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On shape
by
Ralph H. Fox (Princeton, N. J.)

1. Intreduction. In [2] K. Borsuk introduced a relation of equivalence

between compact metrizable spaces which he later called having the same

" (topological) shape (*), and he proved that (i) any two compacta that
belong to the same homotopy type necessarily have the same shape,
and (i) two compact absolute neighborhood retracts belong to the same
homotopy type if and only if they have the same shape.

My first objective is to extend this concept to arbitrary metrizable
spaces. This is done in § 3. The method used is based on the same idea
that allowed the notions of absolute retract and absolute neighborhood
retract, originally defined for compact metrizable spaces, to be extended
first to arbitrary separable metrizable spaces and later to arbifrary
metrizable spaces. (Of. [1], p. 209.) The extension is such that the pro-
perties (i) and (ii) are preserved (Theorems 3.3 and 3.4). The proof that
for compacta the extended concept. is identical with Borsuk’s original
concept occupies § 4. '

Over the past few years. I have been investigating the relationship
between fundamental group and covering spaces (Cf. [9]), and when
T learned recently from Borsuk about this new concept I realized that
it was exactly what was needed to complete the theory fhat I had been
developing. :

The problem was the following: The fundamental theorem of
covering space theory asserts that the (connected) d-fold covering
spaces of a connected, locally connected and semi-locally 1-connected
gpace X are in bi-unique correspondence with the homotopy (2) classes
of (transitive) representations of =(X) in the symmetric group Xy of

(%) In [2] the relation is called being of the same fundamental type. In & lecture in
March 1968 at Princeton, Borsuk used instead of fundamental type, the term fopological
shape. I have taken the liberty of adopting this latter name, topological shape, for my
generalization of the fundamental type, retaining the term fundamental type for the
original concept.

(*) Homotopy of homomorphies i8 defined in § 6.
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degree d. The question is: what happens to this correspondence when X
does not have these local connectivity properties? It is not difficult (%) o
remove the condition of semi-local ‘1-connectivity by the device of
topologizing the group =(X), but the removal of the condition of local
connectivity eluded me until I made the starling discovery that for
this fundamental correspondence to hold for spaces X that are not locally
connected, #(X) should not be a group at all. In fact what =(X)
must be is & group shape II(X), a concept analogous to that of topo-
logical shape. ‘

What underlies the two concepts is, of course, a concept of shape
in an abstract category. This iy developed in § 2. The basic concept is
that: of similarity type of inverse systems (see (2.12) and above),
which should be regarded as a concept more fundamental than that of
inverse limit.

Since theré have been a number of proposed generalizations of the
covering space concept to the case of spaces that are not locally connected,
T call my generalized covering spaces overlays (*). The definition is given
in § 5. The rest of § 5 is devoted to the proof of what I call the ewtension
theorem, which is not only the main part of the fundamental theorem
of overlay theory (proved in § 6), but utilizes a lemma (%) (5.5) that
could be of wide applicability (e.g. to the theory of homology or homotopy
groups). :

Finally, in § 7, T note how these ideas can be used to give a systematic
foundation to local theories in topology. An earlier version appeared in [6].

I am especially indebted to R. J. Knill, who directed my attention
to the Kuratowski-Wojdystawski theorem that makes § 3 possible.

2. Inverse systems. Let us consider an arbifrary category & of objects
U,V, W,... and morphisms %, v, w, ..., f, g, k... and let ~ be a symmetric,

() I did this in lectures at the University of Mexico in the summer of 1951. It
has since been diseovered independently by others, and appears for example in [18]
on p. 82.

(*) All the reasonable generalizations agree for spaces that are connected, locally
connected and semi-locally 1-commected. A good general reference for this classical
theory is [15], Ch. 5. The difference between an overlay and a coordinate bundle with
discrete group is only a technical one, and this, together with theorem 6.1 of the present
paper shows that “overlay” is the only correct generalization of “covering space”. It
should be noted that the generalized covering spaces given for example in [12], p. 104,
{11}, p. 247, [18], p. 62, and [10], p. 17, are not overlays. The term overlay, which
is just a literal translation of the original term TUeberlagerung, is an attempt to avoid
the terminological confusion between covering space and covering (cover) by
open sets.

(*) It has been pointed out to me that lemma 5.5
Kuratowski,

“lemma 13.1.

) had already heen proved by
although under slightly more stringent conditions. See [4], p. 240,
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reflexive, transitive and compositive relation between morphisms, called
similarity. Of course one such relation is that of equality, but for the
purposes of this paper this is not the most useful interpretation of ~u.
(Cf. § 2 et seq.) The basic constructions of this paragraph take place in &
and depend on ~, ie. they take place in (&,~). Two objects A4, B of §
are of the same (similarity) type (written 4 ~B) when there are morphisms
f: A—B and g: B4 such that gf ~1, and fg~1z.

Let us call a set of morphisms concurrent when they all have the
same domain and the same range. A (right similarity) equalizer of a set
Uy, -y Un O concurrent morphisms i & morphism u for which w,u~...
o ~Ug %, 8 State of affairs that is, of course, only possible when the range
of w is the common domain of u,, ..., u.

In a category U (i.e. in a subcategory U of &) an object U is a prede-
cessor of an object U’ (and U’ is a successor of U) when there is in U
a morphism whose domain is U and whose range is U’. Generalizing
somewhat the usual definition, let us call a category U an inverse
system when

(2.1) any two objects of U have in U o common predecessor,
and

(2.2) any two concurrent morphisms of U have in U an equalizer.

It is an easy exercise to show that in an inverse system

(2.1) amy finite number of objects have a common predecessor,
and

(2.2)" any finite number of concurient morphisms have an equalizer,
from which it follows that .

(2.3) of uit Uy—U (i=1,...,n) are morphisms belonging to an in-
verse system U that have the same range U then theére are in U morphisms
uiz U'—U; (=1, .., n) having the same domain U’, such that uiui~...
oo U Uy

By a mutation f: UV from an inverse system U to an inverse
system ¥ I shall mean any collection of morphisms f: U—V from
objects U of U to objects V of ¥ which is such that

(2.4) for morphisms w e U, fef, veV, the morphism vfu belongs to f
whenever 1t is defined,

(2.5) every object of V is the range of a least one of the morphisms
belonging to the collection f, .

(2.6) any two concurrent morphisms belonging to. the collection f have
an equalizer in U.

In other words a collection of morphisms f: U~V is a mutation
when and only when the constituent objects of U and ¥ together with

Fundamenta Mathematicae, T. LXXIV ¢
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the constituent morphisms of U, ¥ and f constitute an inverse gystem,
Notice that it follows from (2.3) that
(2.7) of fir s>V (i=1,...,m) are constituent morphisms of a muy-
" tation f that have the same range V then there are in U morphisms uj: U’ -7,
(6 =1,...,n) having the same domain U’, such that fruj~...~f,u;,.

The composition gf of mutations f and g is defined whenever the
range of f is the domain of g; it is the collection of all the morphisms
af; fef, g € g, that are defined. It is not difficult to show that gf is a mu-
tation; the verification of (2.4) and (2.5) is trivial, but the verification
of (2.6) involves a little more because ¢;f, and g,f, can be concurrent
even when neither f; and f, nor g, and g, are concurrent.

