Semi-topological properties
by
S. Gene Crossley and S. K. Hildebrand (Lubbock, Tex.)

0. Introduction. In [1], Norman Levine defined a semi-open sét in
a topological space a8 & set A such that there exists an open set 0 so that
0CACO, where ( ) denotes closure in the topological space. He also
defined a function to be semi-continuous if and only if the inverses of
open sets are semi-open. Also in [1], among others, the following two
results were established:

TuEoREM 0.1. Let (X, 1) be a topological space. Then:

(1) T C8O(X, 7) where SO(X, ) denofes the class of semi-open sels
in (X,7), and :

(2) for A eSO(X,7) and 4 CBC 4, then B<S0(X, 7).

TEEOREM 0.2. Let f: X Y be continuous and open where X and ¥ are
topological spaces. Let A e SO(X). Then f(4)eSO(Y).

In [2], the authors defined a set to be semi-closed if and only if its
complement is semi-open. Semi-closure and semi-interior were defined
in a manner analogous to closure and interior. Also in [2], among others,
the following four results were established:

THEEOREM 0.3. In a topological space all nonvoid semi-open seis must
contain nonvoid open Sets.

THEOREM 0.4. (1) A is semi-open if and only if Ay= A, where ( )o
denotes the semi-interior in the topological space.

(2) A is semi-closed if and only if A=A, where () denotes semi-
closure in the topological space.

TEEOREM 0.5. If A is open and 8 is semi-open, then (4 ~8) is
semi-open. R

TrEOREM 0.6. (X —(4—A4))=X. ’

Then in [2], an abstract operator approach was introduced. A pre-
semi-closure operator, usually denoted by ( Je, Was defined, and it was
demonstrated that if a pre-semi-closure-operator is related to a Kura-
towski closure operator in a. particular fashion, then the pre-semi-closure
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operator corresponds exactly to the semi-clogure in the topological space
generated by the Kuratowski closure operator. A method by which a Ky-
ratowski closure operator may be constructed from a pre-semi-closure
operator was developed: First it was shown that for every set A there
exists a minimal set D, such that (4 v Dgw B)e= (4 v Dgv B,) for
every subset B of the comprehending set. Then, defining AF = (4 v Dy
it was shown that ( )" is a Kuratowski closure operator. A criterion wag
found to guarantee that the pre-semi-closure operator is properly related
to the Kuratowski closure operator constructed from it, in which case
the pre-semi-closure operator is called a semi-closure operator. And,
finally, it was shown that the topology generated by the constructed
Kuratowski closure operator is the finest topology for which a semi-
closure operator is the semi-closure in the topological space.
Finally, in [3], it was shown that:

THEOREM 0.7. (4)eD (A).

L. Irresolute functions. In this section, various types of functions
are studied. The first kind of function to be considered is one for which
.inverses of semi-open sets are semi-open.

DerinrrioN 1.1, A funetion f: X »Y is said to be érresolute if and
only if, for any semi-open subset S of ¥, f~(8) is semi-open in X.

The following theorem is a result from elementary topology, and is
stated without proof.

THEoREM 1.1. If f: X Y is continuous and open, then f~(A) = f~Y(A).

THEOREM 1.2. Let f: X —Y be continuous and open where X and Y are
topological spaces, then f is irresolute.

Proof. If 4 ¢S0(Y), then there is an open set 0 C Y such that
0 C A C 0. By Theorem 1.1, f~(0) = f7(0). Also, f*(0) C f(4) Cf~Y(0)
= f~(0), and since fis continuous, £ (0) is open. Thus F(A) is semi-open.

BxAwpre 1.1, A continuous, irresolute function need not be open.
Let X = {a, b, c}, and consider the topologies ‘

r*={@,{a},{a,b},X} and r={6,{4},{a,b},{a,c},.X}.

It was demonstrated in [2] that 8O(X,7)=S80(X,7*). Let f: (X,7)

—>(X‘ ,1*) be defined by f(®) = o for all ¥ ¢ X. Then clearly f is continuous
and irresolute, but not open.

Later on there will be abundant examples of this fact, but this is
one of the simplest.

f.['HEOREM 13. Let C’(‘X, Y), 8C(X,Y), and I(X,Y) denote, 7o
spectively, the classes of condinuous, semi-continuous, and irresolute Junctions
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from X to ¥, where X and Y are topological spaces. Then X,

CRO(X,T), and I(X,Y)C 8C(X, ).

Proof. C(X, Y) C8C(X, Y) because if the inverses of open sets are
open, it follows by Theorem 0.1 that the inverses of open sets are semi-open.

I(X,Y)C8C(X, Y) because if the inverses of semi-open sets are
semi-open, it follows by Theorem 0.1 that the inverses of open sets are
semi-open.

There will be numerous cases later in which it will be seen that ir-
resolute functions are not necessarily continuous. Neither are continuous
functions necessarily irresolute.

TuaROREM 1.4. A function f: 8T is irresolute if and only if, for every
semi-closed subset H of T, f (H) is semi-closed in §.

Proof. Necessity. If f: § —T is irresolute, then for every semi-open
subset @ of T, f~(Q) is semi-open in 8. If H is any semi-closed subset
of T, then (T—H) is semi-open. Thus f (T—H) is semi-open, but
FT—H)= (8—f'(H)) so that f(H) is semi-closed.

Sufficiency. If, for all semi-closed subsets H of 7', f(H) is semi-
closed in 8, and if @ is any semi-open subset of T, then (T —@) is semi-
closed. Also, f{(T—Q)= (S—f Q) is semi-closed. Thus f (@) is
semi-open. ‘

THEOREM 1.5. A function f: S—T, where 8 and T are topological
spaces, is irresolute if and only if, for every subset 4 of 8, fla) Cf4).

Proof. Necessity. If A C S, then consider f(4) which is semi-
closed in T. Thus by Theorem 1.4, f'(f(4)) is semi-closed in 8. Further-
more, A Cf *(f(4)) Cf*(f(4)). Therefore, by the definition of semi-
closure, A C f'(f(4)), and consequently,

Fld) CHFf)) = (FA) ~F(8) CFA) -
Suﬁiciency. T¢ H is semi-closed in 7T, consider f *(H). Note that
) S @) = [EfS) CE=H.

Hence f~Y(H) C f *(H), so that f(H)=f'(H), and by Theorem 04,
fYH) is semi-closed. Thus f is irresolute by Theorem 1.4.

