ITT actually determines a functor from the
category of topological spaces into itself. “Nice” embeddings‘ are of.ten
characterized by universal mapping properties which automatically yield
reflective functors, whereas “nice” modifications of the topolqu usnally
yield coreflective functors. Interestingly enough, every coreflective 'hmct(‘)r
from the category of fopological spaces into itself can be obtained in
this way.

In this paper, which is the second in a series, we concern oul'sehtes
with “nice” modifications of topologies, i.e. with coreflective subcategories
of the category T of topological spaces and continuous functions apd Fhe
category $ of Hausdorff spaces and continuous functions. In the ‘ﬁr‘st
paper, “Coreflective subcategories” [11], results were presented within
the framework of general category theory. It will be shown here that
many topological results are simple consequences of some of the gengral
theorems of that paper. Most of the topological results are of a fairly
recent ndture: )

(a) In 1946 Young [15] discovered that the topology of a given space
can be modified “in a natural way” to obtain a locally connected space.
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(b) In 1963 Gleason [10] rediscovered this fact, proved essentially
that the full subeategory of locally connected spaces is coreflective ing,
and pointed out the general naturve of his constructions.

(¢) In the same year, Arhangel’skil [1] proved essentially that the
full subcategory of compactly generated spaces -(i.e. k-spaces) is co-
reflective in §. : .

(d) In 1964 Freyd’s Abelian Categories [8] appeared with the general
definition of coreflective subcategories and the first general results
concerning them (e.g. the adjoint functor theorem, preservation of colimits,
and the relation to lLimits).

(¢) In 1965 Kennison [12] characterized coreflective subcategories
of T as those which are closed under formation of disjoint topological
unions and topological quotients. He also established that all (1) co-
reflection maps in T are one-to-one and onto.

{f) More recently Franklin [6], [7] began an investigation of co-
reflective subcategories of T via a “natural covering” technique, gener-
alizing results for sequential spaces and compactly generated spaces.

(g) Several authors recently discovered independently that the
category of compactly generated Hausdorff spaces is complete, co-
complete, and most suitable for the purposes of algebraic topology (cf., e.g.
Steenrod [14]).

In § 3 below some general categorical concepts are interpreted for T
and $. § 4 provides several characterization theorems for coreflective
subcategories of T and $. § 5 contains additional properties of coreflective
subcategories of I and $, especially those pertaining to coverings, sub-
objects, limits and colimits. These results about coverings and the results
of § 7 show that coreflections are usually of a more “local” character
whereas reflections are usually of a “global” nature. Tn § 6 it is shown
that for every subeategory % of T (resp. ) there exists a smallest co-
reflective subeategory of T (resp. $) containing 9. Various consequences
of this “global” generation are obtained. § 7 deals with internal generation
of coreflective subcategories. A space X is called 9-generated provided
that its topology is completely determined by its A-subspaces in the
following sense: A subset of X is closed in X iff its intersection with each
A-subspace B of X is closed in B. Tf 9 is preserved by eontinuous functions,
then the %-generated spaces constitute precisely the smallest coreflective
subcategory containing 9. This method of obtaining coreflective sub-
categories of T or § is simpler but essentially the same as Franklin’s
technique by means of “natural covers”. However, whereas all coreflective
subcategories of T or § can be obtained as the U-generated spaces for

{1} Except for the degenerate coreflective subeategory consisting of the empty space.
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some %, not all can be obtained as the 9-generated spaces for some U
which is preserved by continuous functions; e.g. the subecategory of locally
connected spaces.

§ 2. Preliminaries. All undefined categorical terminology will be that
of [13]. All subcategories will be assumed to be both full and replete (2).
Furthermore, every subcategory of topological spaces will he assumed
to be non-degenerate (i.e. containing at least one non-empty space).

Recall that a subcategory U of a category € is said to be coreflective
in © provided that the inclusion functor has a coadjoint; i.e. for each
object X in € there exists an object Xy in A and a morphism ey: Xy —»X
such that for each object 4 in % and each morphism f: A +X, there exists
a unique morphism f': 4 +Xgy such that f= cyf’. ez Xg—X is called
the coreflection morphism from Xy to X, and the functor associated with
the coreflection is called» a coreflector. If each coreflection morphism is
a monomorphism (resp. epimorphism), then U is said to be mono-co-
reflective (vesp. epi-coreflective) in G. )

In that which follows we will be concerned with subcategories of the
category T of all topological spaces and continuous functions (i.e. maps).
The special symbols §, €, PC, &, and D will be used to denote the su_b»
categories consisting of, respectively, the Hansdorff, connected, pathwise
connected, compact, and discrete spaces. P will denote the category ?f
all “paths”, i.e. continuous images of the closed unit interval, & will
denote all convergent sequences (including the finite ones), and T,
(resp. $,) will denote all non-empty (Hausdorff) spaces. (Note that.we
thus let a symbol A denote a topological property and at the same time
the category of all spaces possessing that property.) y

We will need to consider two types of “local properties”. If A is
a topological property, then a space X will be said to be locally A (d‘enoted
by: X is in Ay) provided that for each point z ¢« X and every'neIghbm.--
hood U of #, there is a neighborhood V of # such that VC U and V is
an A-subspace of X. B.g. € is the category of locally e_onnected spaces.

A space X is called weak locally U (denoted by: X iSf in Uwr) provided
that each point of X has some neighborhood which is in %. Thus, for
example, &y, » H= K ~ H. ]

: E éatevgvﬁry 5QlfC T Wﬂ? be called closed- (resp. open-) izver.ell;ztary
provided that for each X in 9, each closed (resp. open) subset of X is in H.
ACT will be called map-invariant provided that for eacl} A in¥Y an}i
each continuous onto function f: 4 —+B, f(4) = B must be in A. B.g. K is
both closed-hereditary and map-invariant.

(*) A subeategory U of € is said to be replete, provided that each object in € which
is isomorphic to an object in A -must be in L.
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For the reader’s convenience we now state the following resulis
from [11] which will be used in the sequel.