Given UeU, Vy,VaeV, WeW, fi, facf, g1, gaeg, with fi: U=Vi, gi: Vi W (i=1,2),
use (2.7) fo construct ¥V eV, vi: V-V, (i=1,2) satisfying g,v,~ g,v,. [CE. diagram 1.]

vy
}//’ 4 \&‘
U. w
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10N\ Uyg
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Diagram 1

By (2.5), (2.1) and (2.4) there must be an object U, of U and morphisms f,: U, -V in f
a:nd u: Uy—Uin U. By (2.2) the concurrent morphisms f;u and v:f, must have an equa-
Lizer uy: Uu—>T, in U (i= 1, 2). Finally use (2.3) to construct Uy, ¢ U and wsy: Tog—Tio
(i=1,2) satmfy}ng YUy~ Untlg. THON g fo 0000 Uy ~ o0, iyt Uy ~ Gy0a Folig gy ~ G fa iUy
~ Gafa% Uys, Which shows that Uty Uy I8 an equalizer of g, f; and g.f;.

The. collection u of morphisms that belong to an inverse system U is
a mutation from U to itself. Tt acts as an identity, for fu = f and ug = g
whenever these compositions are defined.

Two mutations f, g: U~V will be called similar (written f~g) if

(2.8) concurrent morphisms f e fand g e g always have an equalizer i U.

This means just that the constituent morphisms of f and g together
form a mutation, which, in turn, means that fhe constituent objects of U

and ¥, together with the constituent morphisms of U, ¥, f and g, together
Jorm am inverse system. ’
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Similarity of mutations is obviously symmetric and reflexive. For
a reason explained above the verifications of transitivity and compositivity
are a little more involved.
Given f, g, h: UV with f~g and g~, to prove transitivily we have to consider

concurrent morphisms f, k: U V. [Cf. diagram 2.] By (2.5), (2.1) and (2.4) there is
an object U, e U and morphisms g: U,V in g and u: U,—~TU in U.

—
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Diagram 2

Let u,: Uy ~>U, be an equalizer of the concurrent morphisms fu e f and g, and let u,:
U, U, be an equalizer of g and w ¢ k. By (2.3) there is an object Uy, « U and morphisms
Uet U =Tz (i=1,2) in U that satisfy %y~ Uatisg. Since fuu, g~ guiythyy ~ griatiag
~ b tdaUag ~ B Uy W see that wuyuy, is an equalizer of f and A. This completes the
proof of transitivity. To prove compositivity, we are given f, g: U=V and h, k: V>W
with f~k and g~h, and we have to show that hf~kg. Thus we consider f,: UV,
go: U=V, Iyt Vi>W and ke: VoW, and have to show that Ref; and kg, have an
equalizer in U. It was observed above that f~g means that the collection f, g is a mu-
tation, similarly k, %k is a mutation. The composition of these two mutations is the
mutation whose constituents are. just those morphisms &f, kg, kf, kg that are defined.
Hence, by (2.6), the morphisms k,f, and kg, that we are considering must have in U
an. equalizer.

We come now to the main definition. Two inverse systems U and ¥V
will be said to be of the same (similarity) type (written U~V) when there
exist mutations f: U~V and g: ¥V —+U such that g-f~u and f-g~w.

The preceding may be summarized as follows: given'a category & and in it a re-
lation ~, we have constructed a new category & and in it a relation _a_.lso denoted by ~.
The objects of & are the inverse systems of § and the morphisms of § are the mutations
of the inverse systems of &. Similarity in § means similarity of mutations, and similarity
type in § means similarity type of inverse systems. Now each object U of & may itself
be considered as an inverse system cof a rudimentary sort (one in which there is only
the one object U and the one morphism ly: U -»T), and each morphism f: UV of§
may be considered as a mutation of a rudimentary sort (one that has only one constituent
morphism). This means that there is naturally defined a biunique functor from & onto
a certain subeategory of &. Thus & may be regarded as a natural extension of &.
Mozreover two rudimentary mutations f, g: U -V are similar in § if and only if as
morphisms they are similar in §, and two rudimentary inverse systems U, V are of
the same similarity type in § if and only if as objects they are of the same similarity
typein & Thus similarity and similarity type in § may be regarded as natural extensions
of similarity and similarity type in &.

4%
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Two concepts that are usually associated with that of “inverse system”
are “coinitial system” and “inverse limit”. (In fact historically the first
two of these concepts were developed out of the third one, — the inverse
limit concept.) Let us now examine the concepts of coinitial system and
inverse limit in the-context of our more general definition of inverse
system. .

Generalizing somewhat the usual definition, let us call in inverse
system U coinitial in an inverse system W when

(2.9) each object of U is an object of W, and each morphism of U is
a morphism of W, i.e. U is subcategory of W,

(2.10) each object of W is ‘preceded in W by at least ome object of U,

(2.11) any two concurrent morphisms of W whose common domain
belongs to U have an equalizer in U.

This concept can be used to characterize similarity types of inverse
systems:

(2.12) TreoREM. Two disjoint inverse sysiems U and V of & are of
the same type if and only if there is in & an inverse system W in which both U
and V -are coinitial,

Proof. If Uis coinitial in W, let mutations f: U—-W and g: WU
be defined as follows: f consists of all those morphisms w of W whose
domains belong to U; g consists of all those morphisms w of W whose
ranges belong to U. That g is a mutation is a consequence of the fact
that W is an inverse system; that f is a mutation is a consequence of
(2.10) and (2.11). That fg~w is a consequence of the fact that W is an
inverse system, that gf~u is a consequence of (2.11).

If, conversely, U and ¥ are of the same type, so that there exist
mutations f: U~V and g: ¥V -U such that gf~u and fg~wv, then an in-
verse system W in which both U and ¥ are coinitial is the on whose
objects are the objects U of U and ¥ of ¥, and whose morphisms ate
the morphisms % of U, » of ¥, f of f, g of g and their compositions gf, fg,
faf, gfg,... That W is an inverse system, and that U and ¥V are actually
coinitial in W is due to the fact that U and ¥V are inverse systems, that
f and g are mutations, and that gf~u and fe~v. B

Again, generalizing somewhat the usual definition, an object U
of & will be called an inverse limit of an inverse system W when there is
a mutation f: U—W such that

(2.13) for each mutation g: V W from an object V of & there is o mor-
phism k: VU in & for which fh~g, and

(2.14) #f h: U—T is any morphism from U to itself for which fh~f
then h~1g.

Let us note first that
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(2.18) if U is an inverse limit of W then an object V is also an inverse
limit of W if and only if V is of the same type as U.

Proof. If U and V are both inverse limits of W, with associated
mutations f: U-W and g: VW, then by (2.13) there are morphisms &:
U~V and k: V —U for which f%~g and gh~yf. Hence Skh~f and ghk ~g,
whence, by (2.14), ki ~1y and hk~1p. Thus U and V are of the same type.