TamorEM 1.6. A function f: X Y is irresolute if and only if, for oll
BCY, f(B) Cf(B.

Proof. Necessity. B is semi-closed in ¥, so that f‘_‘(rli) is semlr-
closed in X. Since fY(B) Cf (B), it follows by the definition of semi-
closure, that f~(B) Cf '(B).
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Sufficiency. If B is semi-closed in ¥, then B = B. By hypothesis,
FHB)CfUB) CF (B =f(B);

that is, f(B) = f'(B). Thus by Theorem 0.4, f (B) is semi-closed,
and by Theorem 1.4, f is irresolute.

THEOREM 1.7. If f: X>Y and g: Y >Z are both irresolute, then
g(f): X—>Z is irresolute.

Proof. If A C Zis semi-open, then g '(4) is seﬁli-open andf‘l(g*l(A))

is semi-open since g and f are irresolute. Thus (g(f))~(4) = o4
is semi-open, and g(f) is irresolute. .

DerFiNITION 1.2. Let X and Y be topological spaces, a funection
fr XY is said to be pre-semi-open if and only if, for all 4 « SO (X),
f(4) «SO(T).

THEOREM 1.8. If f: X =Y ds continuous and open, then f is irresolute
and pre-semi-open. :

Proof. This result follows from Theorem 0.2 and Theorem 1.9,

DrriNmioN 1.3. Let X and Y be topological spaces. X and Y are
said to be semi-homeomorphic if and only if there exists a function f: X ¥

such that f is one-to-ome, onto, irresolute, and pre-semi-open. Such an
f 18 called a semi-homeomorphism.

. THEOREM 1.9. If f: XY is a komeomorphism, then f is a semi-
homeomorphism.

Proof. The proof follows directly from Theorem 1.8. ‘

EXAMJ)LE 1.2. A semi-homeomorphism need not be a homeomorphism.
Consxdfar fi (X, 1) >(X,7%) ag in Example 1.1, then f is a semi-homeo-
morphism, but f is not a homeomorphism.

) Remark 11 The image of a T, space under a semi-homeomorphism
is not necessarily Ty, as is illustrated in the following example.

- Examrie .1.3. Let X' =10,1), and let 7, = ({9, X} {0,a): 0<a
<1})', then 7; is a topology and & nonvoid set 4 is in 8O(X, ;) if and
only if [0, I?) C 4 forsomed, 0 < b< 1. Furthermore, (X, =) is a T, space.
Let z, c.ons1st of @, X, and all sets of the form [0,27" forn=1, 2, 3, ..,
;hex} (-rg)ls a t(}pok;iy, and 8O (X, 7,) = 8O (X, 7,). Define X, )X, n)
0y J(#)= % for all z ¢ X. Then f is a semi-h, i
e f omeomorphism, but (X, 1,)

Remark 1.2. The image of a T,

) Space under a semi-homeomorphism
is not necessarily a T, space, ar

a8 I3 illustrated in the following example.
N fxmm 14. Let X = (RXR) where R denotes the set of real
umbers; and let 7; be defined to consist of @ together with all subsets
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of X whose complements are subsets of a finite number of lines parallel
to the m-axis. Note that SO(X, )= 1,. Let 7, consist of @ together
with all subsets of X whose complements are a finite number of lines
parallel to the z-axis. Note that 80(X,r,) = 80(X, r;). Furthermore,
defining f: (X, 1) (X, 7,) by f(p) = p for p ¢ X, we see that fis a semi-
homeomorphism. Observe that (X, z,) is a T, space whereas (X, 7,) is not.

It will be shown in the next section that the image of a T, space
under a semi-homeomorphism is 7,.

TaeoreM 1.10. If f: XY ds a semi-homeomorphism, then
F(B)=f"B) for all BC Y.

Proof. By Theorem 1.6, f~(B) C f (B) since f is irresolute. f is
y

an itresolute function, so by Theorem 1.5, f *(B) Cf '(B). Thus,
equality holds.

COROLLARY 1.1 If f* X Y is a semi-homeomorphism, then f(B) = f(B)
for all BC X. ;

CorOLLARY 1.2. If f: XY is a semi-homeomorphism, then f{By)
= (f(B))o for all BC X. :

Proof. By= (X— (X—B)). Thus,
J(By) = (Y —f(X—B))= (Y —f(X—B)) = (Y~(T=f(B))] = (f{(B))o-
COROILARY 1.3. If f: X~ is a semi-homeomorphism, then f~"(By)
= (f'(B))y for all BCY.
" TEmorREM 1.11. (A),= O if and only if A is nowhere dense.
Proof. Necessity. By Theorem 0.7, (4 C (A). Thus, if (4)y=9,
it follows immediately that (A)° = @; that is, A is nowhere dense.
Sufficiency. If A is nowhere dense, then _(Z)":@. But AQ%,
50 that @ iy the only open set contained in A. Thus by Theorem 0.3, & is

" the only semi-open set contained in A. Therefore, (4) = 0.

TamorEM 1.12. If f: X »Y is a semi-homeomorphism and A C X is

nowhere dense in X, then f(A) is nowhere dense in Y.
orem 1.11, since A is nowhere dense, (4), = @. Now

consi];z: (}f(A]?y];Eciz that by’ Corollary 1.1, f(4)= f(4). Thus (7)o
= (f(4)o = f((4);) by Corollary 1.2. Hence (fld))e=f(0)=0, and
f(4) is nowhere dense by Theorem L.IL.

THEOREM 1.13. Sems-homeomorphic is an equivalence relation between
topological spaces. )

Proof. Reflexivity and symmetry are immediate and transitivity
follows from Theorem 1.7.
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DEeFINITION 1.4. A property which is preserved under semi-homeo-
morphisms is said to be a semi-fopological property.
Examples 1.3 and 1.4 show that T, and T; are not semi-topological
_ properties. However in the next section it will be shown that 7, is a semj-
topological property.

Remark 1.3. Regularity, complete normality, normality, Ty, T,, T, ,
paracompactness, Lindelof, and metrizability are not semi-topological
properties, as is shown in the following example.

Exiwrre 1.5. Let X be the closed npper half-plane of B2, and let ¥
be the open upper half-plane. Let = be the usual relative topology on X,

Let v* be generated by the usual open spheres about points in T,
and for basic open neighborhoods of points p in (X—Y¥), take
{{(8:(p) ~» T) © {p})} for all &> 0.

