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separates « from f(¢) in D, and hence ¢+1 Separates p from ¢ in X and
also in U. Therefore Qi1 U # @ for i > I, s0 p € Q. Thus @ = Fr( and
is connected. ,

Proof of 4.3. For any « e D, we wish to show that f~(z) is con-
nected. Since % is either an end point or ¢ cut point of D, we have two cases.

Case L. # is an end point. There exist {U;}i1, a sequence of neighbor-
hoods of # where Uszy; C Us, (=i Ui = {}, diameter U; < 1fi, and each U;
has one boundary point ;. Thus {;}i=1 . Let C; be the component of
X —fYa;) such that f7(») C 0;. Then f(C;) CU; and CL(0y) is connected.
It is easy to see thab f™(#) = (7=1Cl(C;) and thus is connected.

Case II. % is a cub point. Thus f~(») separates X. By Lemmas 3.1
and 4.5 we have that X—jf%«) has at most a countable number of
components, {Cg}7 (all but a finite number of the C; may be empty).
Let X, = X—C;. By induction define X;= X; ,—0; for i= 2,3, ...
" By Lemmas 4.6 and 4.7, X; is connected for each ¢, thus f™(s) is con-

nected sinee f7#) = =1 X;. :

Our final result is an application of Theorem 4.3.

THEOREM  4.8. There is mo non-aliernating mapping from o simply
connected Peano continuum X onto The. circle S.

Proof. Suppose there were such 4 mapping f. Let #,ye¢8, by
Lemma 3.1 both X —f%() and X —f(y) are connected. But X — ( ) v
v f(y)) must be separated. Thus there exists a component ¢ of f~z) u
v f{y) which separates X. Since f(C) = & or y, we have a contradiction.
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Construction of eroup topologies on abelian oroups
group topolog group
by
J. W. Nienhuys (Utrecht)

Introduction. In this article we discuss a few methods for constructing
grouptopologies on abelian groups and the relations between these methods.

In section 1 and 2 the method of Hinrichs (intended for the ring of
integers, cf. [4]) is investigated together with its relation to the can-
struction occurring in [6]. In section 3 it is explained how the topology
of a given abelian group can be refined by making a character continuous.

Next the problem is studied of finding topologies T on an abelian
group G such that G Dbecomes a complete topological group with respect
to T. Generalizations of the results of section 8 of [6] and section 8 of [2]
are obtained in section 4 and 5 respectively. The methods used resemble
those introduced in section 1 and 2.

Finally, in section 6 it is observed that this paper basically deals
with refinements. The problem is posed of reaching the aims of section 4
and 5 of this article and theresult of [8], which is obtained by eoarsifying,
at the same time. ‘

Notations and terminology. All groups in this article will be com-
mutative and additively written. Let & be a group and U and ¥ subsets
of it. U4V is defined by U+V = {a+b: aeU,beV}; 1U—3— U and

nU = (n—1)U+ U, for n > 1. Instead of n{xz} we will write n and instead

of n{—=, 0, 2} we will write n-2.

‘We will denote a topological group frequently by (&, T) in which
G is a group and T a topology defined on it such that the operation
(2, y)—+z—y is continuous in both variables together. G, stands for (@, D),
in which D is the discrete topology on @. @ alone stands for the group @
without a topology. We may discuss topologies defined on it. Sometimes
we will also use the notation @ for a topological group, if there is no danger
for confusion about the topology that is meant.

Z will denote the group of integers, R the group of reals and by N we
will mean the positive integers including 0.
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By a groupnorm on & group G we will mean a function from @ to R,
g—lgll, that satisfies the following properties:

(i) for all g, llgll = 0, [|0] = 0;
(ii) for all ¢, [|—gll = ligll;
(iii) for all g and h, |lg-+ Al < llgll+- 1Al

Note that we do not require the groupnorm to be positive definite.
Sometimes we also speak about norm when we mean groupnorm. Let ||.||
be & norm on a group ¢, then this norm defines a grouptopology 7 on @,
by letting U, = {g € @: |lgl < ¢} and choosing {U,: & > 0} as neighborhood-
basis at 0 in G. This topology is called T(||.|), or, if no confusion can
arise, the normtopology. ) -

We observe that the collection of groupnorms on a given group.@
forms a partially ordered set with respect to the relation defined by
el 1. Il if and only if |lgh > gl for all g ¢ &

If f is a function defined on a subset § of @ we'can speak about the
set of all norms ||. || on & that satisfy '

Il <f(s) for all seS.

If § generates @, then this set of norms has & maximal element which we
call the maximal relationally defined norm relative to the set of relations

sef  implies |5 < f(s).

‘We usually abbreviate this expression and call it the MRD -norm. The
norm topology with respect to an MRD -norm is c¢alled an MRD -topology.
Usually, for arbitrary S and f, the MRD -norm will not satisty ||s|| = f(s)

for all 5. However, if it does, we speak about the maximal equationally
defined norm relative to the set of equations

seS  implies  |ls] = f(s).

The name maximal equationally defined is abbreviated as MED. These
definitions oecur also in a slightly more restricted setting, in 61, p. 302.