Conversely,.if U is an inverse limit of W, with mutation f: T-sw,
and V is of the same type as U, so that there are morphisms h: U -V
and k: VU for which kh~1y and hk~1p, define g= fk. With this
definition of g the conditions (2.13) and (2.14) are satisfied: if I: X -V is
a mutation then, since U is an inverse limit of W, there must be amorphism
m: X —-U for which fim~I, and consequently the morphism hm: X >V
i sueh that ghm = flhm~fm~Il; if n: V-V is a morphism for which
gn ~g then, since knh is a morphism from U to U for which
fknh = gnh ~gh = fkh~f, by (2.14) knh ~1y, whence n~hk~1y. Thus V
is an inverse limit of W. @&

Secondly let us note that

(2.16) inverse systems that are of the same type have the same inverse limits.

Proof. Let ¥ and W be inverse systems of the same type, so that
there are mutations h: ¥V —W and k: W ¥ for which kh~v and hk~av,
and let U be an inverse limit of ¥ with associated mutation f: U —V. Let
us define g = hf. With this definition of g the conditions (2.13) and (2.14)
are satisfied: if : X »W is a mutation, then, applying (2.13) to the mu-
tation kl: X —¥, there must be a morphism m: X U for which fin~kI,
and hence gm = hfm ~hkl~I; if n: U-U is a morphism for which gn ~g,
then hfn~hf, and hence fiu~khfn~kEhf~f, so that n~1y by (2.14).
Thus U is an inverse limit of W. ] - .

What (2.15) and (2.16) mean is that inverse limit agsociates to each type
of inverse system a type of object. Of course in general the inverse limif
need not always exist, although existence is guaranteed in some well known
categories (e.g. in the category of topological spaces and continuous
maps, and in the category of groups and homomorphies, with ~ inter-
preted as equality).

If ~, and ~, are two similarity relations in § such that f~,g whenever
f~ig then (a) A~,B whenever A~ B. (b) each (~)-equalizer is
a (~y)-equalizer, (¢) each (~)-inverse system is a (~,)-inverse system,
(d) each (~)-mutation is a (~,)-mutation, (e) two such mutations are
(~p)-similar whenever they are (~)-similar, and (f) two (~)-inverse
Systems are of the same (~,)-type whenever they are of the same
(~))-type. Nevertheless even if an (~)-inverse system has inverse limits
in both (8§, ~;) and (§, ~,) they need not be even of the same ( ~,)-type.
An example will be given in § 7.
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3. Topological shape. In this section the category & is specialized
to the category R of absolute meighborhood retracts and the continuous
mappings between them and the relation ~ is interpreted to mean
Lomotopy between continuous mappings and denoted by =. What a topo-
logical shape is just & homotopy type of inverse systems of the eategory R.

Congider a metrizable space’ X imbedded as a closed (%) set in an
absolute neighborhood retract P. According to Hanner’s first theorem
([111V, 10.1, p. 96) every neighborhood () of X in P is itself an absolute
neighborhood retract. Hence the set that consists of all the neighbor-
hoods U of X in P together with the indigenous inclusions is an inverse
system of the category R. This system will be called the complete neighbor-
hood system U(X, P) of X in P. By a neighborhood system of X in P I shall
mean any coinitial subsystem of U(X, P).

Tf metrizable spaces X and Y are imbedded as closed sets in respective
absolute neighborhood retracts P and @ then, according to a well-known
theorem ([1] IV, 4.2(ii), p. 88), any continuous mapping f from X to ¥
can be extended to a mapping f into @ of some neighborhood of X. Any
such extension f determines uniquely a mutation f from the complete
neighborhood system U(X, P) of X in P to the complete neighborhood
system V(Y,Q) of Y in @; the constituents of f are the mappings into
neighborhoods ¥ of ¥ in @ of neighborhoods U of X in 7 X(V) obtained
by restricting 7 to U. Such a mutation f will be called an ewxfension of
the mapping f. Of course not every mutation from U(X, P) to V(X, P)
is an extension. .

(3.1) TEEOREM. Suppose that f and g are continuous mappings of
a metrizable space X into o metrizable space Y, and let P and @ be absolute
neighborhood retracts in which X and Y are respectively closed. If f and g
are homotopic then any mutations f and g: U(X, P)>V(Y, Q) that extend f
and g respechively are homotopic. .

Proof. Let h: X x[0,1]->Y be a homotopy between f and g, and
let U, be a neighborhood of X in P such that f and g have respective
extensions 7, §: Uy—=@. Define k: U, x[0] v X x[0,1] v U, x [1]1-Q by
the formulae

k(p,0)=fuw)  forpeT,,
k(p,t) = h(u,t) for p e X, 1¢[0,1],
E(p,1)=g(w) for p e U, .
(*) The requirement that X be closed in P is, in some cases, extremely inconvenient,

as is shown by example 4 of § 6. Fortunately it has recently been shown by D. M. Hyman
{13] that this condition can be removed.

(") By meighborhood I shall always mean open neighborhood.
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Since @ is an absolute neighborhood retract, and Ty x[0]v X x
x[0,1]v Uy x[1] is closed in U, X [0, 1], this can be extended to a map-
ping % into @ of a neighborhood N of TyX[0] v X x [0,1] v Uy x[1].
Since [0,1] is compact there is & neighborhood T, of X in U, such that
U, x[0,1]C N. Then A = k|U; X[0,1] is a homotopy in @ between f|T,
and §|U;. It follows that f~g. B

(3.2) THEOREM. If metrizable spaces X ond Y belong to the same
homotopy type then, for any absolute neighborhood retracts P and Q in which X
and Y are respectively closed, the complete neighborhood systems U(X, P)
and V(Y,Q) are of the same homotopy type.

Proof. Let f: XY and g: ¥ +X be continuons mappings for which
gf 21xand fg =1y, and let f: U(X, P) >V (Y, Q)and g: V(¥, Q) >U(X, P)
be mutations that extend f and g respectively. Then the mutation gf:
U(X,P)-»U(X,P) and the identity mutation u: U(X,P)--U(X, P)
extend the mappings gf: X >X and 1x: X >X respectively. Consequently,
according to the previous theorem, gf ~u. Similarly fg ~v. Thus U(X, P)
and V(Y, Q) are seen to be of the same homotopy type. B

Let us ‘call the homotopy type to which U(X, P) belongs, which
has just been shown to depend neither on the absolute neighborhood
retract P nor on the manner in which X is imbedded as a closed set in P,
the (topological) shape, ShX, of X. The rest of the statement of (3.2)
may now be phrased as follows:

(3.3) COROLLARY. Spaces that belong fo the same homotopy type have
the same shape.

Diagram 3

The converse of (3.3) is generally false. For example the well-known
1-dimensional space shown in diagram 3 has the same shape as the circle,
but they are not of the same homotopy type. However the converse
does hold when the spaces involved are required to be absolute neighbor-
hood retracts:

(3.4) TEmOREM. If absolute neighborhood retracts X and Y have the
same shape: then they must be of the same homotopy type.
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Proof. Since X and Y have the same shape then, for any absolute
neighborhood retracts P and ¢ in which X and ¥ are respectively closed,
there are mutations f: U(X,P)->V(Y,Q) and g: V(¥,Q)->U(X,P)
such that gf~z and fg~v. Since X and Y are themselves absolute
neighborhood retracts we may choose P = X and @ = Y. But f: U(X, X)
-V (X,Y) is just the mapping f: X =Y, g: V(X,¥)->U(X, X) is just
the mapping g: ¥ X, and the homotopies gf ~u and fg ~v are just the
hon{otopies gf~1x and fy~1y. B

If we define the shape of a mapping f of a metrizable space X into
a metrizable space Y to be the class of all mutations f: U(X, P) -V (¥, @)
that are homotopic to extéensions of f, P and @ ranging over all absolute
neighborhood refracts in which X and Y are respectively closed, then (3.1)
shows that )

(3.5) CorOLLARY. Mappings that are homotopic have the same shape.