Note that t* is finer than 7, and = is T}, regular, completely normal,
normal, Ts, T,, T;, paracompact, Lindeléf, and metrizable. However,
=* is T,, bubt not regular, completely normal, normal, T, T,, Ts, para-
compact, Lindelof, nor metrizable. Furthermore, it will be shown that
SO(X,7) = 8O(X,t*) so that the identity is a semi-homeomorphism.

Observe that if ( )* denotes the closure in (X, +*) and () the closure
in {X,1),

B _ {E it BCY,
N B if BC(X-Y).

However, there aré no open subsets of (X —Y) in either z* or 7. For any
open set U in v, U= (U; v () where U, C Y and ¢ C (X -Y). Further-
more, Uy et because for points in ¥, the hases of 7 and =* coincide. In
addition, ¢ C U, because if p ¢ ¢, then p e U which is opeh in z*. Thus
there is an &> 0 such that |:((:S’s (D) » IY) v {p}] C U. Therefore (Sy(p) n
NYNU)#0, but (¥ U)=T,. Clearly it follows that for any
€> 0, 8(p) intersects U, in a nonvoid set, thus P« U,. Hence U, C Y,

gﬁef, and € C((X~Y) T,) . Note that ¢ might very well be empty.
us, - . )

U= (v 0 = (Tiv 0 = (T.00) = T = (T, v 0) = (Tr0 O)= U
for all U 1~
- It 480 (X,7), then there exists O e7 such that 0 C 4 C O — O
since v Cz*. Thus 4 eS0(X,7*), and SO(X,7) CSO(X,7%).

If 4 e80O(X,7¥, then there exists Uev* such that U C 4 C T,

As before, U= (U, v ) where U, ¢ 7 and T* = T 7,
that A ¢SO(X, 7). ' o BEAL T w0

Hence SO(X, 1) = 80(X, 7*).
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Remark 1.4. Example 1.5 also illustrates that the images of compa.ct
gets are not necessarily compact, and the images of connected sets are
not necessarily connected under a semi-homeomorphism. Note that
(X —Y) is connected in (X, 7) but not connected in (X, z*). Furthermore,
it pe(X—Y), the set consisting of the usual closed sphere of radius r
about p, intersected with (X— ), is compact in (X, ) but is not compact
in (X, 7%).

TeroREM 1.14. The property that o topological space be of the first
category is o semi-topological property. :

Proof. If X is of the first category, then X = L:QIA;, where each 4; is
i=1

nowhere dense. Thus, if f: X »Y is a semi-homeomorphism,
Y =X =f(J4) = Ufdy,

and each f(A;) is nowhere dense by Theorem 1.12, Thus ¥ is of the first
category.

COROLLARY 1.4, The property that a topological space be of the second
category is a semi-topological property.

Remark 1.5. Example 1.5 also shows that second countability is
not a semi-topological property.

THEOREM 1.15. A semi-lopological property s a topological property.

Proof. This result follows since by Theorem 1.9, every homeo-
morphism is & semi-homeomorphism.

Remark 1.6. Compactness is not a semi-topological property as
was illustrated in Bxample 1.3. In Example 1.3, if f: (X, 7;) +(X, %) is
defined to be the identity, then f is a semi-homeomorphism while (X, )
is not compaet and (X,7;) is compact.

It will be shown in the next section that comnectedness is a semi-
topological property. Thus, by remark 1.4, if f: X —>¥ is a semi-homeo-
morphism and A C X, then fl4: A-f(4) is not necessarily a semi-

homeomorphism.

At this time it is desirable to construct the topology generated by
the usual semi-closure on the set of real iumbers by the method developed
in [2]. In the next two theorems let R denote the set of real mm_lbers,
and let,( ) and ( ) denote the usual closure and semi-closure, Tespectively,
on R; that is, those of the usual topology.

THEOREM 1.16. A = (4 v AT) where A denotes the set of points p e B

such that p ¢ A, but there ewists &> 0 such that both
(p—e,p) C(p—e,p)n 4, and (p;P+f)£(P,P+8)ﬁA

for 0 <e<e.
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Proof. If pe A, then ped or p¢ 4. If ped, then pe(d u 4™
Thus, to demonstrate that 4 C (4 v A7), it remains only to show that
if pe(Ad—4) then p e AT. The proof of this is by contradiction. Assume
that p ¢ A*. But by hypothesis p ¢ A so that for every &> 0,

(p—e,9) L (p—e,2) A or (p,p+e) L (p,pte)nA.

Consider the sequence {n '}p=;. Then for any u,

p—np) Ep—np)nd o (pp+n )L (p,prn ) 4.
Now for each n, define the set U, as follows: If

(p—n=%p) ¢- (p—n=% p) r\_ﬁ__,
let

Upn=[p—n"%p)—(p—n"% p) ~4]

which is nonvoid and open. On the other hand, if for some values of 7,

P—nYp) Cp—np)n 4,
then for these values of n,

P+ ¢, pFn )~ A
and we let

Un=[p;p+n)—(p,p+07) ~ 4]
‘Which is nonvoid and open. Then letting U = G Uuy U ié an open set,
. =1

and clearly p ¢ U. Thus, (U v {p}) is semi-open, and note that
(Uv{p}) nA]=0. Thus A C[R—(U v {p})] which is semi-closed.
This implies that 4 C[R—(U v {p})]. Hence, p ¢ 4, which is a contra-
dietion. Thus 4 C (4 u A™).

If ped, then peA. Thus to show that (4 v A¥) C 4, it is only
‘Tnecessary to show that A+ C A. This proof is accomplished by proving
the contrapositive statement. If p ¢ 4, it will be shown that p ¢ A™. If
¢ A, then there is a semi-open set § such that peland (8~ 4)=0.
Since § is semi-open, there exists an open subset, 0, of B such that
O0CB8CO. Thus (0O~ A)= 0. There are two cages, either p €0, or
P e(8—0).

Case L. If p € O, then there exists ¢ > 0 such that ((p,p—|—e) 2 A) =0
and ((p—e,p) ~4) =@ so that pg AT,

Case IL. If p ¢(8—0), then since 8C O, for every &> 0, either

(p—2,2)~0) 20 or (p,p+e)n0) 2 0. 12 ((p—e, p) 0) 5 @, then
due to the fact that : .

(p—e,2) " A ~[O A (P—2,9)]) =0
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we have the fact that

(p—e;2)E (p—e,p)~n 4. .