TeeorEM (I) 1 (Freyd). Let I be a small category and U be a coreflectine

subcategory of €. If a diagram D in W over I has a colimit () {D (i)-qL)L} inG,
then L is in A.

TeeorREM (1)2 (Freyd). Let I be a small category and let U be a co-
reflective subcategory of a-category §, with coreflection morphisms cy: Xo X,
If a diagram D in W over I has a limit {LLD(@')} in €, then it has the limit
(T Z>T-2D ()} in U

ProposIION (I)2. In any category, if e: X Y is an equalizer for
morphisms f, g2 ¥ W, then e is an extremal monomorphism (%),

TueorEM (I)3. Let € be a category which:
(i) has products,
(ii) has the epi-mono factorization property,

(iii) is either locally small or colocally small; Then G has the unigue
extremal epi-mono factorization property ().

TeeoREM (I)5. If A is a coreflective subcategory of a constant-gener-
ated (%) category G, then U is both mono-coreflective and epi-coreflective in §.
TeEEOREM (1)6. If € is a category which
(1) s locally small,
(ii) has coproducts,

(iii) has the extremal epi-mono factorization property;

() For the definitions of diagram, limit and colimit, ef. [11].

() An exiremal monomorphism is a monomorphism with the property that each
of its factorizations for whick the right factor is an epimorphism is such that the right
factor must be an isomorphism. Eatremal epimorphism is defined dually. Eutremal
sub (resp. quotient) objects are sub (resp. quotient) objects where the morphisms involved
are extremal.

(%) A category is said to have the exiremal epi-mono factorization property provided
that each of its morphisms, f, has a factorization f= gh, where b is an extremal epi-
morphism and g is a monomorphism, The factorization is called unique provided that
whenever f= g%’ is also an extremal epi-mono factorization, then there exists an iso-
morphism « such that uh’ = b and gu = ¢’. The property is called strong provided that
the composition of extremal epimorphisms is an extremal epimorphism. The dual notion
is (strong) (unique) epi-extremal mono-factorization property.

(*) A morphism f: X ¥ is called constant provided that for each object Z and
each pair of morphisms g, h: Z-X, it follows that fg=fh. A category € is said to he
constm%t-gmemted provided that for each pair of objects (X, ¥) in Q: (i) the set of
morphisms from X to ¥ is non-empty; (ii) if f, g: X ¥ are distinct morphisms, then

Z];ere exists an object Z and a constant morphism %: Z-+X such ‘that gk and, fk are
istinet.

icm°
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and if W is a subcategory of @, then the following siatements are
equivalent:
(1) A is mono-coreflective in .
(2) U is closed under the formation of coproducis and estremal quotient
objects. ’
ProposITION (I)7. If € s a category which
(i) is locally small,
(i) has coproducts,
(iti) has the emtremal epi-mono factorization property, and if U is
a subcategory of G, then there exists a smallest mono-coreflective subeategory,
C () of € containing A. Furthermore, if € has the sirong unique ewtremal
epi-mono factorization property, then the objects of C(A) are exactly all
extremal quotient objects of coproducts of objects in U.
TeroREM (1)9. If € is a category which
(i) 28 locally small,
(i) has coproducts,
(iil) has the strong unique ewiremal epi-mono factorization property,
and if W s any subcategory of €, then each monomorphism in © which is
A-Tiftable () is also C(A)-liftable.

§ 3. Categories of topological spaces. In this section we consider the
particular categories T and $ and establish them as cabegories which
satisfy the hypotheses of general theorems in [11].

The following proposition is well known and easily verified:

PrOPOSITION 1. In the category T (resp. H):

(i) isomorphism means homeomorphism;
(il) monomorphism means one-to-one map;
(iii) epimorphism means onto map (resp. dense map (%));

(iv) retraction means topological retraction map;

(vi) product means topological product;

)
)
)
(v) constant morphism means constant function;
)
(vil) coproduct means disjoint topological union (%).

(") If % is a subcategory of €, then a morphism f: X +¥ in € is said to be QI-Z.‘Lﬂ-
able provided that for each object A in 9 and each morphism g: 4 ~¥, there exists
a unique morphism g’: 4 +~X such that g = fg’. ~

(® A map f: X7 is said to be dense provided that f(X) = Y. ) .

() We will denote the disjoint topological union of spaces {Xi, 7¢I} by:

+ + )
U{X:, i eI}, and the injection maps by: u: XX, deI)
Fundamenta Mathematicae, T. LXXIIL 14
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In [11] the importance of the notions “extremal monomorphism®
and “extremal epimorphism” in-the general theories of reflections ang
coreflections was established. We now interpret them fopologically.

THEEOREM 1. In the category T (resp. ) the following notions are
equivalent:

(i) equalizer,

(ii) ewtremal monomorphism,

(iii) fopological embedding (resp. closed embedding (*°)).

Proof. [(i)=(ii)]. Proposition (I)2.

. [()=(ii})]. Let f: XY bean extremal monomorphism. Let Z = f(X)
(vesp. Z = f(X)™) with the subspace topology, let f': X —+Z be defined
by f(x) = f(2), and let i: Z Y be the inclusion map. f’ is onto (resp.
dense) so that it is an epimorphism. Thus by the definition of extremal
monomorphism, f is a homeomorphism; hence f is an embedding (resp.
closed embedding).

[(iii) = (i)]. Let f: X -Y De an embedding (resp. closed embedding),

let ¥,=Y,=Y, and let Z= Y, Y, with injections uy, uy ¥-Z.
Define an equivalence relation B on Z as follows: )

for each y e f(X), u(y)Ru(y) and uy(y) Ru,(y);
for each 2¢Z, z2Rz.

Let W = Z/R with the guotient topology and let g: Z—>W be the
canonical map. Clearly (gu,)f = (gu,)f. Now suppose that h: §—Y is
a map such that (gu;)h = (gu,)h. Thus h(8) C f(X) so that since fis an
embedding f'h: 8—X is continnous and is the unique map whose
composition with f is k. Consequently f equalizes gu, and GUs.

THEOREM 2. In either category T or $, the Sollowing notions are equimleni:

(i) coequalizer,

(ii) extremal epimorphism,

(iii) topological quotient map (V).

