

Concerning indecomposable continua and upper semi-continuous collections of nondegenerate continua*

b

Nell Elizabeth Stevenson ** (Binghamton, N. Y.)

The first theorem of this paper gives a condition sufficient to ensure that the closure of the union of the terms of a sequence of continua be an indecomposable continuum. The second gives a set of conditions sufficient to ensure that the closure of the union of some continua be filled up by an upper semi-continuous collection of mutually exclusive nondegenerate continua. These two theorems hold in any metric space. A corollary to the second theorem is that every compact, metric, hereditarily indecomposable continuum is filled up by an upper semi-continuous collection of mutually exclusive nondegenerate continua. The remainder of the paper is concerned with the description, in the plane, of a compact indecomposable continuum which is filled up by an upper semi-continuous collection of mutually exclusive nondegenerate continua and which contains a decomposable continuum. The terminology and notation used in this paper is, with a few exceptions, that of R. L. Moore [2].

THEOREM 1. Suppose M_1 , M_2 , ... is a sequence of continua such that for each positive integer n, M_n is a proper subset of M_{n+1} , $\overline{M_{n+1}-M_n}$ is an irreducible continuum from M_n to some point of $M_{n+1}-M_n$, and

^{*} Drawn from the author's dissertation, which was prepared under the supervision of R. L. Moore and presented to the faculty of the Graduate School of the University of Texas at Austin in partial fulfillment of the requirements for the degree of Doctor of Philosophy; presented to the American Mathematical Society, January 22, 1970.

^{**} This research was supported by a National Science Foundation Fellowship, and by a University Fellowship provided by the University of Texas at Austin. The author is presently an assistant professor at the State University of New York at Binghamton, N. Y.

 $u(M_n, M_{n+1} - M_n) < 1/n$ (1). Then if $\overline{M_1 \cup M_2 \cup ...}$ is hereditarily unicoherent, it is an indecomposable continuum.

Proof. Clearly, $\overline{M_1 \cup M_2 \cup ...}$ is a nondegenerate continuum. Suppose it is hereditarily unicoherent. Suppose H and K are two continua whose union is $\overline{M_1 \cup M_2 \cup ...}$ Suppose that, for some n, M_n is a subset neither of H nor of K. Let P and Q denote points of $M_n \cap (H-H \cap K)$ and $M_n \cap (K-H \cap K)$ respectively. There is an $\varepsilon > 0$ such that l(P, K) $> \varepsilon$ and $l(Q, H) > \varepsilon$. There is an integer i > n such that $1/i < \varepsilon$. Then $M_{i+1}-M_i$ intersects both $H-H\cap K$ and $K-H\cap K$, since $l(P,M_{i+1}-M_i)$ <1/i and $l(Q,M_{i+1}-M_i)<1/i$. For some point X of $M_{i+1}-M_i,\overline{M_{i+1}-M_i}$ is irreducible from X to M_i . Either H or K contains X. Suppose H does. Then $\overline{(M_{i+1}-M_i)} \cap H$ is a proper subcontinuum of $\overline{M_{i+1}-M_i}$ containing X. Since $M_i \cap H$ is a proper subcontinuum of $M_{i+1} \cap H$, $M_i \cap H$ contains a point of $\overline{M_{i+1} \cap H - M_i \cap H}$. Since $\overline{M_{i+1} \cap H - M_i \cap H}$ is a subset of $(\overline{M_{i+1}-M_i}) \cap H$, $(\overline{M_{i+1}-M_i}) \cap H$ intersects $M_i \cap H$. Thus $(M_{i+1}-M_i) \cap H$ is a proper subcontinuum of $M_{i+1}-M_i$ containing X and intersecting M_i . This involves a contradiction. The supposition that K contains X leads to a similar contradiction. Thus, for each n, M_n is a subset either of H or of K. Therefore either H or K contains $M_1 \cup M_2 \cup ...$

THEOREM 2. Suppose H is a collection of continua such that

- (1) $\overline{H^*}$ is compact,
- (2) if a is a convergent sequence, each term of which is an element of H, the limiting set of a is a nondegenerate proper subset of \overline{H}^* , and
- (3) if $\varepsilon > 0$, there is a $\delta > 0$ such that if h' and h'' are two elements of H and $l(h',h'') < \delta$, then either $u(h',h'') < \varepsilon$ or $u(h'',h') < \varepsilon$.

