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Some results on fixed points — IV

by
R. Kannan (Lafayette, Ind.)

The notions of normal structure and diminishing orbital diameters
have been used by Belluee and Kirk ([1], [2], [3]) to study the existence
of fixed points of nonexpansive mappings. In this paper we fix our at-
tention on mappings of another type defined as follows: Let (E, p) be
a metrie space and let 7' be a mapping of ¥ into itself sueh that

o(Tz, Ty) < 3{o(z, Tx)+oly, Ty)}

Mappings T’ of the above type will be referred to as having prop-
erty A over F in this paper. Such mappings have *been discussed in [5],
[61, [7] and [8], dealing with fixed point and other allied problems. The
author would like to mention in this connection that the referee of the
present paper has suggested the name “semi-nonexpanding mappings“
for mappings of this type.

Here we obtain some fixed point theorems for mappings havmg
property A by using certain additional hypotheses. Then we compare
the notions of diminishing orbital diameters [1], normal structure ([3],
[4]) and property B (defined below). If a ¢ B then the sequence of iterates
of a by T will be written as {T"a} or {an}, T'a = a.

Before going into the theorems, we recollect some known definitions.

DermITioN 1 ([1]). A mapping T of a metric space (E, ¢) into itself
is called nonezpansive if

o(T2, Ty) < o(w,y) for each z,y ek .
DEFINITION 2 ([1]). For & subset A of & metrie space (H, o) let d(4)
= supo(#,y), ¢, y € A, denote the diameter of A and let T be a mapping

of B mto itself. Let {T"x} denote the sequence of iterates of z¢E and
let O(T'w) = {T"&, T 5, .}, 7= 0,1, .., T'0 = &. I r() = Im5(0(I"z))

< 8(0(z)) at a point e A where 6(0(m)) >0, then we say that T has
a diminishing orbital diameter at ». If T has a diminishing orbital diameter
for every ¢ B, then we say that T has a diminishing orbital diamelers
over H,

z,yekl.
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DEFINITION 3 ([3], [4]). Let A be a bounded subset of a Banach
space B. A point a ¢ 4 is said to be a non-diametral point of A if sup {llz —all,
2 e A} < 6(4). A bounded convex subset K of F is said to have normgl
structure it for each convex subset H of K which contains more than
one point there exists an « ¢ H which is a non-diametral point of H,

We now introduce the following definition.

DEFINITION 4. Let (¥, o) be a metric space and let T be a mapping
of E into itself. Then T is said to have the property B on G C E if for
every closed subset F of ¢ which contains more than one element and is
mapped into itself by T there exists an z<F such that o(z, Tx)
< i‘i‘?g(y’ Ty).

TerorEM 1. Let (B, o) be a compact metric space and let T be a mapping
of E into itself having properties A and B over . Then. if T be such that,
Jor any non-empty subset F of B mapped into itself by T, B’ C (TF) (the
dash standing for the derived set), then T has & unmique fized point in B
(I'F standing for the set of points which are the transforms of the points of
F by T). ‘

Proof. A partial ordering is introduced in the space of H(K) of
sets K, C F which are non-empty, closed and invariant relative to T in
the following manner: K, < K., K, D Koyy Koy # Ko, Using the Kura-
towski—Zorn lemma, we ean get a set K which is minimal with respect
to being non-empty, closed and invariant relative to 7.

If K contains only one element, then that element iy a fixed point.

If X contains more than one element, then, since T has the property B,
there is an element # in K such that

(@, @) =r <supo(y,y).
yeX

Let Ky, = {z e K: plz,2,) < r}. Bvidently K, is

2 non-empty proper sub-
set of K. Further, if z ¢ K,

then z ¢ K and hence 2, ¢ K. Now

ol 7)< 2822 4 2y o) G t),

Therefore g(z,, z,) < é(z, )<
itself by T.
(A]so if y be a limit point of K, then by hypothesis Tp™ e K,:
{Tp™} ¢ TE, such that, for any arbitrary & > 0 EN such that o(y, Tp")
ey, Lp
<é&, #>N. Hence

r. Hence 2 ¢ K, ie., K, is mapped into

ey, 1) < ey, To™) + o (Tp™, y,)