‘The converse of (3.5) is also generally false; it is not difficult to
construct mappings of the space shown in diagram 3 onto itself that
have the same shape bub aré not homotopic. However, again, the con-
verse does hold when the spaces involved are required to be absolute
neighborhood retracts:

(3.6) TreoREM. If X and X are absolute neighborhood retracts then
mappings f, g: X Y that have the same shape must be homotopic.

The proof of (3.6) is analogous to that of (3.4).

4. The shape of a compactum. Tn [2] cdmpacta, X and Y are imbedded
in the Hilbert cube (%) H, and a fundamental sequence F from X to Y is de-
fined to be a sequence of maps Fy: H-+H,k=1,2, .., such that for each

neighborhood ¥ of ¥ there is at least one neighborhood U of X for which-

(£.1) Fy|U ~Fr1|U in V for almost all %.

Two fundamental sequences F and G are called homotopic (notation
F=~G) if for each neighbbrhood V of ¥ there is at least one mneighbor-
hood U of X for which

(4.2) F2]U ~G|U in V for almost ail k.

The identity fundamental sequence I is the se(iueneek I, I, .., of
identity maps Ix: H —H. The composition. GF of two fundamental se-
quences F and G is the sequence G.F,, G, T,, ... Two compacta X and ¥
are then described as fundamentally equivalent, or as belonging to the same
fundamental type (1), if there exist fundamental sequences F from X
to ¥ and G from Y to X such that GF~I and FC ~I; it is shown in [2]
that this does not depend on the manner of imbedding of X and ¥ in H.

(*) In order to fit my approach better,

O 6 T have made some slight and unimportant
modifieations of Borsuk’s definitions.
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The object of this section is to show that the fundamental type of
a compactum is precesely its shape.

(4.3) TEEOREM. Compacta X and Y belong to the same Sfundamental
type if and only if they have the same shape. '

Before giving the proof of this theorem I would like to interpret
it in categorical terms.

Let us consider the category % whose ‘objects are the compact sub-
sets X of H, and whose morphisms are the fundamental sequences.
In $ homotopy between sequences is g symmetric, reflexive, transitive
and compositive relation; the quotient category B/~ is just Borsuk’s
fundamental category ([2], p. 233).

Along with 3 let us consider another category, — the subcategory €
of & that consists of the complete neighborhood systems of compacta X
in H together with the mutations that subsist between them. In J¢ homo-
topy between mutations is, of course, a symmetrie, reflexive, transitive
and compositive relation. For the proof of (4.3) it is sufficient to construct
& biunique functor from the category % onto the category ¥ which is such
that the homotopic fundamental sequences correspond to homotopic muta-
tions and conversely. Of course this amounts to constructing a biunique
functor from the quotient category B/ ~ onto the quotient category ¥ ~.

Since X and H are compacta, the complete neighborhood systems
U(X, H) now to be considered always have cofinal subsystems that are
just sequences.

To each object X of the category B/~ let us associate the object
U(X, H) of the category Je/ ~. Clearly this establishes a biunique corre-
spondence between the objects of these two categories.

Consider an arbitrary fundamental sequence F from X to ¥. Let f be
the collection of all those maps f: UV, UeU(X,H), VeV(Y, H),
that are such that

(4.5) f~F%|U in ¥ for almost all .

Using (4.1) it is easy to verify that the collection f satisfies con-
ditions (2.4), (2.5) and (2.6), and is therefore a mutation.

The proof of (4.3) is now reduced to the proofs of the following two
propositions: '

(4.6) If F and G are fundamental sequences from X to ¥, and f and
g UX,H)->V(Y, H) are the corresponding mutations, then F~G if and
only if f~g.

(4.7) Given any mutation f: U(X, H) -V (X, H) there is a fundamental
sequence F* from X 10 ¥ whose corresponding mutation f* is homotopic to f.

Proof of (4.6). Suppose that fef and g e g are concurrent, i.e. that
fand g are maps from U e U(X, H) to V ¢ ¥(¥, H). If F~G then by (4.2)
there is a neighborhood U’ of X for which Fx|U’ ~ G%|U’ in ¥V for almost
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all k. Of course U’ can be chosen so that U’ C U, and then the inclusion
w: T’ C U will be seen to be an equalizer of f and g.

Conversely if f~g the maps f,g: U~V must have an equalizer in

U(X, H), and this means that there must be a neighborhood U’ of X

in U for which f|U’ ~¢|U’. It follows from the definition of f and g that *

F|U’' ~ G| T’ for almost all k.

Proof of (4.7). Let V;2V,D ... be a neighborhood sequence of ¥
in H, and, for each positive mteger Iy let fi: Ui =V be a constituent map
of f. Now it is easy to construct seriatim a sequence U,,U,, ... of neighbor-
hoods of X in H which is such that U, = U7, U1 CU;for j=1,2,
and, for each positive integer j, the inclusion U;41C Ujyq is an equahzer
of the concurrent maps fjlUfs: Ujya~Vi and fiio Uj+1-V;. Denote
11U; by f;. Thus we have a sequence of neighborhoods U,, j=1,2,
of X in H and a sequence of maps fi;: U;»Vy, j=1,2,.., such that
for each positive integer j,

U;1CU;  and fralUjpe2filUpme in Vi,
Now, fixing j temporarily, we shall construct, for each positive
integer % < j, a map f¥: Upyo—>Vy which i§ such that
MTse=filUse o Vi
For k= j, this is easy; simply define fi=
k< j. Then f¥™* has been defined, and
f,— ‘H—B —fH-llUH‘s in V»H.;[ for 7 = 70, k+1, ...,j'—-l .

Since Vk is an absolute mneighborhood retract the homotopy between
U ey and fre1|Ures can be extended, according to a well-known
theorem ([1] IV, 8.1, p. 94), to a homotopy between some extension of
5 Ukss and the map fk+1lﬁk+g (Cf. diagram 4.) Let us denote this
extension by f, Then the map f, Ugea =V is such that

fi =fiIUIc+z =~ ferr| Unpe Vi

for each integer 4=k, k-+1,...,j

f1411Us42. Suppose that

~f|Tksa  in
and

e =T~ filUsps in Vi for each ¢ = k-+1,

f1l—ﬁa:V1f2[ﬁa lef}
/f2'¥ﬁ4 :Vafa;ﬁ; ﬁVaﬁ
Fi=l Ui ~v s fil U ~ya i

TilUs2 2w, fisa|Usse = ff
Diagram 4
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In particular, for £=1, we find a map f}: U, ~¥, which is such
that 15| Tite ~fi|Uire in V; for each posmve integer < j. Let F¥ be any
mapping of H into itself that extends f;. Then F* has the following property

U~ f1le+z in Vi for each positive integer i < j.