On the other hand, if ((p—e, p) ~ 0) = @, then ((p,p+e) m 0) 5= @, and
a similar argument shows that

(2,p+e) Lo, pre)nd.
Thus if p e (§—0),p ¢ A™. '
Therefore it has been shown that 4 = (4 v A™).
THEOREM 1.17. If ACR, and () is the usual semi-closure operaior

on R, then D4 is the set of poinis p € R such thai p ¢4, but for any £> 0,
either ’

(p—e,p)nd) =0 o (p,p+e)nd)=0,

where D4 is as in [2].

Proof. If we let' Gu={pecR: p¢ 4, but for any > 0, either
(p—e,p) " A)# 0 or ((p,pte)nA4) =0}, it must be shown that
DA == 'G’A.

Firgt, it will be shown that D4 C G4. For this purpose, it suffices to
show that if p ¢ G, then p ¢ D4 If p ¢ G4 and p e 4, then p ¢ D4 since
it was shown in [2] that (A ~ D4 =@. If p¢ G4 and p ¢ A, then there
exists an s, > 0-such that

(P—e,2) AP =0 and (p,pte)~Ap=0.

Now let Fa— (R—(p—e,,p+s,)), and consider (4 v Fyu B) for ar-
bitrary B C R. ~

Ifge (4 v Fqu B), theneither ge (A v Fsw B)org¢(4d v F4u B).
If ge((4dvFauB)—(AUFsuB), then g¢(4dwFsuB)t so that
there is a number ¢ > 0 such that for 0 <e<e,

(g—e&,g) n(AwFauB)DI(g—e,9q)

and

(9,g+e)n(AvFavB)D(g,q+e).

Also, since ¢ ¢ (4 v F4), there exists & = min[g—(p—e,), p+ & —q] which
is positive because (p—eg) < g < (p-+&), such that for 0 < e < &,

(g, g+ n (A Fy)=90.

(.(Q—E’Q)“(A UFA))°=@ and

Now let g = minfe, &,], and consider 0 < & < . Then

(-2, ) C(g—&,9) n (4w Fsv B)
=[lg—e,0) n (A v Fa) v (g—e,9) ~ B,

Fundamenta Mathematicae, T. LXXIV 17
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so that

, lg—e, @—(@—e, @) " BIC(g—2, 0 " (A VFa).
But '

[(g—e, 9 —(g—&,9) " B]
is open, and

(=2 ) " (A Fo)=9,
so that

[lg—e, 9—(g—2, 9) ~ B]=0;
that is, : '
(@—e, ) C(g—e,9) ~ B for 0<e<s.

In a similar fashion, (g, g-+¢) C (¢, ¢+¢) » B for 0 < & < &. Hence, since
g ¢ B, it follows from Theorem 1.16 that ¢ ¢B. Thus,

(AvFsuB)CAVFsuB)C(AVvFyvB)C(AvF, v B)

so that

(AvF4uB)=(AuFsuB) for arbitrary BCR.

Hence D4CF4C (R——(p—-al,p +81)), so that p ¢ D4. Therefore, it has
been. demonstrated that DsC Ga ‘

Secondly, it must be shown that if p eG4, then p e D4 If pe AT,
then it follows from {2], that AT C D4 so that p « D4 Thus we will con-
sider p € (Ga—A7). y

Ifp € G4, then p ¢ A and for any &> 0 either

(=) AP £0 or (B, pFe AP ~0.

Clearly, it (p—&;, p) ~ 4)° =0, then (p—¢, p) ~ A)° =0 for 0 < e< &,.
Thus, either ((p—e,p)~ AP @ for all €> 0, or (p,p+e)nA) 0
for all e> 0.
In addition, it p ¢ A" and p ¢ 4, then for all &> 0, either
YA =r

I (p—e,p) C(p—e, p) ~ 4, then

(2yp+e) & (p,pFe)nd.

(P—%?)Q(P‘E,P)nA - for 0<a<51,
Thus, either

(p—e,0) E =6, P)~ A for all >0,

Semi-topological properties
or there exists & > 0 such that

P—e,2)C(p—e,p)~nd  for 0<e<y.

Now if pe(Gs—A*), note that p¢ A and ped. Thus consider
B = (E— 4); observe that (4 v B) = (B—(A—4)); and by Theorem 0.6,
(AU B)= (R—(A—-4))=R.

Hence p « (4 v B). Note that p e 4, so that PéB.

Now it will be shown that p ¢ B. Without loss of generality, it will
be assumed that

(p—2,2)~4)° 2@ forall e> 0.
Then there are two cases: either
(P—E,P)g_:(P—S,p)f\A for all e>0,

or there exists ¢; > 0 such that
(P—e,p)C(p—e,p)n 4 for
Casge I. For all £> 0,
(p—e,p)nA) %0
and we wish to consider
(p—e,p) " B)=[(p—e,p) ~ (R—2)]
= (p—e,p)—4) Cl(p—e,p)—(p—¢,p) ~ 4]

0<egye.

and (p-e,p)i(?)—-s,p)nA,

since (p—e, )~ A C A. Thus

(p—e,P)NBC (p—e,p)~(p—e,p)n 4
Clp—eg v iptvlo—e,p—(p—<,2)~4)]).
Therefore, since

(p—e,p)nA)#0, (p—&,p)E (p—2,p) B

for all &> 0; that is, p ¢ BY. Thus, in this case p ¢ B.

Case IL For all >0, ((p—e, p) ~A)° = @, and there exists & > 0
such that

(p—e,p) Cp—e,p)nd for  0<e<g.
Again, -consider

(p—e;p)nB) C((p—e,2)—p—e,p)~4) =0
17*
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for 0 < & < &; thatis, p ¢ BY. Thus in this case p ¢ B. Hence, if p e (G4—47F),
defining B = (R—A) we have p e(4 v B) while p ¢ 4 and p ¢ B. Thus
since

pe(dvDygvB)=(4dvDsvB),

it follows that p e D4.

Consequently, it has been shown that D4= G4

ExXAMPLE 1.6. It follows then, from the last two theorems, that
in the finest topology on the real numbers with the usual semi-open sets,
the closed sets are those which contain every point having the property
that arbitrary neighborhoods of the point in the usual topology intersect
the set in sets whose closures have nonvoid interiors in the usual topology.