Proof. [(i)=(ii)]. The dual of proposition (I)2.

[(i) =(iii)]. Let f+ X —¥ be an extremal epimorphism, let Z = f(X)
with the finest topology such that f is continuous, let f': X —Z be defined
by f'(#) = f(x) for each z and let i: Z Y be the inclusion. Clearly f is
a topologieal quotient map, 7 is a monomorphism, and f= if’. Thus by

the definition of extremal epimorphism, i is an isomorphism. Thus f = f”
is a topological quotient map.
() Le. an embedding f: X T such that [ X)y=f(X)".
(*) Le. a map which is onto, and which is such that the to;

. R pology on its range is
the finest (ie. strongest) one which makes it continuous, :

©
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[(iil) = (@)1 Suppose that f: X »Y is a topological quotient map.
For each y e ¥, let Ay=f'(y) X (y) with projection functions py,
and pys. Let W= J{4y| y ¢« ¥} equipped with the diserete topology.
Define a, f: WX as follows: aldy=p,: and Bldy = p,.. Now for
each y ¢ ¥ and each (¢, d) e 4y,

Ja(e, @) = fle) = y = f(d) = fB e, d) .

Therefore fa = ff. Suppose that g: ¥ —+Z is a map such that ga= gp.
Then for ¢,d ef(4), g(6) = gale, d) = gB(¢,d) = g(d). Thus for each
ye¥,glf ') is a constant function. Now define h: Y->Z by h(y)
=g[f ‘)] b is well defined and hf = g. Bince g is continuous and f is
a topological quotient, % is conmtinuous. Since f is an epimorphism, h is
unique. Thus f coequalizes a and §.

THEOREM 3. Let © represent either T or § and let G, represent either T,
or $y. Then:

(i) € has products;
(i)* € has coproducts;
(i) @ has equalizers;
(ii)* € has coequalizers;
(iii) © is complete;

(iii)* ©dis cocomplete;
(iv) € s locally small;

© has the strong unique epi-ewtremal mono factorization property;
G has the strong unique extremal epi-mono factorization property;
G, is consiant generated;

(v
(v

(vi

(vii) $ is epi-reflective in T.

Proof. [(i) and (i)*]. These clearly hold since the topological produfzt
and disjoint topological union of any set of (Hausdorff) spaces are again
(Hausdorff) spaces. “

[(ii) and (ii)*]. If f, g: X —¥ aremaps, then the inclusion of {z € X f(z)
= g(z)} into X is cleaxrly their equalizer and the natural map h: ¥+YITR
(where ¢Rb iff ¥ morphism % such that kf = kg, k{a)= k(b)) is their
coequalizer.

[(iii) and (iii)*]. These follow from (i), (i)*, (ii), (i))* and the theorem
on p. 77 of [8] and its dual.

[(iv)]. Given any space, it is clear that there exists at most & set
of spaces on each subset of its underlying set and henee at mos§ a seb
of one-to-one maps from these spaces into ifi

)*
)
(iv)* € is colocally small;
)
)*
)

14%
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[(iv)*]. Let X be in €, let § be the underlying sef for X, let M pe
some set with cardinality 22, and let P be all pairs (f,¥) where T is
& space on M and f is & map from X to Y. Clearly P is a set and containg
a system of representatives for the class of all cattegorical quotients of Y
(since if D is a dense subset of a Hausdorff space on a set T, then |T| < 22,

[(v) and (v)*]. Clearly € has the epi-mono factorization property
(every map can be factored into the same map restricted to its image
together with the inclusion map). Thus by (i), (i)*, (iv) and theorem (N3
and its dwal, € has both the unique epi-extremal mono factorization
property and the unique extremal epi-mono faetorization property. Since
the composition of (closed) embeddings is a (closed) embedding and since
the composition of topological quotient maps is a topological quotient
map, we have by theorems 1 and 2 that both factorization properties
are strong. ‘

[(vi)]- Obviously true since if f, g: XY and f+ g then f (%) # g(z)
for some @'« X. The discrete space on {#} is in € and the inclusion i is
& constant map such that fi s gi.

[(vii)]. This follows from the dual of theorem (I)6 sincé $ is hereditary
and closed under products. Cf. also [12].

§ 4. Characterizations of coreflective subcategories of T and $.

Remark. Recall that throughout the paper, each subcategory of I
(resp. $) will be assumed to contain at least one non-empty space.

THEOREM 4 (Kennison). If 9 is coreflective in I (resp. $), then each
coreflection map ey is both one-fo-one and onto.

Proof. By theorem 3 (vi) and theorem (I)5 every coreflective sub-
category of I, (resp. $,) is both mono-coreflective and epi-coreflective
in T, (resp. $,). Since we only deal with non-trivial subcategories and.
since A is coreflective in T if and only it % ~ Fyis coreflective in Ty, We
have that each coreflection morphism is both one-to-one and onto (resp.
one-to-one and dense). If some coreflection map ey Xo—+X is not onto,
then for any 4 in % and any @ € X\cy(Xy), the constant map from 4 to #
cannot be factored through Xy.

Remark. For the next two theorems (
we denote a topological space by & pair (
set and T is the topology on X.