If V is any neighborhood of ¥ in H, and ¢ is an index for which
V:C V, then

F}“|U,+g ~filUiys in ¥V for each i=1,

and hence

FHUspe 2 Ffa|Usper .. in 7 for each j =14

This shows that the sequence of maps Ff: H—>H, j =1
mental sequence F*.
Now let us consider the muta.tlon f* that corresponds to F*. Let

32, ..., I8 a funda-

f*: UV be a constituent map of f*, and let f: UV be a constituent

map of f that is concurrent with f*. By (4.5),
f*~FHU in V

Let ¢ be an index for which V;C V. If U’ is a neighborhood of X in
U n Uiye, it follows that

; U T i V.

Finally, since f|U': U’V and fi|U': U’V arée concurrent, they have
an equalizer U C U’, and thus

U ~f]U" in V.

for almost all % .

This shows that U’ C U is an equalizer of f* and f. Thus f*~f B

5. Overlays. Let us consider separable metrizable spaces . X and ¥
and & continuous mapping e of X into X. A collection M = {M" ;. of sub-
sets of X will be said to lie evenly over a collection M = {M} of subsets
of X when

(8.1) e~ M)

each set M is mapped by e; = elfo} topologically onto M;; and if 3M; ~ M;
# @ then each set % meets exactly one of the sets ll?ff (in particular
Mi~ M= @ whenever o # p). )

We may also say that M is evenly overlaid bq; M. A map e: Xsx
will be called an overlay if X has an open cover M that lies evenly over
some open cover M of X,

Since X satisties the second countability axiom the colleetion {M"} is,
for each index 4, either finite or countably infinite. Let di denote the

= | J JI% for each index i; each I is open in ¢ '(My);
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number of sets 3% Thus « ranges over the index set I(d;)= {1, 2, ..., i}
(or {.. —1,0,1, ...} if d; = co). In general d; need not be the same ag d;,
but of course they must be the same whenever M; and M; intersect.
In such a case I(dy) = I(d;) and a permutation wy of I(d) is determined
as follows: wg= ( g ), where 114 ~ I  @. Note that wy is always
just the identity permutation, that wj= oy, and that oyom = oy
whenever M; ~ M;~ My #©@. When all the numbers d; are the same
we may speak of a d-fold overlay or a d-sheeted overlay; the number d may
then be called the number of sheets. N . ’

If #: U T is an overlay and X C U then ¢: X —X, where X = »7’(X)
and e= 1’]3, is also an overlay. In this situation we may describe e as
a restriction of r, or » as an extension of e. ‘

(5.2) EXTENSION THEOREM. If X is a subset of a separable metrizable
space P and e: X +X is an overlay, then some neighborhood U of X in P
‘has an overlay r: U~TU that is an extension of e.

Before proving this theorem we must first prove some point set
theoretical lemmas.

(5.3) Lemwma. If X is any subset of a completely normal space P, and
if M, and jfg are disjoint and open in X, then there exist disjoint open sub-
sets W, and W, of P such that X n W, = M, and X ~ Wy = M,.

Proof. Sinee P is completely normal, P’ = P—M, ~ M, is normal.
The sets K, = M,—~M, and K,= M,— M, are disjoint and closed in P';
hence there exist disjoint open sets N, and N, of P’ such that K, C N,
and K, CN,. Thus M,CK,CN, and M,CK,CN,. Let G and G, be
any open sets of P which are such that X ~ G, = M, and X ~ @, = N,,
and define W, = N, ~n @, and W, = N, G,. Clearly W, and W, are
disjoint and open in P, and X ~n W, = M, and X ~ W, = M,.

(5.4) LemumA. If X is any subset of a completely normal space P, and

A is open in X, then there ewists an open set W of P which is such that
XnW=Mamd XnW=Xn~M.

Proof. Let M'= X — M. Then M and M’ are disjoint and open in X.

Hence by the preceding lemma there exist disjoint open sets W and W’
¢f P which are such that X ~ W= M and X ~ W' = M'. Then X ~ /T
CXnWCXAN(P-W)=X-M =X~ I B

If 3, M,, ... is an open cover of a space X and Ay, 4,, ... is a cover
of X by sets that are open in some superspace P of X we may say that {4}
extends {M}if X ~ A; = M for every 4. If {41} and {4;} are locally finite
we may consider their nerves, which are locally finite dimensional complexes.
T shall say that these nerves are naturally isomorphic if, for any finite
sequence of indices 4, iy, ..., in, the set My My~ ..~ My, is vacuous
if and only if the set A, ~ A, ~ ...~ A4, i3 vacuous.
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(5.5) LemMA. (%) If My, M,, ... is locally finite open cover of @ space” X,
and P is a completely normal superspace of X, then {M;} can be emtendeé
10 a cover {As} of X by open sets of P which is such that its nery
isomorphic to the nerve of {M;}.

Proof. By the preceding lemma, there exist in P open sets Wy, W,
such that X ~ W= M; and X~ Wy =X M; for every i. Fz)r e:;ch
index i let us define .

A= Wi— U Wa— U Wa s WU, A Wirn W, ...,

where in the first union o ranges over those indices for which a <<% and
M, My= @, in the second union « and g range over those indices for
which o< 8<% and Ma~ My~ M; =@, in the third union a, B, y range
over those indices for which a < f <y <iand M, ~ M; ~ M, ~ M;= @,
etc. Bach union is finite, and there cannot he more than §—1 unions;
hence 4; must be open in P. Furthermore

e i naturally

XnAi= _Zl_/[r-—U_Xf\Mu-U.XF\‘M‘ZP\Mﬂ—UXmﬂanﬂﬁf\ﬂrzMi'
Now if a< ¢ and M, ~ M; = O then
Ae N A;CWoarn (Wi—Wo) =0

2

if a<f<iand My~ My~ My= 0 then

Aaf\_A_ﬂﬁ_AiC‘VVathm(Wi_Wam Wﬁ);—‘@’
etc. @

Proof of the extension theorem. Since ¢: X X is an overlay
there is an open cover M of X over which there lies evenly an ‘open cover
M of X. Since X is a separable metrizable space it may be assumed that
M is countable and locally finite. Let us write M as a sequence My, My, ...

By (5.5) M extends to a cover 4 = {4,, 4,, ...} of X by sets that

“are open in P whose nerve is naturally isomorphic to the nerve of M.

Let U = {J Aq; this is a neighborhood of X in P.

For each positive integer 4 and index a e I(ds) let AZ be a topological
space homeomorphic to A4, and let #; be a homeomorphism of A% onto A;.
In the conjunction ¥ = iU A% of all the spaces A%, aeI(d), i=1,2, ..,

let us introduce the following equivalence relation ~:

(5.6) if ' « A% and P e A8 then p'ap’ if and only if FH(P') = )
and wiy = (;;) .

It i3 easy to see that the relation ~ is symmetric and reflexive.
Its transitivity is a consequence of the fact that the 2-dimensional
skeleton of the nerve of 4 is naturally isomorphic o thek2~dimensi0nal
skeleton of the nerve of M. Hence the quotient space U = Ul ~ is defined.
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Let ug denote by ¢ the quotient mapping of U onto U, and by ¢ the
restriction glAS of ¢ to A} Obviously ¢i maps Aj homeomorphically

onto a subset A% of T, and, since ¢ (49 = Lg (7§)7'(4s), it is clear that
; .