Thus, in this topology, the open sets are those which have the property
that every point in the set has a sufficiently small neighborhood in the
usual topology which intersects the complement of the set in a set which
is nowhere dense in the usual topology. Therefore the finest topology
on the real numbers for which the semi-open sets are those of the usual
topology is the collection {0 —N} where O is open in the usual topology
and N is nowhere dense in the usual topology. Notice that both O and N
vary over all such choices. :

Remark 1.7. The finest topology on the real numbers with the
usual semi-open sets as described in Example 1.6 is not locally connected
nor is it first countable, while the usual topology is locally eonnected
and first countable. Thus local connectedness and first countability are
not semi-topological properties. ’

2. Semi-topological classes.'If X is a set of points, let T'(X) denote
the collection of all topological spaces which haye X as their set of points.

DerFmrTION 2.1. If X is a set of points and if (X, 7) and (X , T*) are
two elements of T(X), then (X, <) is semi-correspondent to (X, v*) if and
only if SO(X, 1) = 80(X,7*). o

TEEOREM 2.1. Semi-correspondent is an equivalence relation on the
collection T'(X). ) ol

Proof. (1) Clearly (X, 1) is semi-correspondent to itself for any
topology = on X. ‘

(2) Symmetry follows from the symmetry of set equality.

(3) Transitivity follows from the transitivity of set equality.

Thus the collection T'(X) of topological spaces is ‘partitioned into
equivalence classes. Let [X,S0(X,7)] denote the equivalence class of
topological spaces with the same collection of semi-open sets as (X, 7).
As was shown in [2], [X, SO(X, 1)] contains a maximal topological space
in the sense that the topology induced on X by the semi-closure operator
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is finer than the topology on any other space in [X,S0(X, )], and of
course the topology so induced gives a topological space in [X, 8O(X, 7)].
DeFINITION 2.2. If (X, 7) is a topological space, the finest topology
on a space in [X,80(X, 7)] is denoted by F(x).
DEFINITION 2.2, The equivalence classes of T(X) under the relation
of semi-correspondence will be called the semi-topological classes of X.

Remark 2.1. Although a semi-topological class contains a topological
space with the finest topology, it need not contain a topological space
with a coarsest topology, as is indicated by the following example.

- ExameLE 2.1. Let X = (0,1) and define v, and 7, a8 follows. Let 7,
consist of @ and all sets of the form (0,27 for n = 0,1,2, ... Letz,

consist of @ and all sets of the form (0,37") for n =1, 2,3, ...

Clearly, both 7, and =, are topologies on X. Note that in either case,
the closure of any nonvoid open set is X. Furthermore, in either topology,
a nonvoid set is semi-open if and only if it containg a set of the form(0, a)
where 0 << ¢ << 1. Thus (X, 7;) iy semi-correspondent to (X , Ta), and both
belong to the same semi-topological class. Note, however, that the only
topology coarser than both z; and , is the trivial topology. But X together
with the trivial topology does not belong to [X, SO(X, ). Thus, semi-
topological classes do not necessarily contain a topological space minimal
in the sense that its topology is the coarsest giving the same collection
of semi-open sets.

The proofs of the following two theorems are immediate from the
definitions.

TEEOREM 2.2. If f: (X,7)—>(¥,v%) 4s irresolute, and if (X,7)
e[X,80(X, )] and (¥,¥) e[Y,80(Y, "], then f: (¥,v)>(X,) is
irresolute.

TarorEM 2.3. If f: (X,7) (X, %) is semi-continuous, and if (X, z,)
e[X,80(X, )], then f: (X, 7,) (Y, v*) is semi-continuous.

THEOREM 2.4. If (X, 7*) is a T, space and (X,7) ¢ [X,S0(X, %),
then (X,7) is T,. '

Proof. The proof of this theorem is given in a series of steps, thirteen
of which, for lack of a better name, are called lemmas.

‘Without loss of generality, we may take the T, topology z* t‘o
be F(z*); see the discussion following Theorem 2.1. We may do this
because if any topological space in [X, SO(X, v*)] is T,, the finest topo-
logy F(v*) is also T,.

*  The proof is by contradiction. Assume that there is a space (X,7)
e[X,80(X, z*)] such that v is not T,. There are three cases:
(I) = is T, but not T,,
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(IT) 7 is T, bub not T,, or

(II1) 7 is not T,.

Case I If v is T, bub not T,, then there exist distinet points a and b
such that for all 4 and B in 7 such that @ € 4 and b ¢ B, we have (4 ~ B)
=+ @, Since 7 is T, we may choose A and B such that b ¢ 4 and a ¢ B,

Tmwva 2.1. Under these hypotheses, both a and b are in (4 ~ B),
where | ) denotes the closure in .

Proof of Lemma 2.1. Otherwise, say if

a¢(Ad~B), ([An(X—AnB)er

and is disjoint from B while containing a. Similarly, if b¢ (4 ~ B),
(B~ (X—4 ~B)) er and is digjoint from 4 while containing b.

LmaiA 2.2. Under these hypotheses, (4 ~ B) v {a,b}) eSO (X, v¥).

Proof of Lemma 2.2. By Lemma 2.1, (4 ~n B)C (4 ~ B) v {a, b})
C (4 ~ B), so that ((4 ~ B) v {a, b}) SO (X, 7) = SO(X, v*).

Levma 2.3. Under these hypothesés, both a and b are in (A ~ B)¥,
where ( )* denotes the closure in T*.

Proof of Liemma 2.3. Otherwise, either a ¢ (4 ~ B)*, b ¢ (4 ~ B)¥,
or meither ¢ nor b is in (4 » B)*

If a¢(4~ B) and be(4  B)*, then since ((4~ B)u {a,b}) is
n SO(X, 7*), either (4 ~B) v {a}) or (4 ~ B)u {a,b}} is in z*. But
note that

4 ~B)via] XA~ B ={a},
and

(A~ B)v {a, ] 0 [X~(4 ~ Bj]) = {a}

so that in either case, {a} ev*. Thus {a} ¢SO (X,7), and it follows b&
Theorem 0.3 that {a} ev, but this is impossible by the way in which a
and b were chosen.

Similarly, it is impossible that b ¢ (A ~ B)* and a <[4 ~ B)*.

If a¢(4n B)* and b¢(4d~ BJ*, then since (4~ B)u {a, b}) is
in 80(X, %), either (4~ B)u {a}) or (4~ B)u {}) or (4 ~B)u
w {a,b}) is in 7*. In a manner similar to that of the above part of the
proof, it is impossible that ((4 ~ B) v {a}) ez* or (4 ~B)u {0}) e+
If ((4 ~ B) v {a, b}} 7% then as before {a, b} e 7. Thus {a, b} ¢SO (X, 1)
and by Theorem 0.3 and the above argument it follows that {a b}7e 'c?
But {a, b} e v implies that {4} v and {b} ¢ so that this is also impc’)ssible.
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Hence both a and b are in (4 ~ B)*. Thus the proof of Lemma 2.3
is complete.