THEOREM 5. 4 subcategory A of T
if and only if for each space (X, T)
with the following properties:

(i) T% is finer than T (i, TS T);

(i) (X, 1% is in ;

(i) T is the coarsest (

and occasionally elsewhere)
X, T), where X is the underlying

(resp. H) s coreflective in T (resp. H)
in T, there exists q topology T% on X

i.e. weakest) topology on X satisfying (i) and (ii);

©
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(iv) for each space (¥, 8) and eagh continﬁz[{,oqs fun?tion S (X, T
(¥, 8), the same set function f: (X, T7) (X, 8%) is co‘nyimuo'us. o

Proof. Necessity. By theorem 4 each cgreﬂec’mon morphism is

to0-one and onto. Thus (up to isomorphism in the eat»egory of se1.;s)
the ain of each correflection map has the same underlying set as its
o don?n Since U is replete, we may therefore consider each coreflection
GOdOTa;)e' the identity function on the underlying sets cu: (X, T"’) (X, T),
m&pm ° X _T“) e . Since cy is continuous, 7% T. Thus (i) and (ii) are
Wheli‘ (he(_’i I (X, T)eW and T'D T, then the identity funetion
e.s ta}% lsT’) ;>(X ) ;s continuous, so that by the definition of coreflection
{i]él‘e exists & H’lin (X, T) (X, T?‘). such that exf’ = f. Since ];j ?ng?
are identity functions, f’ must be the identity ftmctlon_, 80 thgt ? A
Thus (i) holds. Now suppose that f: (X, T) (¥, §) is contgmou;} Ty
the above, the coreflections ean be represe_ntgd as cu: (X, Tt et i, ug
and e (¥, SQI) (Y, §). Since foy has dODlalxl]} in ¥, the?re exists 2:1 un (i,re
morphism f: (X, TQ‘) (Y, S%) such tha:t cuf = fegq. Smog 09111 e;ﬁ car
identities, f must be the same set function as f, so that (w)‘ o s

Sufficieney. For each space (X,“T), let c?lnbe' the uil;ntlg 1153}31:}];
e (X, Tm) (X, T). Clearly by (i), (ii), and (iii) if (TX{ )enﬁ;mm1s
7% = T. Now suppose that (4, 8) e andg]:: (4, 8) _;(Xj’ ) xzza])mus Bm;
By (iv), the same set function f: (4,8) (X, TI") is conti .
§*= §. Thus
r, U

(X, T"—> (X, T)
7

N A

(4,8

commutes. And since ey is one-to-one, f is unique. Thus U is coreﬂiacmve ind.
Remark. A characterization similar to that of theorem D't];a);::ﬁ?
essentially obtained by Gleason [10]. He actually deali; inzhznfonowmg:
connected spaces, but his methods can be used to obtain t oo
THEOREM 6 (Gleason). U is a coreflective subcateg{ory of li";,;fazgs Z 1?
if for each set X there ewists a function yx from the lattice of all sp
into dtself such that:
(i) yx is increasing; .
(i) the fimed points of yx are precisely the U-spaces on Xs,et Aanion
(ift) if f: (¥,U)—~(Z,V) is continuous, then the same
2y Y, U)—>yz(Z,V) is continuous. : ’
! yy;;E];ﬂil 1y(z(;1672us0n). Let L be a complete lattice, M'm—):n ;elet: gwlr;zmt«;bﬂe
Jrom L into itself which is increasing and order-preserving,
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set of fized points of this function. Then there ewists a unique increasing,
order-preserving function x->a* which retracts I onto F.

Proof of theorem 6. Necessity. Let yx be the function which
assigns to each space (X, T), the coreflection space (X, Tm) of theorem 3,
Parts (i), (i), (iii) and (iv) of theorem 5 show that (i), (ii) and (iii)
above hold.

Sufficiency. Suppose that for each set X there is a yx satistying (i),
(ii), and (iii). Tf § and T are topologies on X such that 8§D T, then the
identity function 4: (X,8)—(X,T) is continuous, so that by (i)
it yx(X, 8) »yx(X, T) is continuous. Hence the topology of yx(X, 8) is
finer than that of yz(X, T) so that yx is order-preserving.

Since the lattice £x of all topologies on X is complete, by lemma 1
we have the existence of a unique increasing order-preserving function
T —T* which retracts £x onto the set of all A-topologies on X.

We claim that this is a coreflection functor. For each space (X, 8)
leb en: (X, 8%) >(X, 8) be the identity function on X. Because of order-
preservation ey is continuous. Now suppose that (4,7) is in U and
f(4,0)~(X,8) is continuous. Let 7' be the quotient topology on X
induced by f, and let f: (4,U)~(X,T) be the function f. By (i) F
YAA, U)>yx(X,T) is continuous, but by (i) ya(4,T)= (4,U) and so
by the choice of T, yx(X, T)= (X, T). Hence by. (i), (X, T) is in %,
so that T = I™. By order-preservation and the fact that 7O 8, we have
T = I™*D §* Thus the identity function i: (X, IY~(X, 8% is continuons
and the diagram

3

(X, 1) (X, 8 % (x, 9)

. s
N\ 7
N /

AN
4,0

m@utes. Uniqueness of if follows since ¢y is -one-to-one. Consequently,
Cx 13 a coreflection morphism and 9 is coreflective in I.

Remark. The following theorem, whose validity for T is due originally

to Kennison [12], gives our third and most useful characterization of
coreflective subcategories of T and 9.

) THEOREM 7 (Kennison). A subcategory of T (resp. H) is coreflective
inT (rfzsp. 5)‘ if and only if it is invariant under the Sformation of disjoint
topological unions and topological quotient spaces in T (resp. H).

Proof. By theorem 3, T (vesp. $) satisfies the hypotheses of theo-
rem (I)6. By theorem 4, the coreflective subeategories of T (resp. §) are
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precisely the mono-coreflective subeategories of . Thus applying theo-
rem (I)6, we have that the coreflective subcategories of T (resp. §) are
precisely those that are closed under the formation of coproducts and
extremal quotient objects in T (resp. $). But by proposition 1 and
theorem 2, these are the disjoint topological unions and topological quotient
spaces in T (resp. $).

CoROLLARY. Hvery coreflective subcategory of X is closed under the
formation of adjunction spaces. ‘

§ 5. Further properties of coreflective subcategories of T and $.

Remark. Throughout this section, we will have the standing as-
sumption that U is & non-trivial coreflective subeategory of T (resp. $).

A. Relationship to coverings. The results below partially
answer the question as to when a cover of a space X by members of the
coreflective subcategory U tells us that X itself is in . A similar problem,
namely: What types of covers of topological spaces determine coreflective
subcategories of T? has been investigated by Franklin [6] and [7].

Levwa 2. Let {Us| © eI} be a cover of a space X in T (resp. H} such
that (as a subspace) each Uy is in . If the map f: UB{U{} ieI)->X induced
by the embeddings U; X is a topological quotient map, then X is in U.