(n) (n)
< oy, Tp™) 1 QL%ZL + E’(?lﬁéyl_)_

©
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Therefore oY, ¥1) < 20(¥, Tp™)+r, because p™ E_Kl- Henee o(y, 1)
< r. This shows that y ¢ K,, and consequently K, is closed.

h Thus K,, a proper subset of K, is non-e;npty, closed and ma,pp.ed
into itself by T, which contradicts the minimahty' of K. Hence K c‘ogtams
only one element, which is therefore a ﬁxeq point of 7. The unicity of
t.heu fixed point follows from the fact that if z = T and y = Ty then

o(@,y) = eo(Tz, Ty) < 3{o(z, To)+o(y, Ty)} =0 ie, a2=y.
This proves the theorem.

We furnish below an example in support of Theorem 1.

BxavPLE. Let B =[0,1/2] v ({1/24+1/n}); n taking all positive
integral values. T' is defined by

1 1,1 1,1

Ta;_—_%——w, o elo,ﬁ] and Tm—z—l—sn, e=5+.
Tt can be seen that all the conditions of Theorem 1 are satisfied and 1/4is
the unique fixed point of T in H. .

TaEOREM 2. Let T be a continuous mapping of a compact metric space
(B, o) into itself and let T' have properties A and B over E. Then T has

’ . . . .

o unique fized point in H. ) ’

Proof. Let K be as in the previous theorem. If K contains morz
than one element, then, since T has property B over F, Hz e K such tha

o(z; T2) = r < supe(y, Ty) -
YeE )
Let K= {t e K: o(t, Tt) < r}. Evidently K, is a non-empty proper sub-
set of K. Also if t e K,;, then

o(t, Tt)
2

+8 (T té ) by property 4.

o(Tt, T*) <

Hence
o(Tt, T < oft, TH <. i
So, K, is mapped into itself by 7. Finally, if p ¢ K, be such that p™ -y,
then y ¢« K and , "
oly, Ty) < o(y, 2™+ o(0™, Tp™) (TP, Ty) - .
: t.
The continuity of 7' implies oy, Ty) < r. So yeK,. Consequently K,
i d' . . . -
’ ck’.)[?l?us K, is a non-empty closed subset of K which is m;%)peitzliflz
itself by T.1 This contradicts the minimality of K. ZE.It?ncefouo ;Z foins
only one element which is a fixed point ]Sf T. The unicity
i i the theorem.
the previous theorem. This proves . ' i
We devote the rest of the paper to comparing thetnozlon& of prop-
erty B, diminishing orbital diameters and normal structure.
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TeRoREM 3. Let (B, o) be a melric space and let T be a mapping of B
into iiself having property A over B. Then if T has diminishing orbital
diameters over B, T has the property B over H.

Proof. Let F be a closed subset of H, mapped into itselt by T,
containing more than one element. If possible, let, for every element
zel, ole, s) = K= :Szgg oy, 9)). K is evidently non-zero, for if K =0

then F would contain more than one fixed point of T, which is not possible,
Now, for x ¢F,

olar, o) < LT @)y (OB gy

Hence, for r>1,
8(0(@r)) = 6(@ry Bryay ) = K

(because o(2r, #s) < K and p (@, 2r41) = K) .

Hence, at ,¢F, T does not have a diminishing orbital diameber.
This contradietion completes the proof.

TarorEM 4. Let T be a continuous mapping of o metric space (E, o)
into itself and let T have properties A and B over H. Then T must have
diminishing orbital diameters over B,

Proof. If possible let z ¢ ¥ be a point at which ¢(x, #;) >0 and T
does not have diminishing orbital diameters at'=.