7% is open in U. Since each A5 is a regular space in which the second
axiom of countability is satisfied, the same is true in the countable
wnion ¥ = U,d5; thus U is a separable metrizable space. .

For any point 7 of U There is at least one point $ of U for which
¢(p) = P, and if §’ and $" are two such points then H'~p'". Hence it

. we define r(P) to be the image under an appropriate #i of a point of ¢7*(F)

the definition is unambiguous. Obviously rgi = #; for every 7, a. Since
the function r, defined on U with values in U, by its very definition maps
each A2 topologically onto A, it is easily verified that » is an overlay.
It remains only to show that » is an extension of e.

Consider a point & of X. It belongs to at least one of the sets s
Therefore the point # = ¢(#) must belong to M; and hence to 4. Let fi
denote the point of A} that is mapped by #¢ into @, and let P = q(p3)-
Let us define f(%) to be the point P. This is an unambiguous definition
for if % e M5 ~ 3} then » e My~ My and §~pf. Since f|M$ is obviously
& homeomorphism of B3 onto a subset of Z’i‘, and M is locally finite,
it is eagy to show that f is a homeomorphism. Then, finally we note that

r(f(B) = @) = r(¢5D) = ¥ =2 =37 B

6. The fundamental tropes. A mapping f: U-V of a pathwise con-
nected space U into a pathwise connected space V induces, for each
point . of U, a homomorphy fu: =(U, o) >a(V, f(e)), but if y + f(x)
no single homomorphy fy: #(U, 2) >=(V, 4) can be attached in a natural
way. What we can do is to choose a path p in ¥ from y to f(x) and as-
sociate to each z-based loop a in U the y-based loop p-f(a)-p~; the
resulting homomorphy f,: #(U, #)—=>n(V,y) depends on the homotopy
class of the path p, but any two such homomorphies differ only by an
inner automorphism of =(V, y). i

With this observation as motivation let us define two homomorphies
@, p: I'>4 of a group I" into a group 4 to be homotopic (written EXT)]
when there is an inner automorphism 6§ of 4 for which 9 == 6p. The re-
lation ~ of homotopy is Symmetric, reflexive, transitive and compositive,
and consequently in the category J of groups and homomorphies it may
be ;egarded‘as & legitimate interpretation of the similarity relation ~
of §2.

An objeet of the category.J, i.e. an inverse system of groups in (J, ~),
will be called a irope. Tropes and mutations of tropes generalize the
concepts groups and homomorphies of groups, because that is‘ ‘what they
reduce o when they are rudimentary. In [19] some of the most basic
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concepts of group theory ave generalized to trope theory. Homotopies
of mutations and hf)motopy types of tropes are defined according to the
scheme elaborated in § 3. A homotopy type of tropes may be called
a group shape.

We are going to use the concept of representation of a trope I' in
a group Z; this is nothing else than a mutation from I'to the rudimentary
trope 2. Two représentations of I in X are. homotopic when they are
homotopic as mutations from I’ to the rudimentary 'trope 2. A Tepre-
sentation of I"in 2, the symmetric group of degree d, i3 transitive when
each of its constituent representations I'>2; is transitive. Any repre-
sentation that is homotopic to a transitive representation is itself tran-
sitive. If " and 4 belong to the same group shape, so that there exist
mutations ¢: I'>d4 and ¢: A->I' for which ¢~y and ¢¢ =4, then ¢
transforms each homotopy class of representations of I'in X into a homo-
topy class of representations of 4 in X, and ¢ transforms i back
again. Thus the homotopy classes of representations of I' in 5 are in
biunique correspondence with the homotopy classes of representations
of 4in 2.

In order to avoid the inconvenience of dealing with spaces that have
more than one component, the category R of § 3 will now be replaced,
by the category R° of commected absolute neighborhood retracts (and
the continuous mappings that subsist between them). This is purely
a technical convenience; in the preceding paragraphs K could have been
replaced by its subcategory R° without any significant alteration in
the theory. For example, in the category R° the complete neighborhood
system of a closed connected subset X of an absolute neighborhood re-
tract P i3 the collection U’(X, P) of all the connected (open) neighbor-
hoods U of X in P (together with the indigenous inclusions). If we choose
in each U a base point o, and corresponding to each inclusion U, C T,
a path I, in U, from o, to o,, the fundamental groups =(U, o) together
with the homomorphies =(U,, 0,) ~n(U,, 0,) induced by the paths I form
a trope #(U°(X, P),0,1). (Of course it would be possible to choose all
the points o to be the same point z of X, but in the long run there is no
special advantage in doing this.) The homotopy type to which this trope
belongs does not depend on the choice of o or I, nor, according to (3.2),
on the choice of the absolute neighborhood retract P or the manmer in
which X is imbedded in P as a closed set; in fact it depends only on the
topological shape of X. I shall call it the fundamental group shape of X
and denote it by IT(X). The vavious tropes %(U°(X, P),0,l) may be
called the fundamental tropes of X and denoted by =(X). When X is
& connected absolute neighborhood retract we may choose P = X as
in § 3, and observe that the corresponding fundamental tropes 7(X),
being rudimentary, are then just the fundamental groups of X.
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Tt will be observed that in the theory of the fundamental tropes
the fundamental groups of connected spaces that are not absolute neighbor-
hood retracts play no role. This is not an unreasonable development,
for it is well known that the fundamental groups of a space that is not
adequately connected locally tend to misrépresent the gross structure

© of that space. (For spaces that are locally connected in dimension 0 the

utility of its fundamental groups can be recaptured by topologizing them,
but for spaces that are not locally connected in dimension 0 the situation
is hopeless.)

(6.1) THE FUNDAMENTAL THEOREM OF OVERLAY THEORY. (°) The d-fold
overlays of a conmected separable metrizable space X are in biunique corre-
spondence with the homotopy classes of representations of an arbitrary one
of its fundamental tropes m(X) in the symmetric group Za of degree d.

Proof. Let X be imbedded as a closed set in an absolute neighbor-
hood retract P. For #(X) we choose 7(U%(X, P)), using a point x of X
as base point for all the groups =(U). Consider a representation e in Xy
of w(X). According to the fundamental theorem of covering space theory
each constituent representation w: n(U)—>2y determines a covering
SPACE Tyl Umj U and thereby an overlay e,: X, - X, where X, =3 LX)
and e, = ro|Xn. If uy denotes the homomorphy of =(U;) into =(U;)
induced by the inclusion u: U;C Uy, then to each constituent w;: =(Uj)
— Xz is associated the constituent w;= wjuy: =(Uy) -2y, and TTw, may
be identified with r;jl( Us), and. 74, with 7] ﬁm. I o »(Uy)—>2% and
wy: 2(U,) >2g are any two constituents of o then, according to (2.7),
in U, » U, there must be a connected neighborhood U, of X such that,
denoting by %' and «* the respective inclusions U,C U, and U,C U,,
the representations «,u; and w,u? are homotopic. It follows that there
is a homeomorphism f of 7, (U,) onto 75(U,) such that 7.flraNTs)
= rulra; (Ug), and consequently f(X,) =X, and r,f|&,, = 14X,
Thus the overlays e,: X,—X are all equivalent to one another. This shows
that the representation o determines an overlay ¢ = 0 (o) of X. From (2.6)
it follows easily that O(e)= 0(«’) whenever o ~ o',

If e: XX is any d-fold overlay of X then, according to the ex-
tension theorem (5.2), e can be extended to an overlay #: U >U of some
connected neighborhood U of X in P, and this determines a represen-
tation o of #(U), and thereby a representation o of #(X) in Xy. The
constructed representation o i3 obviously such that O(o) = e.