Then $\overline{H^*}$ is the union of the elements of an upper semi-continuous collection of mutually exclusive nondegenerate continua.

Proof. Suppose that g_1, g_2, \ldots and h_1, h_2, \ldots are two convergent sequences of elements of H having limiting sets g and h respectively, and g intersects h. Suppose neither g nor h is a subset of the other. Then there exist an $\varepsilon > 0$ and a positive integer n such that, if i > n, there are two points P_i and Q_i of g_i and h_i respectively such that $l(P_i, h_i) > \varepsilon$ and $l(Q_i, g_i) > \varepsilon$. There is a $\delta > 0$ such that if h' and h'' are two elements of H and $l(h', h'') < \delta$, then either $u(h', h'') < \varepsilon$ or $u(h'', h') < \varepsilon$. There is an integer k > n such that $u(g, g_k) < \delta/2$ and $u(h, h_k) < \delta/2$. Then $u(g \cap h, g_k) < \delta/2$ and $u(g \cap h, h_k) < \delta/2$, therefore $l(g_k, h_k) < \delta$. There-

fore either $u(g_k, h_k) < \varepsilon$ or $u(h_k, g_k) < \varepsilon$, so either $l(P_k, h_k) < \varepsilon$ or $l(Q_k, g_k) < \varepsilon$. Since k > n, this involves a contradiction. Therefore one of the sets g and h is a subset of the other.

For each point X of $\overline{H^*}$, let J_X denote the collection to which j belongs only if j contains X and is the limiting set of a convergent sequence of elements of H. Suppose X is a point of $\overline{H^*}$. Since J_X is a monotonic collection of closed and compact point sets, there is a sequence j_1, j_2, \ldots of elements of J_X such that, for each n, j_n is a subset of j_{n+1} , and every element of J_X is a subset of some set of this sequence. For each n, j_n is the limiting set of a convergent sequence of elements of H, so there is an element h_n of H such that $u(j_n, h_n) + u(h_n, j_n) < 1/n$. The sequence h_1, h_2, \ldots has $\overline{J_X^*}$ as a sequential limiting set. Thus $\overline{J_X^*}$ is itself an element of J_X . Thus $\overline{J_X^*}$ is J_X^* . Suppose Y and Z are two points of $\overline{H^*}$, and J_Y^* intersects J_Z^* . Then, since each is the limiting set of a convergent sequence of elements of H, one of J_Y^* and J_Z^* is a subset of the other. Suppose J_Y^* is a subset of J_Z^* . Thus J_Z^* is a subset of J_X^* . Thus J_Z^* is a subset of J_Y^* . Similarly, if J_Z^* is a subset of J_Y^* , J_Y^* is J_Z^* .

Let G denote the collection to which g belongs only if, for some point X of $\overline{H^*}$, g is J_X^* . Then if g_1 and g_2 are two elements of G, g_1 and g_2 do not intersect. Each element of G is both a nondegenerate continuum and a proper subset of $\overline{H^*}$, and G^* is $\overline{H^*}$, so G is a nondegenerate collection.

Suppose g_1, g_2, \ldots is a sequence of elements of G, for each n, A_n and B_n are points of g_n , and A_1, A_2, \ldots converges to a point A of the element g of G. Suppose there is an infinite subsequence of B_1, B_2, \ldots such that no infinite subsequence of it has a sequential limit point lying in g. Then, since G^* is closed and compact, there is an increasing sequence n_1, n_2, \ldots of positive integers such that g_{n_1}, g_{n_2}, \ldots converges to a set L that is not a subset of g. Since A_{n_1}, A_{n_2}, \ldots converges to A, L contains A. For each positive integer k, there is a set k_k of H such that $u(g_{n_k}, h_k) + u(h_k, g_{n_k}) < 1/k$. The sequence h_1, h_2, \ldots has L as a sequential limiting set. Thus L is an element of L Since L is therefore a subset of L. This is a contradiction. Thus every infinite subsequence of L is an upper semi-continuous collection.

COROLLARY. Every compact, hereditarily indecomposable continuum is filled up by an upper semi-continuous collection of mutually exclusive non-degenerate continua.