Hence
- ]jina(ou,,)) =6(0(x)) .
Also
6(0(w")) = 6(50,,,, i1,y ) .
Now
o2y, ) < Q(Wr—21, r) + 9($s—21, ) .
Also
o (®r—1, T) < g(m,._;, r-1) + 9(%—;, @) )
Hence
0(Tr—1y Br) < 0(@r—s, @r_s)
< Q(mr—s, wr..z)
< o(w, @)
Therefore

o(#r, @) < o(w, ) .

icm
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So -
5(0 (wn)} < Q(wn——ly mn) < e(w, wl) -

Consequently 6(0 (wn)) = o(x, 4,), for otherwise (1) would be contradicted.
Hence

@) (#n—1, ) = g(@,m) forall n>1.
Let y « B be a limit point of O(x). Then {x,}D {wn}-—>y ¢ E. Therefore
lo(¥, Y1) — 0@y Tris1)] < @Y ) Tug) + 0 (Y1, Fngaa) -

Since T is continuous and {#s} -y, We have
e(y, y1) = lim o (s Do) «
So, from (2),
(3) ey, = e(@, ) = (Ta-1y %), nN=1.

Now consider the set O(z), i.e., the closure of O(x). It is non-empty,
closed and containg more than one element. By virtue of the continuity
of T it is mapped into itself. Hence, since T' has property B over E, there

exists an element p €O(w) such that e(p,p,)< sup o(f,%), which
t1e0(x)
however, is impossible by (3). The contradiction thus obtained proves
the theorem.
TrmoreEM 5. Let K be a bounded comvex subset of a Banach space B
and let K be mapped into itself by T. Suppose further that

1Tz — Tyl < }{le—Tal+lly—Tyl}, o@,9<K.

Then if K has normal strueture, 7' has the following property: For every
closed convex subset F of K mapped into itself by 7 and containing
more than .one element there exists an # ¢F such that lle — Taf]

< suplly — Tyll.
yel

Proof. If possible, let the theorem be not true. Then there exists
a closed convex subset ' of K containing more than one element and
mapped into itself by 7 and such that for every element z e F

(4) e — || = suply—yl = B (5 0) say .
yel N

Now consider the set T(F). If it contains only one element, then that
element y is a fixed point of 7' and hence [y —¥,|l = 0, which contradicts (4).
Hence T(F) contains more than one element. : ‘

Lot 8 = Co[T(F)], i.e., the convex hull of T'(F), and let o,y 8.
Then there are three possibilites: 1) z= Tz, y=Ty, &',y eI,
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9) z= Tz, y=2aTyi, «, yieF and Eaiil, 3) w=ZGiTﬂ/"¢,
y=SBap:, ai, yieF, Sai=Ypi=1.

It can be seen by virtue of
— - ‘
iro—zy < =T WDy e,

that o —yl] < B. Hence 6(S) < §f. ~
Algo for any element z ¢ F [ = T’ or Y a;Twi, o', i € F, Doy = 1],
Ty ¢ Co(TF) because T maps F into itself. Further, |lo— Tl = g by (4).
Hence suplle—yll= f for any # € 8. This contradicts the assumption- of
yeF

normal structure over K. Hence the theorem follows.

That the converse of the above theorem is not true may be seen from
the following example. i

ExAmpre. Let m be the space of bounded sequences of numbers
with the supremum norm ([9], p. 12) and let K = {z em: x| <2}.
Clearly K is a bounded convex set in m. Now let F''be the subset of K such
that F = [y, &, ...] where zx = {0, 0,0, ...,1, 0, ...} (1 in the Kth place).
Evidently 6(F)=1. Also il:.gl]ﬂ?-"yn =1 for every # e F. Hence K does

not have normal structure. But the operator T: KK defined by
Tx = /3, x ¢ K is such that :

ITz— Tyl < 3{le—Tal+lly—Tyll, @,9¢K

and for every closed subset 7' of K mapped into itself by T and con-
taining more than one element there exists an # ¢ F’ suech that ||z —T|
< suplly —Tyl-

Finally from Theorems } and 3 we obtain the following theorem.

THEOREM 6. Let (E, g) be o compact metric space and T be a mapping
of E indo ilself having property A over B. Also let T have diminishing orbital
diameters over E. .

Then if T is such that, for any non-empty subset F of B mapped into
tigelf by T, F" C(TF) (the dash standing for the derived set), then T has
a unigue fized point in E. . .

I am thankful to Dr. B. K. Lahiri, Kalyani University for his kind
help and suggestions daring the preparation of this paper.

T am also thankful to the referee of the present paper for his kind
and valuable suggestions.
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