Proof. Immediate from theorem 7.

THEOREM 8. Let U be a cover of a space X in T (resp. ) such that (as
a subspace) each member of U is in W. If X has the property thai each of
its points is in the interior of-some member of U, then X is in M.

Proof. Let ¥ = CJ U. For each V e U let up: VY be the injection
and ip: V=X be the inclusion. By lemma 2, it suffices to show that the
map f: ¥ —+X induced by the inclusions is a fopological quotient map.

Suppose that ¢ C X and (@) is open. Let ge G- By hypothesis
there is some We< -such that ge W' Clearly uwin (W) ~nf (&)
= {W® A G) is open in ¥, so that since flump{W) is & homeomorphism
onto its image, W° ~ & = f(f 7 (W® ~, &) is open in W; hence open in W¢,
so open in X. Thus since ¢ € W° ~ @ C &, @ must be open. Consequently
f is a topological quotient map. ‘

COROLLARY 1. If B is coreflective in T, then B = Bwr.

Remark. The above corollary does not give a characterization of '
the coreflective subcategories of T since if B is the category of all T
spaces, B = Bywr, but B is not coreflective in T.

COROLLARY 2. If X is a member of T (resp. $) which has an open cover
by members of A, then X is in W,

TeEoREM 9. If X is in T (resp. H) and if § is a locally fa.ini‘te cover
of X by means of closed subspaces each of which is in U, then X is in %
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Proof. Let ¥ = lji‘y and for each ¥ e§ let up: F—Y be the in-
jection and ip: F—+X be the inclusion map. By proposition 2, we neegd
only show that the map f: ¥ -~X induced by the inclusions is a topological
quotient map.

Let @ be closed in ¥. Then for each Fe§, ¢ n up(F) is closed in
up(F) so that since ir is the inclusion onto a closed set, f(G A uF(F)) ig
closed in X. Suppose that p e X\ f(&). Then since § is locally finite, there

- exists an open neighborhood U of p such that U meets only finitely many
(say Fy, Fyy .y Fy) of the members of § Let H=1{J {fle ~ g Fy)|
J=1,2,..,n}. Then H is closed and H ~ U = f(&) ~ U. Thus f(@) ~ U
is closed in U, so that p ¢ f(@)”. Consequently f is a closed map, so that
it is a topological quotient map.

CorOLLARY. If X is in T (resp. §) and if § is a findte closed cover of X
by spaces in N, then X is in A

B. Hereditary properties.

ProrostTioN 3. If X is a retraci of any space in W, then X is in A,

Proof. Clearly, every retraction in T (resp. $) is a topological
quotient map in T (resp. $). Apply theorem 7.

COROLLARY. Every clopen subspace of a member of A is also in A,

Proof. Clearly by the definition of coreflectivity the empty space
is in U, and every non-empty clopen subspace is a retract.

Remark. Coreflective subcategories of T and § are, in general,
peither closed-hereditary nor open-hereditary: e.g. €y, is coreflective in T
(since it is closed under formation of disjoint topological unions and
topological quotients) but is not closed hereditary whereas Rg is co-
reflective in I (ef. § 7) but is not open hereditary. (See also propositions 8,
9, and 10 and their eorollaries.)

C. Completeness properties.

THEOREM 10. Every coreflective subeategory of T (resp. $) is co-
complete and is a cocomplete subcategory of T (resp. 9)-

Proof. Immediate from the fhct that T
(theorem 3 (iii)*) and theorem (I)1.

COROLLARY 1. 45 a category:

(i) A Ras coproducts, and ihe cop
topological union.

(ii) U has coequalizers,
quotient maps in 9.

Proof. Theorem 2, theorem 3 (iif), and theorem 10.

Corollary 2. Every cor

) eflective subcategory of T or § is closed under
the formation of topological direct limit spaces. :

(resp. $) is cocomplete

roduct is precisely the disjoint

and the coequalizers are precisely the topological
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TrEoREM 11. Bvery coreflective subcategory U of T (resp. H) is complete
and if cu: Xy-»X are the coreflection morphisms and if D is a diagram

’-'Ql o .
in 9 with limit {L—>D(0)} in T (resp. H), then {Lu—sL-">D (i)} is the
limit of D in A )
Proof. Immediate from theorem 3(iii) and theorem (I)2.

CoroLLARY. If Wis coreflective in T or §, then W has categorical products,
inverse limils, and equalizers in ils own right.

Remark. Thus, for example, even though the topological product
of compactly generated Hausdorff spe_nces (i.e. k-spa.ces) need not be
compactly generated, this is not a semf)us defeet .Sm(:'e the category of
compactly generated Hausdorff spaces is coreﬂectwg in § (c?. §7.) a:nd
thus has products. By theorem 11 this prodget is obtained by_fufst fmdmfar
the topological product and then app%ymg the eoref}eetmn funct91.
Steenrod [14] has recently pointed out this and other desirable properties
of the category of compactly generated Hausdorif spaces. Also ¢f. Brown [3]
and Gabriel [9].

§ 6. Global generation of coreflective subcategori(-as of Tand $. In thui
section we use a general result from [11] to determine a me?hod of global
generation of coreflective subcategories‘ of T g,nd determine the exact
connection between the coreflective subcategories of T and those of §.

orEM 12. If U is a subcategory of T (resp. ) then. thm:e .em.sts
a smfll;fvt corefleati'uefsubcategory TA) of T (resp. H(A) ?f 9) con'tamm.g 9}5
Furthermore, T(A) (resp. H(A)) is precisely all topological quotients in
(resp. $) of disjoint topological umions of members of .

Proof. By theorem 3, T (resp. 9) is., locally sm@, hzf.s coprodr;gts
and has the strong unique extremal epl.—mono factorization proeit? e]y
By theorem 4, the coreflective subcategories of T (resp. ) a.re;r pr 1sm§f
the mono-coreflective subcategories. The result thus follows don;rﬂ spam
position (I)7 together with facts that in T (resp. $) the copx“o (:mhisms
precisely the disjoint topological unions and .the extremal ep;]l:; o?;m 2
are precisely the topological quotient maps in T (resp. H( .