Proof. It may be shown that if M is a compact, hereditarily indecomposable continuum, the collection G of all nondegenerate subcontinua of M satisfies condition 3 of the hypothesis of Theorem 2. There is a subcollection H of G filling up M such that every element of H has a diameter

⁽¹⁾ If M is a point set and P is a point, then by l(P, M) is meant the lower bound of the distances from P to all the different points of M. If M and N are two point sets, then by l(M, N) is meant the lower bound of the values [l(P, N)] for all points P of M, while by u(M, N) is meant the upper bound of these values for all points P of M. It is to be observed that u(M, N) may be different from u(N, M).

at least 1/3 of and no greater than 2/3 of the diameter of M. The collection H satisfies the hypothesis of Theorem 2.

DEFINITION. Let g be the graph of

$$f(x) = \begin{cases} \frac{1}{2} \sin \frac{1}{x} & \text{if } 0 < x \le \frac{1}{2}, \\ \frac{1}{2} \sin \frac{1}{1-x} & \text{if } \frac{1}{2} \le x < 1, \end{cases}$$

and let I_1 and I_2 be the vertical intervals whose union is $\bar{g}-g$. The continuum M will be said to be a Q-set if and only if there is a homeomorphism h of \bar{g} onto M such that $h(I_1)$ and $h(I_2)$ are vertical intervals of length 1, and no vertical line contains two points of h(g). Loosely speaking, a Q-set would be a copy of a continuum which could be obtained in two reversibly continuous steps, the first step consisting of either leaving \bar{g} alone, or expanding or contracting \bar{g} horizontally (while keeping $\bar{g}-g$ vertical), and the second step consisting of moving I_1 or I_2 or some points of g either straight up or straight down or not at all. If M is a Q-set, the vertical intervals of M corresponding to I_1 and I_2 will be called the ends of M.

EXAMPLE. Let AB denote an interval of the X-axis having length 4, and let C denote a Cantor set lying in AB and containing A and B such that every component of AB-C has length less than 1. For each component T of AB-C, let R_T denote the vertical rectangular disc (that is, a rectangular disc with two of its sides vertical) of height 1 which has \overline{T} as its lower horizontal side, and let Q_T denote a Q-set lying in R_T whose ends are the vertical sides of R_T . Let M_1 denote the closure of the union of all the point sets Q_T for all components T of AB-C. Then M_1 is a compact continuum which is the union of the elements of an upper semi-continuous collection H_{M_1} of mutually exclusive nondegenerate continua such that h belongs to H_{M_1} only if either h is an element of the collection Q of all points sets Q_T for all components T of AB-C, or h does not intersect Q^* but is the limiting set of a convergent sequence of elements of Q. With respect to its elements, H_{M_1} is an arc, and the end elements of H_{M_1} are the vertical intervals of length 1 whose lower endpoints are A and B. Every maximal vertical interval of M_1 has length 1 and is either an element of H_{M_1} or an end of a Q-set element of H_{M_1} , and is a component of the union of all maximal vertical intervals of M_1 . Every element of H_{M_1} is either a maximal vertical interval of M_1 or a Q-set.

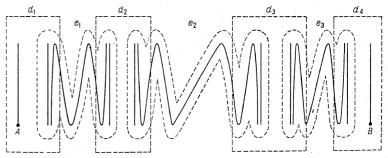
DEFINITION. The statement that the continuum M is an A-continuum means that M is a compact plane continuum which is the union of the elements of an upper semi-continuous collection H_M of mutually exclusive continua, such that

- (1) H_M is, with respect to its elements, an arc, and its end elements are vertical intervals,
- (2) each element of H_M is either a maximal vertical interval of M or a Q-set,
- (3) each maximal vertical interval of M has length 1 and is either an element of H_M or an end of a Q-set element of H_M , and is a component of the union of all maximal vertical intervals of M, and
 - (4) no vertical line intersects two elements of H_M .

If M is an A-continuum, the end elements of H_M will be called the ends of M.

THEOREM 3. There exists in the plane, a compact indecomposable continuum which contains a decomposable continuum and is filled up by an upper semi-continuous collection of mutually exclusive nondegenerate continua.