(°) This theorem has an alternative form that is stated i

) 0; 0 a in (J,=). Let z be a base-
point of’ X and % a basepoint of X. The statement reads: The d-fold overlays (25 , &)
of a pointed connected separable metrizable space (X, x) are in biunique correspondence

with the (I, =)-equivale i i
ﬁ(Uc(X,(P,ac))). quivalence classes of representations in ¥y of the (3,=) inverse system
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In order to ccmplete the proof that o —0(e) establishes a biunique
correspondence between the homotopy classes of representations of %(X)
in Xz and the d-fcld overlays of X it remains only to show that if Ofw)
= 0(0') then o ~ o". Leb us consider, for purpose, a constituent w: =(T)
-+ Zq ¢f © and a concwrrent constituent w’: #(U)—+Zzof o’ Let r: U T
and r: U'—U be the overlays determined respectively by  and o'
Since 0(o)= 0(e’) we 1ay identify both »~X) and " }X) with X.
With this identification, what we have to show is that there is a con-
nected neighborhood Uy of X in U such that wuy = w'uy, where u denotes
the inclugion U,C U.

Let B Dbe an open cover of U that is evenly overlaid by an open
cover B of U, and let B’ be an open cover of U that is evenly overlaid
by an open cover B’ ¢f U'. Let M be a countuble locally finite open cover
of X that is evenly overlaid Dy an open eover M of X. Replacing M by
a suitable refincmert if necessary, we may assume that M is a common
refinement ¢f B and B'. By (5.5) M may be extended to a ccver 4 of U
by open sets of U which is such that its nerve is naturally isomorphic
to the nerve of M. After trin m'ng the varicus sets 4; as the occasion
demands, we may assums that A is also a con.mon refinencent of B
and B, and that each component of each 4; intersects X. Tius | f 4 is
a connected neighborhood of X, and this will be our choice for U,.

A loop g in U, is represented by wuy as & per:: utatisn c¢f the formn,
52, (g ) if and only if it is lifted by 7 to a path in T from 3° to &°,
and it is represented Dy o'y as a permutation of the form ( l‘; ) if
and only if it is lifted by #’ to a path in T frem 3° to 7. Now there ean
be found a finite sequence A, ..., A4, of sets belonging to the open cover 4
that form a chain abeut g, i.e. g is the product of » paths which are to
be found respectively in A4, .., Ay Since the nerve of A is naturally
iromorphic to the nerve of M, the sets M, ..., My, also form a chain,
ie. My~ My, #0 for j=1,..,2-1, and consequently lift uniquely
to form = chain. of sets of M from F° to, say, Z'. Since this determmes
the chaing from %* to which the chain 4, ..., 44, is lifted by r-and ',
it follows that g and f' must both be equal to y. Thus the loop g must
be represented by wuy and o'uy as the same permuta’pioh. This shows
that oy = oy, B

ExampLe 1. Let X De the figure made up of the part of the graph
of the function s == ccs (m/t) that lies between # = —1 and t = -1 tcgether
with the graph of the function §= —1—}'1—# (cf. diagram 3). In the
plane P there is a neighborheod sequence. Uy, U,, ... for X such that
each Uy is a region hon.eomorphic to an annulus. Thus =(UT,) is an in-
finite cyclic group Z™ = |e,: |, and the injection &: 70D, 7™ i5 defined
VY &(2ns1) = 2. For each d< oo there is a unique homotopy class of

Fundamenta Mathematicae, T. LXXIV 5


Artur


66 R. H. Fox

transitive representations in Xy, and to each of t'he‘se there corresponds
the d-fold connected overlay of X that is the restriction to X qf the d-folg
cyclic covering of an arbitrary neighborhood U.n. The disconnected
overlays correspond to the intransitive representation classes. Thus the
theory of the overlays of this space is just the same as the theory of the
covering spaces of a simple closed curve.

Exavpie 2. Let U,, U,,... be a sequence of (open) solid tori‘, ez?,ch
one contained in the preceding one. Let us suppose 'tha.t the winding
nunher of Upy, in Uy is a prime number p,. The con@nuum X=NU,
is a solenoid (the dyadic solenoid if all p, = 2). A nelg?borhood system
of X in the absolute neighborhood retract P = U, is the sequence

Uyy Us, .., and every overlay of X is the restriction of some overlay of _

some U,. A fundamental trope = (X) is the well-known sequence

(6.2) ARy AL COL

where p, denotes the homomorphy Zn<—p"—Z,,,+1. For ez.wch d << oo ?hat is
not. divisable by any of the primes that oceur infinitely often in tfhe
sequence py, Ps,.. there is just one homotopy cl:&ss of trm_lsu.nve
representations of this system in Xy, and correspondingly there is just
one connected d-fold overlay of X, and these are the only connected
overlays. (This fact can also De seen geometrically.) As in example 1,
the disconnected overlays correspond to the intransitive representation
classes. There follows immediately the known fact that the number of
topological fypes of solenoids is uncountable. (Cf. [8].) It should be
observed that the inverse limit of the sequence (6.2) is trivial (either in
the sense of (3, ~) or in the classical sense of (3, =)).

According to the fundamental theorem of covering space theory
connected covering spaces correspond to transitive representations, and
conversely. However contrary to expectation, although connected over-
laiys do determine transitive representations, transitive representations do
not always determine connected overlays,

Exawpre 3. Let X be the 1-dimensional planar continuum that
consists of two. concentric circles and a doubly infinite spiral between

P

them, (cf. diagram 5) and let X consist of the lines s — —1 and

§ = -1 together with the graphs of the funetions s =7%Arcta,n(t~'n), .

7= ..; ~1,0,1,... Then X is contained in the annulus P that is bounded
by the two concentric cireles, and the strip —1 < s <1 is the universal
covering space P of P. The part of B that lies over T i X, which is
thereby seen to be an overlay of X, Although X is connected, X is not
connected, on the cther hand it way be verified that the corresponding
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representation in X, of a fundamental trope #(X) is transitive.
(X has a neighborhood sequence U,, U,, ..
a ftriply connected region,

(9
- each member of which is
the corresponding trope i3 the sequence

Diagram 5 ~

I, y: |« |z,¥y: |« ... in which each of the homomorphies is an iso-
morphism. The overlay X X corresponds to the representation z,y
(e —1,0,1,..).) N

A morment’s thought will show that an overlay e: X X corresponds.
to a transitive representation if and only if it is not possible to separate X
into disjoint open subsets X, and _'ig such that e, = ¢|X, and &y = e]f2 are
each overlays of X.