Now there exist sets ¢ and D in t* such that ae(, beD, and

‘(0/\D)=®.

LeEMMA 2.4, Under these hypotheses, (C~ (A~ B)#0 and (D
Proof. of Lemma 24. If (0~ (4~B))=@, then (4~ B)*

C(X—0) so that a¢ (A4 ~ B)* which contradicts Lemma 2.3. Similarly,
(D ~ (A ~ B))  @. This completes the proof of Lemma 2.4.

The sets ¢ and D may or may not be in 7, but they are in SO(X, 7).
Thus there exist open sets ¥ and ¥ in v C ¢* such that B C ¢ C ¥ and
FCDCF. Note that (Fn~(4nB)+#0 and (Fr(A~B) =0 by
Lemma 2.4, and since ¢ C E and DC F.

LmvmaA 2.5. Under these hypotheses, a e F and b < B.

Proof of Lemma 2.5. If a ¢ F, then (A ~ B) C F for otherwise
(A—F)er and ((A4—F)n B) 0. Then by the same argument as in
the lemmas above, [((4—F) ~ B) n D] + @; that is ((4—F)~ D)= @
but D C F. Thus (4 ~ B) C F. But (A ~ B) C Fimplies that {{4 —F) ~ B)
= @ which contradicts the way a and b were chosen. Thus a ¢ F. Similarly
b ¢ E. This completes the proof of Lemma 2.5.

Thus (F v {a}) and (E v {b}) are semi-open in 7, and in z*

LEMMA 2.6. Under these hypotheses, {a} et* and {b} ev*.

Proof of Lemma 2.6. (F w {a}) is semi-open in 7* while F* C (X~ 0);
thus (F v {a}) ev*. Thus ((F v {a}) ~ C)er* Similarly {5} ev*. This
completes the proof of Lemma 2.6.

By Theorem 0.3, since {a}ev* and {b}ez* ;we have {a}ez and

" {b}er as before. But this contradicts the way in"which ¢ and b were

chosen. Thus Cage I leads to & contradiction.

Case II. If 7 is T, but not T,, there exists a pair of distinet points a
and b such that for all A and B in v sueh that @ e 4 and b « B, we have
(A ~ B)  @. Since 7 is T, but not T,, we may choose A and B such
that b ¢ A and a ¢ B; that is, o and b are such that every neighborhood
of a contains b, but there exists a neighborhood of b which does not
contain a.

LevMA 2.7. Under :these hypotheses, a € (4 ~ B).

Proof of Lemma 2.7. If a ¢ (4 n B), then

(4 ~[X—{A~B)er, and ae (4~ [;g_’(A“"n By
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which is disjoint from B. This contradiets the hypothesis that every
z-neighborhood of a intersects B.

Levva 2.8. Under these hypotheses, (4 ~ B) v {a}) e SO(X,7*).

Proof of Lemma 2.8. By Lemma 2.7, (4 ~B)C (4~ B) v {a})
C (4~ B) so that (4~ B) v {a}) ¢SO(X,7) =8O(X, v¥).

LevMA 2.9. Under these hypotheses, a ¢ (4 ~ B)*.

Proof of Lemma 2.9. If a¢ (4 ~ B), then (4 n B) v {a}) er*.
But then,

[((A~B)v {a}) ~ (X—(4 ~ B)¥)] = {a} ez*.

As Defore, this leads to a contradiction. This completes the proof of
Lemma 2.9. :

Now there exist sets ¢ and D in z* such that a0, b €D, and
(C ~ D)= 0@. The sets ¢ and D may or may not be in 7, but they are
in 8O(X, 7). Thus there exist open sets B and F in 7 C t* guch that E cc
CEand FCDCPF.

Lmwya 2.10. Under these hypotheses, a ¢ F. )

Proof of Lemma 2.10. If a¢F, then (4 ~(X—F)) is an open
set in 7, containing a which does not contain b. This is a contradiction,
and the proof of Lemma 2.10 is completed. -

Thus (F v {a}) is semi-open in v and in z*.

Leania 211, Under these hypotheses, {a} e t*.

Proof of Lemma 2.11. (Fu {a}) is semi-open in <* while F*

C (X—0). Thus, (F'v {a}) is in 7* Therefore, ((F U {a}) ~ 0) = {a}ex*.

This completes the proof of Lemma 2.11.

By Theorem 0.3, since {a} ¢ t*, we have {a} e as before. This con-
tradicts the way that ¢ and b were chosen. Thus Case ITI leads to a con-
tradiction. i

Case III. If 7 is not T,, then there exist distinet points ¢ and b such
that every z-neighborhood of & containg b, and every ¢-neighborhood
of b contains a; that is, for all A and B in v such that ¢ ¢ 4 and b ¢ B,
we have (4 ~ B)D {a, b}.

Now there exist ¢ and D in v* such that ¢ ¢ C,beD,and (( ~D)=0.
The sets € and D may or may not be in 7, but they are in 80 (X, 7). Thus
there exist open sets B and F in v C v* such that ECOCEandPCDCPF.
Note that a ¢ E, and be 7. -

LA 2.12. Under these hypotheses, a « F and b < T,

Proof of ~Lemma, 212. If a¢F, (A~ (X—F)) is an open set
containing a which does not contain b, which is impossible. Similarly,
b e E. This completes the proof of Lemma 212,
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Note that as a consequence of Lemma 2,12, (¥ . {a}) and (B © {B})
are semi-open in z and in z*. ‘
Levma 2.13. Under these hypotheses, {a} ev* and b} e v*.
Proof of Lemma 2.13. (Fu {a}) is semi-open in 7* while F*
C (X—0). Thus (F v {a}) e *. Therefore, ((F u {a}) ~ 0) = {a} € 7*. Simi-
larly, {b} e v*. This completes the proof of Lemma 2.13.

By Theorem 0.3, since {a} and {b} are in t* we have {a} and {b}
in v as before. This contradicts the way in which ¢ and.b were chosen.
Thus Case III leads to a contradiction.

Consequently, it-has been shown that z must be T,.