CororrARY 1. If U is a subcategory of $, then H(W)=T(W~ 9.
CoROLLARY 2. U 35 coreflective in T (resp. H) if and only if A :72(91)

C (resp. A= $(A)).

SR, ih
LEvwa 3. If U is coreflective in T and if .(£ is a subca;go_ryi;f g ;;:;n

the property that (X, T) in € and T"D T implies that (X, 1) is 5

A~ C is coreflective in C. ‘ _
Proof. Since by theorem 4 each coreflection map ox: ig —xﬁi éss‘:;fe

to-one and onto, Xy is homeomorphic to a space which has



GUEST


212 H. Herrlich and G. E. Strecker

underlying set as X and a stronger topology. Thus if X is in €, Xy is
in Q. )

TrHEOREM 13. A subcategory U of T is coreflective-in & if and only if
there exists a coreflective subcategory B of T such that A= B ~ §.

Proof. The sufficiency follows from lemma 3; t.he necessity from
corollaries 1 and 2 of theorem 12.

Remark. We now translate the statements of theorem (1)9 and its
corollary for the particular category I.

THEEOREM 14. If A is subeategory of T (resp. $) and if fis a one-to-one
U-liftable map in T (resp. H), then f is T(W) - liftable (resp. S(A)-Tiftable).

Proof. By theorem 3, T (resp. ) satisfies the hypotheses of
theorem (I)9.

CorOLLARY. Let U be a subcategory of T (resp. ), let Y be an object
in T(W) and let f: ¥ ->X be an A-liftable one-to-one mep in T (resp. §).
Then f is the coreflection morphism for T(A) (resp. §(A)).

Remark. We now list some examples of subclasses of T and the
smallest coreflective subcategory of T generated by each. If 9 is a single
space, we say that T(U) is simply-generated. The first five examples in
the table are simply-generated. The sequential spaces of example 4 have
been extensively investigated recently, cf. (21, 4], [5], [7]. Additions
to the table will be made in § 7. (In the table W(a} is used to denote the
space of all ordinal numbers less than or equal to «, with the order topology.)

A . (W)

1. a single space consisting of all diserete spaces
a singleton
B

2. a single space consisting of

all spaces with the property that

fwo points only one of which the intersection of open sets is
ig isolated open :
3. @ single indiscrete space con-

all 10ca:]ly indiscrete spaces (= all
spaces with the property that every
open set is closed)

all sequential spaces

sisting of two points

4. the space W (o) where o is the
first limit ordinal

5. the space W(z) where « is
a limit ordinal

6. all the spaces W{a) where a is
a limit ordinal

7. € ~ & — all connected locally
connected spaces {127

8. P& ~ (PC)z —all pathwise
connected locally pathwise con- (PE)
nected spaces . . -

all a-sequential spaces

all order-sequential spaces -

©
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§7. Local generation of coreflective subcategories. Here,.in eontrast
to § 6, we examine and determine coreflective subeategories of T by
means of internal characteristics of the spaces. ‘

perniTION. Let U be a subeategory of EZ: A space X is ecalled
9[- generated provided that each ¢C .X is closed if and only if for each
9(-subspace 4 of X, 4 O is closed in A. {Thus the %A-spaces completely
determine the topology on X.)

Notabion. We denote the category of U-generated spaces by Ug.

Remark. Two particular examples of -generated spaces are
especially well known: If %= & (the compact spaces) then Rg 15. the
category of all compactly generated spaces (ef. [1], [3], [14D) somemme;s
referred to as k-spaces (1?). If A= (the eateg?ry of all com;erge:.
sequences) then S is the category of all sequential spaces (cf. [2], [4],
{53, 161, [7D)-

TEmmA 4. If AC B, then AC A C Be.

PROPOSITION 4. For every subcategory A of T,
A = Ye)wr = (Uwr)e

(i.e. the A- generated spaces are precisely the weak looa‘lly (A - generated)
spaces, and these are precisely the (weak locally U)-generated spaces).
Proof. Clearly by the definition A C Nz, for every ACT. CT;:\II;S
e C (We)we and by lemma 4, thc. (Ywz)e. To shox;: th:}tl é}i{:)w:{) X }1
sugpose hat X s n (ohw and 0 8 o osed in 4. Lok p 0
y -gubspace. 0 s . ¢
g?tof;:)cr sz;(;lzsigon thﬁre éxists a neig]%bor}iood N of » such t]?thlvois
in 9. Consequently N ~ O is closed in N 80 that ismeed pe s
p must be in ¢. Thus C is closed, so that X is Ql-fgex}erate . Lok
To show that (dwr)e C A, suppose that X ig in (Qim)ggaiz 1o
a subspace of X such that for every ﬂl-subspacg A of X, t;a o n el
i el Scl}lbspsm OfB)i; Keax?fht?eff (i);va B-neighhbor-
in B. Let pe B~ (7. Since B 1 )
]?:jgdl\;noprI;uc]f that N is in %. Thus by the property asgm.neglosfgg
¢, NnC =NnC HeneepeNnG’CBr'\G, 80 that Bmtxlimstbe
in’B. Consequently, since X is in (¥wr)e, (¢ is closed; so tha
in Ya.
Notation. For any category UCT, Z()
topological unions of members of .

denotes all disjoint

i injti actly generated spaces to Haus-
() Many authors restriet the definition of comp ge g&rtjﬁcm‘ DS e rover

. ald
dorff spaces. In our context, such a restriction Wo aces do con-
(thanregl 13 and theorem 15) that the Hausdorff compaﬁﬂy ai‘:li:r:m:ﬂy generated
stitute a coreflective subcategory of §, and that 2 Hansdorft sp

iff it is (compaet Hausdortf)-generated.
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Proposrrion 5. For every subcategory % of T,

AC Z(U) C Awr, C Ae CT(A) .

Proof. AC X(A) C Uwr, follows immediately from the definitiong,
From lemma 4, A CUe, so that by the above Wwr, C (As)wr. Hence by
proposition 4, Wwr, C Ag.