Exawpir 4. Let X be the set cf those points (s, 7) of the plane for
which either s or ¢ or both is rational. Since the planar complement of
any point beth of whose coordinates are Irrational is a connected open
neighborhood of X in the plane P, the number of connected overlays of X is
uncountable. The fact that in this example X is not a closed subset of the
absolute neighberhood retract P does nof invalidate this conclusion. (%)

In the ccmplete theory of overlays (which will be published in another
place) the theorems of covering space theory appear in their ultimate
form. For example the important lifting theorem which gives the con-
dition under which a mapping f: (X, o) (¥, y) can be lifted to a mapping
f (X, o) (¥ , J) requires no hypothesis on the separable metrizable
spaces X, Y other than that they be connested. (11)

(*) This example has other strange properties. For instance, what are its covering
translations?

(%) Example 6.6.14, pp. 258-259 of [11] would seem to contradicts this. Howaver
what this example really shows is the inadequacy for spaces that are not locally eon-
nected of the fundamental group. For, although the condition T X, @) = g, (=(Y, ya)
is satisfied, the condition SelF(X, m)) = g4 (R(T, %)) i8 not.

5%
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The results of §§ 5 and 6 have been generalized to the theory of fibre
bundles by M. G. Scharlemann [17], unfortunately using an earlier version

of § 6 in which the definitions of § 2 were not quite the same. The ex-’

tension theorem (5.2) generalizes nicely, provided the group of the bundle
is an absolute neighborhood retract, and a counterexample shows that
this condition is necessary. There are no further surprises, and Scharle-
mann shows how to use the generalized extension theorem to classify
the bundles over & given (possibly patholegical) base space, usirg an
-appropriate universal bundle that in many cases is much simpler than
. Milnor’s.

7. Lecal theory. Let J and J’ be subsets of respective absolute neighbor-
hood retracts P and P’, and let X and X’ be horceomorphic subsets of J
and J’ that are closed in P and P’ respectively. Followirg Lomonaco ([14],
p. 323) let us say that J at X is of the same local type as J' at X' if there
are neighborhoods U of X and U’ . of X’ such that (U,U ~J) is
homeomorphic to (U, U' ~nJ’). When X =dJ and X' = J’ (which cannot
happen unless J andJ” are homeomorphic) this is Neguehi’s isoneighboring
property [16]; the case where X and X' are points was the one considered
by Lomonaco (see below).

Now consider the neighborhood system U(X, P), and delete J from

_it, obtaining the inverse system U(X, P—J) made up of the sets U—d,
U eU(X,P). Clearly J at X cannot be of the same local type as J' at X’
unless the systems U(X,P-J) and U(X', P'—J') are of the same

homotopy type. Among the invariants of the local type of J at X the

invariants of the homotopy type of U(X, P—J) will be the first to come
into consideration.

The fundamental group concept can be used effectively when X has
arbitrarily small eonnected neighborhcod U that are not disconnected
by J. Thus X should be connected, and J should not separate P locally.
‘We can then consider U”(_X y P—J), the inverse system made up of the
comnected -sets U—J, UeU(X,P—J) together with the indigenons
inclusions. In this system it is, of course, impossible to chooge a common
base point, and this is a compelling reason for the use of the concept
of hcmotopy of hememorphies. Let us choose in each U—J o base point o,
and eorresponding to each inclusion U;~J C U,—J a path lyp in Uy—J
from o0, to o,. Then the fundamental groups a(U—J,0), tcgether with
the homomorphies induced by the paths I form a trope #UX, P—J,0,1).
The homotopy type of this trope does not depend on the choice of o and L
although, of course, it does depend on P,J and X. Tt is the Sfundamental
group shape II(X, P—j) at X of the imbedding J C P. Tt is obviously an
invariant of the local type of J at X. The various tropes #UX,P—J,0,1)

iom®
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may be called the fundamental tropes at X of the imbedding J C P, and
denoted by m(X, P—J).

It should be observed that each of the tropes Z(UYX, P—j, o, D)
is not only an inverse system in (3, ~) but also in (3,=). In (J, =) the
inverse limit, when it exists, is a group HmIT(X, P—J) that does not
depend on the choice of o and I, and in (J,=) the inverse limit (which
always .exists) is a group lim#(U(X, P—J,0,I)) that does depend on

‘this choice. For example if P is RB®, X is a point, and J is a simple arc

that is locally tame at every point of J — X, and if J is contained in a double
cone O whose vertex is X (such as is shown for example in [14], p. 340,
figure 4) then limzUYX,P—J,0,1l) is the infinite cyclic group Z if,
crudely speaking, all of the paths I that are close to X can be pulled free
of P and into the exterior of ¢ without moving their endpoints (which
are supposed. to lie outside (), and it is the trivial group 1 otherwise;
on the other hand limIT(X, P—J) is just Z.

Exawpie 5. Let J be the “remarkable arc” (cf. [5]) of diagram 6.

a,

\

e ,F\’ [~
© RPN

/ﬂ

P

Diagram 6
The group ‘
Gy =a(Ux—dJ) = {an, bn, a: Cnbp @Gn=1, bp = bpt1anbns1;
Cny1 = Cnbzlbn-ubn(’;l, Uni1 = bpy1Cabnsr, n = N}
= {bnt Bnt1bnbiiibniobpis = bubntibnyis ) = N}
has the representation
(12345) for # = 0(mod3),

bp— { (14352) for =» =1(mod3),
(13254) for =n =2 (mod3),
from which it follows that #(X,R®—J) is not homotopic to the rudi-
mentary trope 1. This shows that J at « is not of the same local type as
a line segment at one of its endpoints. Thus J is a wild arc.
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ExaMPLE 6. The proof on p. 984 of [7] shows that the arc X of
example 1.1 of [7] at either of its endpoints i3 not of the same local type
as @ line segment at one of its endpoints. Using the représentation of
p. 983 of [7] the same statement can be made about the are X* of
example 1.1¥, Whether or not X at p is of the same local type as X* at p
is & question that does not appear to be easy to answer.

BxAMPLE 7. The proof on p. 988 of [7] shows that the arc H! of
example 1.4 is not of the same local type as a line segment at one of its
interior points. .

ExawprE 8. The proof in [3] shows that the n-frame D of [3] at its
vertex is not of the local type of a standard n-frame at its vertex.

In [14] Lomonaco calls two répresentations g,: It —> 2 and gy I3
locally equivalent if there are finitely implicated normal subgroups 4, of Iy
and 4, of I'; such that o,(4;) =1 and gy(4,) = 1, and I'y/d,; is isomorphic
to Iyd,. He then shows that if J is any arc imbedded in the interior
of a 3-dimensional manifold P that is locally tame at eévery point of J
except possibly at a point z, then for any acceptable system U of neighbor-
hoods of » (where “acceptable” is an invariantly defined concept) the
representations =(U)—Z are all of the same local equivalence class, and
moreover if J and J” are two such arcs then J at & cannot be of the same
local type as J' at o’ unless the representations =(U)->Z are locally
equivalent to the representations =(U’)—»>Z%. Lomonaco then constructs
algebraic invariants of local equivalence that are based on the (infinite)
Alexander matrices of the groups w=(U).

i
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