TEEOREM 2.5. If f: X ->Y is & semi-homeomorphism, then Dyay=f(D.).
Proof. D4 is the minimal set such that
(AvDsuB)=(AuDs4uB) forall BCX.
Dy4y is the minimal set such that
(f(4) v Dyyy v B) = (f(4) v Dyyyw B) forall BEC Y.

Note that in this proof, the same notation for semi-closure and the closure
induced by the operator will be used in X and Y.
First, it will be shown that :

(f(4) © f(Da) v B) = (f(A)Uf(DA)‘U E) for'all ECTY;

that is, Dyg C f(Da). Consider (4 v Dav fY(E)) for arbitrary EC Y.
Then ‘

(AvDavf(B)=(AdvDsuf(B)=(4dvDivfiB)
by Theorem 1.10. Also note that
flAuDavF(B) =flA v Dsvfi(B)
- =[(4) v f(Da) v ff(B) =f(4) v f(Da) v B

by Corollary 1.1 and the fact that f is one-to-one and onto. But we also
have, ‘

flAvDav Y (B) =flA wDsvf(B)
= [f(4) v f(Da) v f(f(E)] = [f(4) v (D) v E].

Hence, Djy C f(Da).
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Next, it will be shown that f~(Dy.) D Dy; that is,

(4w f(Dyay) v B)= (4 v f(Dya) v B) for all. B C X.

Qonsider (f(A) v va(A) Uf(B)) for any B QX Then
f(4) v Dyy v (B) = (f(4) v Dy v f(B)) = (f(4) © Dyy v £(B))
by Corollary 1.1. Thus, '
FHFA) © Doy F(B) = F(F(4) © Dy o £(B)

= [TfA) © T (Diw) v F{F(B))]
=[4 v (Dya) v B].

But also,
F{f(4) © Dy v §(B)) = f{f(4) © Dyay v £(B)
=F{f(4) v 7 (Dyay) © £ (F(B))
=AY (Dyw) v B.

Thus .DA_C_f'I(_Dj(A)). Hence, f(DA) g_f(f_l(D,«(A,)) = .D/(A), and together
with the first part, this shows that f(Da) = Dyg.

THEOREM 2.6. If f: (X,7)~>(Y,0) is a semi%omeomm*phism, then
f: (X, @) ~{¥,F (o)) is o homeomorphism, where F(r) and F(c) are as
defined in Definition 2.2. - )

"~ Proof. f is already known to be one-to-one and onto. If A is any
subset of X, ‘ : o

FA) = (4 v Da) = (f(4) © §(D) = (F(4) © D) = (f(A)*

by Theorem 2.5, where ( )" denotes the clogure induced as in [2], on
both sets of points. Similarly, f~(B¥) = (F7(B))* for any BC Y since
fis also a semi-homeomorphism. Thus fis a homeomorphism, con-
sidered as a function from (X yF(z)) onto (¥,F (o)) ‘
THEOREM 2.7. T, is a semi-topological property.

. P?oof. If f: (X,7)>(¥,0) is 3 semi-homeomorphism and (X ), T)
is T}, it must be shown that (¥, o) is 7, also. By Theorem 2.4, (X, F(q))
is T,. Thus by Theorem 2.6, {¥, F(o)) is T,, and by Theorem 2.4,
(Y,0) is T,. )

THEOREM 2.8. If A is dense in (X 1)y then A 4s dense in (X, P(x).
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Proof. If 4 is dense in (X, 7), then 4 — X. Furthermore, 4*C T ¥
where ( )* denotes the closure in (x » F(7)) as in [2]. Tt must be shown
that A*= X. The proof is by contradiction. Assume A*C X, then
(X — A% % @, and (X —A") e F(v). Thus (X — 4k eSO(X,7) 80 éha.t by
Theorem 0.3, there exists a nonvoid open set 0 ¢+ such that 0 C (X ~A"i.
Also (0 A)=0, so that A C(X¥—0)CX. But this implies that 4
C(X—0)CX which is a contradiction. Thus, 4% = X, and 4 is dense
in (X7F(T))

THEOREM 2.9. Lét (X, 7) and (¥, o) be topological spacss, let (X, )
(X, 0) be a semi-homeomorphism, and let A C X be dense in (X, 7).
Then f(A) is dense in (¥, o).

Proof. By theorem 2.8, 4 is dense in (X y F'(z)). Furthermore, by
Theorem 2.6, f(4) is dense in (¥, F(o)). We see from [2], that
(f(4))* C F(4). Thus, f(4) is dense in (¥, o). :

THEOREM 2.10. Separability is a semi-topological property.

Proof. If X and Y are topological spaces, f: X -Y is a semi-homeo-
morphism, and X is separable, then theére exists a countable dense sub-
set 4 of X. Then f(4) is dense in ¥ by Theorem 2.9 and countable since
f is one-to-one. Thus Y is separable.

TEROREM 2.11. If (X,7) is & lopological space and (X yF(z) s
separated, then (X, ) is also a separated space.

Proof. If (X ,F(r)) is separated, then there exist sets 4 and B
in F(z) such that 4 and B are nonvoid, (4 v B) = X, and (4 ~B)=0.
Now 4 and B are in 8O(X, 7), so there exist nonvoid sets 0 and U in v
such that 0 C 4 C Oand U C BC U where ( ) denotes the closure in (X, 7).
Then note that since (4 v B)=X, (0w U)=X..

Consider (O~ T). If (O~ U)=0, then (X,z) is separated since
0= (X—T) is open as well as closed. :

On the other hand, if # € (0 ~ U), then it will be shown that {z} is
an open set in 7. Firgt, either © € 4 or x ¢ B. Without loss of generallit&
it will be assumed that » e A, so that ¢ B. Now UCBC T and ze T
so that U C (B v {w}) C T; that is, (B v {z})  SO(X, 7). Thus (B v {z}) is
semi-open in (X, F(z)). But B is both open and closed in (¥, F(z)), so
that B = B. Thus, since (B v {z}) is semi-open in (X, F(v)} it must be
the case that (B u {z}) e F(z). Therefore, [(B v {&}) ~n AleF(z), but
[(B v {@}) n A] = {z}. Thus {z} is in P(r). Hence {z}.« SO(X,z). Thence
by Theorem 0.3, {#}e7. Consequently, since # was an arbitrary point
of (O ~ T) it follows that every point of (0 ~ ), considered as a singleton
set, is open in 7. Hence, since any union of open sets is open, (0 n U)

“is open in 7. But 0 and T are closed in 7 so that (0 ~ U) is also closed in z.
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Furthermore, O C (X—U) so that (0~ U) is not X. Thus, (0 ~ T) i
both open and closed, but it is neither empty nor the whole space. Hence,
(X,7) is separated. o

. TapoREM 2.12. Conmected spdee is a semi-topological property,

Proof. If (X, 7) is connected, and f: (X, ) (Y, o) is a semi-homeo-
morphism, it must be shown that (¥, o) is connected. Now since (X, 1)
is conmected, it follows that (X,F(r)) is connected, for otherwise by
Theorem 2.11, (X, t) would be separated which would be a contradiction,
Thus by Theorem 2.6, (¥, F(o)) is eonnected and F(s) is finer than o,
(¥, o) is also connected.