To show that U CI(A), suppose that X is an - generated space,

A’ is the seb of all A-subspaces of X, , and W is the collection of all points -

in X which are contained in some A-subspace. Clearly by the definition

+
of s, X—W iy either empty or discrete and X — W J(X—W). Since
each diserete space is in T(A) for every U, by theorem 7 it suffices to show
+
that W is in T(A). Let i: (JA' =W be the map induced by the inclusions
AW for each 4 in %’. Suppose that ¢ C W and 57%(C) is closed. Then
for each 4 in A’, i™(0) ~ A is closed in 4. Thus since X is in g, ¢ is

closed in X and hence is closed in W. Consequently, i is a topological
quotient map, so that by theorem 7 y W is in T(N).

CoROLLARY 1. U is coreflective in T if and only if

A= Z(U) = Awr. = e = T(A) .

COROLLARY 2. Bvery coreflective subcategory 91 of T is locally generated;
in particular A = Ng.

CoROLLARY 3. For every subcategory U of T,
. T = TASW) = T (W) = T(Ae) .

Proof. (W) c:z(z (M) € T(Awr) CT(We) CE(Z(?[)) = I(N).

Remark. All of the inclusions in the above proposi
In theorems 15 and 17 helow we exhibit conditions
some of the inclusions to become equalities.

tion can be strict.
on A which force

THEOREM 15. If A is a map-invariant subcategory of T, then Aq = T(W),
Us is the smallest coreflective subcategory of T which contains U,

i Proof. By proposition 3, we need only show that T(A) CUs. Let X
be in T(2). By theorem 12 there exists a‘collection B C A and a topological

. +

quotient map f: (JB X, Suppose that ¢ C_X has the property that

for ‘ever_y A-subspace 4 of X y 0~ 4 is closed in A. Since A is map-in-

variant, we have that for every BB, ¢ ~nf(B) is cloged in f(B). Thus

for each B,f (€) ~ B is closed in U B, so that - Y(0) is closed. Since fis

a topological gmotient map, C is closed. Consequently X is in As.
COROLLARY. The category of (Hausdorff) compacily generated spaces

and the )category of (Hausdorff) sequential spaces are each coreflective in T
(resp. §).

i.e.
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Remark. If A is a map-invariant subcategory of T, then the family
of all subspaces of a given space X which belong to ¥ forms a “natural
cover” of X in the sense of Franklin [6]. Furthermore, aﬂ natural covers
can be obtained in this way. However, not every coreflective subcategory
of T can be obtained by this method as the next theorem shows:

TrEeoREM 16. There exists no map-invariant subcategory W of T such
that e = Cr or e = (PC)r.

LevmA 5. Every infinite Hausdorff space possesses an infinite collection
of non-empty pairwise disjoint open sets.

PropoSITION 6. If U is a map-invariant subcategory of T and if‘ﬂl
contains an infinite Hausdorff space (X, T'), then A contains a space which
is not locally connected. N o

Proof. By lemma 5, there exists a countably infinite pairwise disjoint
family {U;} of non-empty members of I. Pick p e U;. Define a new
topology T" by setting A e T' if and only if 4 « T and whenever p e 4,
then there exists some n such that for every m=m, UnC A. QIearly
(X,T’) is not locally connected, and the identity f_um'ztlon on X is con-
tinilous from (X, T) to (X, T"), so that (X,T') is in ‘lI.. )

Proof of Theorem 16. Suppose that U is map-invariant and
U = Cr or g = (PE)r. Let R be the real line and let S be the sequence
{1n] n=1,2,..}. Clearly R is locally pathwise connected, so that by
the definition of generation, there exists an %-subspace 4 of E.SHC;].
that A ~ 8 is not closed in 4. Thus A is infinite, so that by Proposmmn s
9 contains a space which is not in €, which is a contradiction. .

Remark. We next obtain a general theorem, speciali cases of whlch'
yield specific characterizations for the smallest cor.eﬂectwe subcategory
ot.F containing all connected spaces (resp. all pathwise connected spaces).

DEFINITION. A collection € of subsets of some set is said to be:

(i) centered if and only if M€ # @. 4 e oo

(ii) chained if and only if for any 4, B ¢ € there exists va( 11(1}1 e :; -
family Oy, Ca, ..., Cn of € such that 0, =4, On = B, and Oin Cipa
i=1,..,n—1. -

DErFINITION. If 9 is a subcategory of T, then au;l A- componen

i i longing to A.
a space X is a maximal subspace of X be : v )
pN.B. 9[- components of a space need not exist; e.g. the real line has
no K-components. . ) .
ProPosITION 7. Let O be a subcategory of T which contoans every
i i re ivalent:
stngleton space. Then the following are equt .
(i) For every X in T, the set of all A-components of X forms a disjoint
cover of X.


GUEST


216 H. Herrlich and G. E. Strecker :

(ii) For every X in T, the property that the collection of all non-empty
A-subspaces of X is chained, implies that X is in .

(ili) For every X in I, the union of every centered collection of UA-sub-
spaces of X is in U

Proof. (i)-»(ii). Suppose that (i) holds for some space X and that
the collection of non-empty A-subspaces of X is chained. Let ¢ he an
UA-component of X and y ¢« X. Then since singletons are in 9, there exis
UA-subspaces A4,,4,,..., 4y of X such that 4;,= 0, A,= {y} and
Asmn A1 0, i=1,...,n—1. For each i let C; be the A - component
of X which contains 4;. Since the U-components are disjoint, €= ¢,
= .= (4D {y}. Therefore .0 = X, so that X is in 9L

(ii) - (iii). Every centered. collection i3 -obviously chained.

(iif) -~(i). Let X be any space, let y ¢ X, and let & be the collection
of all A-subspaces of X which contain y. By (iii) (% is in A, and by the
construetion it is maximal. Thus the U -components of X cover X. It 4
?Jnc‘l B are -components which are not disjoint, then by (iii) 4 U B
is in U so that by the maximality 4 = B.