Proof. Consider the example given above. The set M_1 is an A-continuum. There exists a finite collection D_1 of vertical rectangular domains (interiors of vertical rectangular discs) having height less than 1+1/2 and width less than 1/2, that properly covers the union of all maximal vertical intervals of M_1 , such that the closure of each two elements of D_1 are mutually exclusive. For each element d of D_1 , neither horizontal side of \overline{d} contains a point of M_1 . Let d_1, \ldots, d_k denote the elements of D_1 , numbered from left to right. For each i from 1 to k-1, let k_i denote the element of H_{M_1} that intersects both d_i and d_{i+1} . Let δ_1 denote a positive number less than 1/2 such that if $1 \leq i < j < k$, $l(h_i, h_j) > \delta_1$, and for



Indication of M_1 , D_1 and E_1

each element d of D_1 and each point P of a horizontal side of the boundary of d, $l(P, M_1) > \delta_1$. For each i from 1 to k-1, let e_i denote the set to which a point X belongs only if either X is a point of $d_i \cup d_{i+1}$ such that $l(X, h_i) < \delta_1/2$, or the vertical line λ_X containing X separates d_i from d_{i+1} and $l(X, \lambda_X \cap h_i) < \delta_1/2$. Let E_1 denote the collection of all e_i for all integers i from 1 to k-1.

For each $i, 1 \leq i < k$, there exist vertical rectangular discs r_i and s_{i+1} of height 1 lying in $d_i \cap e_i$ and $d_{i+1} \cap e_i$ respectively and between the vertical lines containing the ends of h_i , such that r_i and s_{i+1} lie beneath M, (that is, for every vertical line λ intersecting $r_i \cup s_{i+1}$, λ intersects M, and $\lambda \cap (r_i \cup s_{i+1})$ lies in the component of $\lambda - \lambda \cap M_1$ that lies beneath $\lambda \cap M_1$). There exists a sequence t_1, t_2, \dots of vertical rectangular discs of height 1 lying in d_1 and beneath M_1 such that (1) t_1 is r_1 , (2) for each n. each vertical line intersecting t_{n+1} is to the left of each vertical line intersecting t_n , and (3) t_1, t_2, \ldots converges to L, the left end of M_1 . For each ifrom 1 to k-1, there is a Q-set U_i lying in $e_i-e_i \cap M_1$, such that the ends of U_i are the right side of r_i and the left side of s_{i+1} , and there are two A-continua R_i and S_{i+1} lying in r_i and s_{i+1} respectively and having as ends the vertical sides of r_i and the vertical sides of s_{i+1} respectively. For each i from 2 to k-1, there is a Q-set V_i lying in $d_i-d_i \cap M_1$ such that the ends of V_i are the right side of s_i and the left side of r_i . For each i > 1, there is an A-continuum T_i lying in t_i whose ends are the vertical sides of t_i . For each i, there is a Q-set W_i lying in $d_1 - d_1 \cap M_1$ such that the ends of W_i are the right side of t_{i+1} and the left side of t_i . The union of L, $\bigcup_{i=1}^{\infty} (W_i \cup T_{i+1})$, $\bigcup_{j=1}^{k-2} (R_j \cup U_j \cup S_{j+1} \cup V_{j+1})$, and $R_{k-1} \cup U_{k-1} \cup S_k$ is an A-continuum N_2 such that $M_1 \cap N_2$ is the left end of both M_1 and N_2 .

There is a vertical rectangular domain g containing $M_1 \cap N_2$ and having height less than 1+1/4 and width less than 1/4, such that \bar{g} lies in d_1 , neither horizontal side of \bar{g} contains a point of $M_1 \cup N_2$, and M_1 and N_2 each contain only one point of the boundary of g. There is a positive number ε_2 less than 1/4 and less than $l(M_1-M_1\cap g,N_2-N_2\cap g)$. There is a finite collection G_1 of vertical rectangular domains that properly covers the union of all maximal vertical intervals of $M_1-M_1\cap g$, such that each element of G_1 has height less than $1+\varepsilon_2/4$ and width less than $\varepsilon_2/4$, the closures of each two elements of G_1 are mutually exclusive, the closure of each element of G_1 lies in some element of D_1 , and neither horizontal side of the closure of an element of G_1 contains a point of M_1 . There exists a similar collection G_2 for the union of all maximal vertical intervals of $N_2-N_2\cap g$. The closure of G_1^* does not intersect $N_2\cup G_2^*$, and G_2^* does not intersect M_1 . Let D_2 denote the collection to which d belongs only if d is either g, or an element of G_1 , or an element of G_2 .