Whereas it is not the case in general, that in a subspace of a topo-
logieal space, a set will be semi-open if and only if it is the intersection
of the subspace with a semi-open set in the larger space, we do have the
following . result. ’ '

TreoREM 2.13. If (X, 1) is a topological space amd if U is an open
subset of X, then a set § is semi-open in (U,r ~ U), where (v ~ U) denotes
the relaiive topology on U, if and only if there ewisis a set A « SO(X ,T)
such that (A ~ U) = 8.

Proof. Necessity. If § C U is semi-open in (U, z ~ U), then there
is-a set O e (v~ U) such that 0 C 8§ C 0" where ( )" denotes the clogure
in the relative topology. But O is open in (X, ) since U is open and
0"CO. Thus 0CS8C O and § is semi-open in (X, 7). ,

Sufficiency. If 8= (4 ~ U) where A.e80(X,7), then there is
a set 0 e such that O C A C 0. Note that (U ~ 0) C (4 ~ T) = §. Now
it remains to be shown that 8 C (U ~ 0. If ¥ isany open set of (T, T)
confaining an arbitrary point p in 8, not in (U A 0), then N is open
in (X,7) and §= (4 ~ U)C O so that ((N—{p}) 0) # @. Then since
NCU,(N~{p}) ~ (0~ U) #0,s0thatpe(0 ~u)". Thus § C (T~0y,
and 8§ is semi-open in (U, v ~ 0).

Whereas it has been demonstrated that the image of a connected set

under a semi-homeomorphism is not necessarily connected, we do have
the following result.

T.HEOBEM 214. If f: (X,7)>(Y,0) is a semi-homeomorphism, and
if U is an open, conmected subset of (X 2 7); then f(U) is a conneced sub-
set of (¥, o).

Proof. The following two lemmas will be useful in this proof.

Levuma 2.14. If O is an open conmecied subset of (X, v), then O is open
and commected in (X,F(z)).

Proof of Lemma 2.14. Now 0 is also open in (X,F(r)).’ Thus,

by Theorem 2.13, the semi-open subsets in (0,7~ 0) and (0, F(z) ~ 0)
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are the same. Therefore, the identity function on O is g semi-homeo-
morphism, and by Theorem 212, 0 is connected in (O, Fz) n 0)_ Thus
0 is connected in (X ,F(r))_ .

Lmyva 2.15. If O is am open commected subset of (¥, F(0), then 0 is
connected in (X, o).

Proof of Lemma 2.15. It will be shown that 80(0, F(s) ~ 0)
= 80(0, 0~ 0) in which event the identity on 0 is a semi-homeomor-
phism and O is connected in (0, o ~ 0), and thus O is connected in (Y, 0).

It 8 80(0,F (o) ~ 0), then § = (4 ~ 0) where A «80(Y, F(0)) by
Theorem 2.13. Thus since by Theorem 0.5 (4  0) «S0(Y, F(0))
=80(Y,0), we have an open set Ve¢ such that VC (4 ~0)C ¥
where ( ) denotes the closure in (¥, o). Then V is also open in (0, o ~ 0).
Furthermore, if p e ((A ~ 0)-V) and N is any open set of (0,0n0)
containing p, N = (M ~ 0) where Meco so that (M —{p}) ~ V) #= 0
since p V. Thus, since V C O, (FN—{p}) V) #0 so that p 7,
where ()" denotes the closure in (0, ¢~ 0). Thus ¥ C (4 ~ 0)CV,
and (4 » 0) = 8 e80(0, o ~ 0). Hence, SO(O,F(U) ~0) C80(0,an0).

- If §¢80(0, 0~ 0), then there exists an open set B €{o n 0) such
that B C 8§ C B". Now since B e (s ~ 0), there is an open set W ¢ ¢ such
that B = (0 n W). Also, W C (W v 8) C W since 8§ C.B" C BC W. Thus
(Ww 8)eSO(Y,0)= SO(Y, F(a)). Hence by Theorem 2.13, [(W v §)
~ 0]€80(0, F(o) ~ 0). That is, [(Wu8)n0]=[Wn0)u(8n 0)]
= (B v 8) = 8isin80(0, F(0) n 0),and 80(0, ¢ ~ 0) CSO(0, F(o) n 0)
80 that equality holds, and the proof of Lemma 2.15 is complete.

Proof of Theorem 2.14. If T is an open connected subset of (X, 7)
and f: (X,7)->(Y, o) is a semi-homeomorphism, then by Lemma 2.14,
U is open and connected in (X , B (r)). By Theorem 2.6, then, f(T) is open
and connected in (¥, F(c)). Thus, by Lemma 2.15, f(U) is connected
in (Y, o).

Remark 2.2. As a result of Theorem 2.13, Theorem 2.14, and the
part of the proof of Lemma 2.15 which demonstrates that if O ¢ F(o),
then SO(O, F(o)n 0) =80(0,0n 0) we have the following two
corollaries:

CoroLLARY 2.1. If (X, 1) is a fopological space and if U e F(z) then
8 is semi-open im (U, v ~ U) if and only if there exists a set A e SO(X,7)
such that (4 ~ U) = 8. .

CoroLLARY 2.2. If f: (X,7)~(Y,0) is a semi-homeomorphism, and
if UeF(r) and U is connected in (X,t) then f(U) is a connected subset
of (¥, 0).
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Page 194°7% The Words: “Since the set L(X) is a boundary set
(see [3]) a,nd L(X) 'DF( ) “(see [4]), for every point p ¢ S(X) there exist
numbers .. :

should be replaced by the words: “It is known (see [8]) that
IntS(X) # 0 and that I(X) D F(X) (see [4]). Hence there exist & pomt
» ¢ 8(X) and numbers ..."”.
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