I‘)EF.‘INITION‘. A is said to be a component subcategory of T if and
or'll_y if it contains all singleton spaces and satisfies the equivalent con-
ditions of proposition 7.

THEOREM 17. If U is a map-invariant component subcategory of T, then
Z(U) = Uwr. = Ye = T(Y) .

Proof. By'proposition 5, it suffices to show that T(A) C Z(A).
Let X be in T(A). By theorem 12 there exists a collection BC A
. . +
and a topological quotient map f: (JB->X. Let € be the collection of
- components of X, and let C e €. If B« B is such that B ~ fY(C) = @,
then f(B) ~ C + 0, so that since U i map-invariant and ¢ is maximal
we have by proposition 7(iii) that f(Byv 0= (. Thus R Cf Yo
Consequently -
U= U{BeB| Bnf(0) =0}

which is a clopen subset of |_j 8. Since f is a topological quotient map,
C must be clopen in X. Thus ¥ — G €, so that X is in Z(A)
COROLLARY 1. 3(€) = Gy = Gg — T(E).
COROLLARY 2. T(PE) = (PC)wr. = (PE)g = T(PC).
Remark. Note that if in theorem 17 , Wis t

spaces (resp. all indiserete spaces) we obtain (W)
spaces (

he class of all singleton

& 5D as the class of all discrete
resp. all locally indiscrete spaces) (cf. § 6). Tt should also be oh-

served that for any map-invariant component: subecategory U of I, the
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T ()~ coreflection of a space X is obtained by forming coarsest (i.e. weakest)
topology on X which contains the given topology and at the same time
all 9-components of X.

Using information gained so far, we now expand the table of § 6.

A ()

. | (all compact spaces) Re (all compactly generated spaces)

10. & (all convergent sequences Gg (all sequential spaces)
including finite ones)

11. © (all connected spaces)

©

2(€) (all digjoint topological
unions of connected spaces)
12. BE (all pathwise connected I(PE)
spaces)
13. P (all paths, ie. continuous Pe (all path generated spaces)
images of [0,1]
14. € n & (all continua)

(€~ R S G Ke

We conclude with some results relating hereditary properties and local
generation.

ProposITION 8. If U is a closed-hereditary subcategory of X, then
W is closed-hereditary.

Proof. Let X be in Uz, B be a closed subspace of X, and OCB
such that for every %-subspace, 4, of B, C ~ 4 is closed in 4. Now let 4’
be any %A-subspace of X. Since 4’ ~ B is an 9-subspace of B, C A’
= (0~ (4’ ~B) is closed in A’ ~ B which is closed in 4’. Thus C is
closed in B.

COROLLARY (Arhangel’skii [1], Franklin [5]). Every closed subspace of
a compactly generated (resp. sequeniial) space is compactly generated (resp.
sequential).

ProposiTIoN 9. If A is a closed-hereditary subcategory of I, then
the class of all reqular U-generated spaces is open-hereditary.

Proot. Let X be regular and UA-generated and let U be open in X.
If p € U then there exists a closed neighborhood N of p such that ¥ C U.
By proposition 8, N is U-generated. Thus U is weak locally (¥-generated),
50 that by proposition 4 it is U-generated.

COROLLARY (Arhangel'skii [1]). Hvery open subsel of a reqular com-
pactly generated space is compacily generated.

PropostTION 10. If U = T(A) (resp. H(A)) and if every open sub-
space of every A-space is in T(A) (resp. HA)), then T(U) (resp. H)
is open-hereditary. .

Proof. Let X be in T(X). Let ¥ be open in X and let i {J{4 e N}
A C X}—+X be the map induced by the inclusions A —>X. By hypothesis
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each V)~ A is in T(A) (resp. H(A), so that by theorem 12, 577

is m;(%{) (resp. H(A)). Since X is in A, 4| ¢7(V): i7V) -V is a topological

quotient map. Thus by theorem 12, ¥ is in T(A) (vesp. §(A)).
CoroLLARY (Franklin [6]). Back of the properties “Hausdor

generated” and “sequential” is open-hereditary. I compactly

Proof. Clearly by theorem 13, §(& ~ §) =T (K) ~ 9. Also by the
eoroualjy to proposition 9 every open subset of a compact Hausdorff
Space is compactly generated. Similarly, every open subset of every

convergent sequence is a convergent sequence ( ibly finite) a i
‘ possibly finite
¢ . ) and so is
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Svenonius sentences and Lindstrom’s theory
on preservation theorems

by
M. Makkai (Budapest)

Introduction

Let us call the infinitary sentence g A @ a Svenonius senience or
S-sentence if ¢ is a prefix of length < and O is a countable set of finitary
first order formulas appropriate for a fixed countable similarity type &.
Tt is immediate from the semantics of infinitary formulas (see [5], [6], [7]
and § 0 below) that any class K of structures of type £, definable by an
S-sentence, is. a PC, class. Svenonius [12] showed a partial converse
of this fact.

Let us call K a P(; class if K is the class of the reduets to & of the
countable models of a countable set of ordinary sentences. Svenonius’
theorem says that the PCj classes are exactly the classes of countable
models of §-sentences (1). Svenonius [12] also showed that Craig’s inter-
polation theorem [1] is an easy consequence of this theorem. Considered
from this point of view, (the proof of) Svenonius’ theorem yields perhaps
the most elementary model-theoretical proof of the interpolation theorem,
or more particularly, it demonstrates that the ideas of Henkin [4], if
properly applied, are sufficient for proving the interpolation theorem.

Knowing the close connection between certain preservation theorems
and interpolation theorems, it is natural to ask whether there exist
analogs involving S-sentences of known preservation theorems such
that the original theorems are consequences of the new ones. This paper
gives a positive answer to this guestion.

Call an S-sentence g A @ positive if every element of 0 is positive
in the usual sense. Our Corollary 2.4 (a) says that K is a PC; class closed
under homomorphisms iff K is the class of countable models of a positive
S-sentence. We also show that Lyndon’s well-known preservation theo-
rem [9] is an easy consequence of this result.

(%) See Theorem 2 in [12]. In [12] a different terminology is used and S-sentences
are mentioned only in passing.
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