Let H_2 denote the collection to which h belongs only if h is an element of either H_{M_1} or H_{N_2} . There are only finitely many elements of H_2 that do not lie in D_2^* . Let H_2' denote the collection of all such elements of H_2 . Each element of H_2' lies either in D_1^* or in E_1^* . There is a positive number δ_2 such that $\delta_2 < \underline{e}_2$, $\delta_2 < l(h, \overline{D}_1^* - D_1^*)$ for each element h of H_2' that lies in D_1^* , $\delta_2 < l(h, \overline{E}_1^* - E_1^*)$ for each element h of H_2' that lies in E_1^* , $\delta_2 < l(h', h'')$ for each two elements h' and h'' of H_2' , $\delta_2 < l(h, \overline{d})$

for each element h of H_2' and each element d of D_2 that does not contain an end of h, and $\delta_2 < l(P, M_1 \cup N_2)$ for each point P of a horizontal side of the closure of an element of D_2 . For each element h of H_2' , let e_h denote the set to which X belongs only if either X is a point of an element of D_2 containing an end of h and $l(X, h) < \delta_2/3$, or the vertical line λ_X containing X lies between the two elements of D_2 containing the ends of h and $l(X, \lambda_X \cap h) < \delta_2/3$. Let E_2 denote the collection of all the sets e_h for all elements h of H_2' . Each element of E_2 is a subset of either D_1^* or E_1^* .

Using methods similar to those used above, sequences $M_1, M_2, ...$ $... N_1, N_2, ..., D_1, D_2, ...$, and $E_1, E_2, ...$ may be described such that

- (1) M_1 , D_1 and E_1 are as described above,
- (2) for each i,
- (a) N_i is an A-continuum, $N_i \cap N_{i+1}$ is an end of both N_i and N_{i+1} , and if i+1 < j, N_i and N_j are mutually exclusive,
- (b) M_i is $N_1 \cup ... \cup N_{2^{i-1}}$, and H_i is the collection to which h belongs only if for some j such that $1 \leq j \leq 2^{i-1}$, h is an element of H_{N_i} ,
- (c) D_i is a finite collection of vertical rectangular domains that properly covers the sum of all maximal vertical intervals of M_i , the closures of each two elements of D_i are mutually exclusive, each element of D_i has height less than 1+1/2i and width less than 1/2i; and if d is an element of D_i no horizontal side of \bar{d} intersects M_i , \bar{d} does not intersect three of $N_1, \ldots, N_{2^{i-1}}$ and if, for each j from 1 to $2^{i-1}-1$, d does not contain $N_j \cap N_{j+1}$ then there is a j' from 1 to 2^{i-1} such that $\bar{d} \cap M_i$ is a subset of N'_i ,
- (d) E_i is a finite collection of connected domains that properly covers the sum of all elements of H_i that do not lie in D_i^* , the closures of each two elements of E_i are mutually exclusive, each element of E_i contains only one element of H_i that does not lie in D_i^* , and if e is an element of E_i and h_e is the element of H_i lying in e but not in D_i^* , then (i) \bar{e} does not intersect the closure of an element d of D_i unless d contains an end of h_e , and (ii) if λ is a vertical line intersecting e and $\lambda \cap e$ is not a subset of D_i^* , then λ lies between the two elements of D_i that contain an end of h_e and $\lambda \cap e$ lies in an interval of length less than 1/2i,
- (e) for each non-negative integer $j<2^{i-1},\,u(N_{2^{i-1}-j},\,N_{2^{i-1}+j+1})<1/i$ and
- (f) $D_i^* \cup E_i^*$ does not disconnect the plane, $\overline{D_{i+1}^* \cup E_{i+1}^*}$ is a subset of $D_i^* \cup E_i^*$, D_{i+1}^* lies in D_i^* , and every element of E_{i+1} lies in either D_i^* or E_i^* .

Let M denote $\overline{M_1 \cup M_2 \cup ...}$. Then M is a compact continuum that does not disconnect the plane and M contains no domain, hence no subset of M disconnects the plane. Thus [1] M is hereditarily unicoherent.

The sequence M_1, M_2, \dots satisfies the hypothesis of Theorem 1, thus M is indecomposable. For each i, M_i is decomposable, hence M contains a decomposable continuum. Let H denote the collection to which h belongs only if, for some i, h is an element of H_i . Every element of H has a diameter at least 1 and not greater than 4. Since \overline{H}^* contains M_1 , which has a diameter greater than 4, \overline{H}^* has a diameter greater than 4. Thus if α is a convergent sequence, each term of which is an element of H, the limiting set of α is a nondegenerate proper subset of $\overline{H^*}$. If $\varepsilon > 0$, there is an i such that $1/i < \varepsilon$, and there is a $\delta > 0$ such that $\delta < l(\overline{d_1}, \overline{d_2})$ for each two elements d_1 and d_2 of D_i , $\delta < l(\overline{e_1}, \overline{e_2})$ for each two elements e_1 and e_2 of E_i , and $\delta < l(\bar{e}, \bar{d})$ for each element e of E_i and each element dof D_i that does not contain an end of the element of H_i lying in e but not in $\overline{D_i^*}$; δ is a positive number such that if h' and h'' are two elements of H and $l(h', h'') < \delta$, then either $u(h', h'') < \varepsilon$ or $u(h'', h') < \varepsilon$. Thus the collection H satisfies the hypothesis of Theorem 2. Since M is $\overline{H^*}$. it follows that M is filled up by an upper semi-continuous collection of mutually exclusive nondegenerate continua.

References

- S. Janiszewski, Sur les coupures du plan faites par les continus, Prace Mat.-Fiz. 26 (1913), pp. 11-63.
- [2] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Pub., vol. 13, Providence, Rhode Island 1962.

Reçu par la Rédaction le 21. 7. 1970

One-dimensional *n*-leaved continua

Gail H. Atneosen (Bellingham, Wash.)

It is well-known ([3], p. 60) that all one-dimensional continua are embeddable in Euclidean 3-dimensional space. A continuum is a compact connected separable metric space. Continua which are embeddable in Euclidean 2-dimensional space are called planar continua; one-dimensional planar continua have been extensively studied, see for example [8]. In this note we study certain one-dimensional continua that generalize the notion of planar continua. All planar continua are embeddable in a geometric 2-simplex. An n-book, B(n) for $n \in \mathbb{Z}$ (\mathbb{Z} denoting the positive integers), is the union of n geometric 2-simplexes such that each pair of 2-simplexes meets precisely on a single geometric 1-simplex B on the face of each. The 2-simplexes are called the leaves of B(n) and B is its back. Planar one-dimensional continua are said to be 1-leaved. A onedimensional continuum X is said to be n-leaved $(n \ge 3)$ if X embeds in B(n) but does not embed in B(k) for 0 < k < n. Of course, there are one-dimensional continua that are not n-leaved for any $n \in \mathbb{Z}$, for example the universal curve [1].

Utilizing Sierpiński's universal plane curve [6], we construct a universal n-leaved continuum. It is shown that all one-dimensional subcontinua of a surface (a compact connected 2-manifold) are n-leaved where $0 < n \le 3$. Borsuk ([2], p. 79) has given an example of a locally plane and locally connected one-dimensional continuum which is not embeddable in any surface. This continuum is shown to be 3-leaved.

First, we construct a universal n-leaved continuum $(n \neq 2)$. Let D_1, D_2, \ldots be a sequence of closed disks in B(n) such that D_i , for all $i \in Z$, does not intersect a 1-simplex in the face of any of the 2-simplexes in B(n), $\bigcup_{i=1}^{\infty} D_i$ is dense in B(n), and the diameters of the disks D_i converge to zero. Let $S(n) = B(n) - \bigcup_{i=1}^{\infty} \operatorname{Int} D_i$ (Int = interior in the sense of manifolds). It follows from results of Whyburn [7] that S(n) intersected with a leaf of B(n) is homeomorphic to Sierpiński's universal plane curve and that if another sequence of disks E_1, E_2, \ldots satisfy the same conditions