§ 1. The Hinrichs method for groups. In thiy section we will denote
2 sequence {ky:' i e N} by k.

1.1. DEFINITION. A countable se
U= {U;: i e N}, of a topologieal group is said to converge ot rate k it and
only if ¥,U;,; CU, for all i e N. k is called the rate of convergence of U.

In any first countable topological group and for every k there is -

a ne}ghborhood basis at 0, consisting of symmetric neighborhoods con-
verging at rate k. ‘

quence of neighborhoods of 0,
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1.2. DEFINITION. Let G be an abelian group and let n= {n;: i ¢ N}
be such that ny =1, ngln;y,, n; < nyy, for all ¢ and let F= {F;: i e N} be
a sequence of symmetric subsets of @, containing 0. Put ¢ = {n, F}.
Let k= {n;/n;: ¢ e N}. Then T(p) is the finest topology on & having
a basis U= {U;: 1 « N} of symmetric neighborhoods of 0, such that U

" converges at rate k and F; C U; for all 4, in which k= {n; ,jn;: i e N}

Ocecasionally we will call T (p) also the ¢-topology. This definition makes
sense as the following lemma shows.

1.3. Lemva. Let G, n, F, and ¢ be as in 1.2. Then a. neighborhood
basis U for T(g) is given by choosing

Up=UF,, for each meN,

I=m
in which
F

m,m

=x, ond F,=F, ok,F,.. foradl meN,I>m.

Rema,rk. A similar construction was used for ringtopologies on Z
by L. A. Hinrichs [4].

Proof. We have to show that %, U,,,, C U, for all m, as it is clear
that UpD Fm, for all meN. o

First we show Fy,, ,, D Fy,,, by induction on m. For m =1 it is clear.
Suppose 1 is given and suppose the statement is proved for s<<m < l
Then Fyyo=F v k50,0 Fow koo, =Fpg, so the statement is
proved for m = s. ‘

Consequently, if @ye U,,; for 1 <i< kn, then there exists an I,

km .
such that ;€ Fy,,., for 1 <4< km, hence Y @i kmFy g C Fpppy Which
? i=1

is contained in Upm, 50 %, Uy C Un for all m e N.

Remark. Some computations in the sequel may be visualized by
arranging the elements of U, in a staircase diagram, putting the F;in
the squares #, . ‘ . )

The B,,, are constructed row by row, each time going from right to
left, as follows. The union of all squares in the staircase down and to
the right of B, must be U,. Write down in the square &, all elements

n,n

of U,\U,:1C G, whose presence in this set follows from.
kU C© Un sy
B CUpyy for Iz k=nz2mtl
(everything to the right and above Hy 4.),
By By =0 if B £1,

8
Fundamenta Mathematicae, T. LXXV
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Iy, is then just the union of what is written down in the squares to the
right and above F,,,.

E 0,0
B 1,0 El.l
'EZ,D E 2,1 2,2
) EB,O ES,I 'EB,2 ES,E

14. Lmvma, For ¢ as in 1.2, the @-lopology is anm MRD -topology
on @, relative to the set of relations

(%) @ e Fy implies ||af} < 1/n;.

) Proof. Outline. Using the expression for the MRD-norm given
in [6], § 3, proof of Lemma 6, we prove that for z ¢ U; holds llel] << 1/my
as well. After that we prove that |a|] < 1/ns implies z e U;. This fact is
proved by a rather complicated but not difficult induction hypothesis.
The MRD-norm that satisfies the relations (*) is defined by
. r r o
(1) ﬂmH = lﬂf{ 2 m/?’bi: L = 2 Z &4 with ®ij EFi}.
i=0 1=07=1
Clearly 7, ., = F,, implies |jo]] 1.
Suppose we have proved z e ¥, implies ||z < 1/, for 0 <j << t—1
and also for j=¢ and m41<I<t Now zel,;, implies xeF, or

i km
Zeky,Fy ., in the second cagse e=3 @ with @;¢F,,, 11y hence ||z
i=1 !

DS Yngpyye S0 ol < K/, = 1/ny. In the first case this. is immedi-

ately clear.

Consequently the statement 2 e F;,, implies ||z < 1/ny,, holds for
all I, m,1> m and hence z ¢ U, impliés o] < 1fhms. ’

Fo}' the second half of the proof, we observe that, becaunse T;D I,
for all 1, the ?ightha,nd member of (1) is larger than or equal to the same
expression with U; instead of Fy; on the other hand, because x ¢ U;
implies iz < 1/n4, as proved already, the righthand member of (1) with U,

instead of F; is smaller than or e i
qual to {2, it does not matter wh
we put F; or U; in the definition of {lat]. ’ wheter

roa
Suppose [l < 1jnm, then o= 3 5oy with aycFy and 3 arjng

1=07=1

< 1/nm; it follows that a; = 0 for 0 <ig

=0

r
m, 30 we have 3 ayfng < 1.
t=m-+1

Now we make the following induction hypothesis: For > m-+1 and
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x5 Uy for iz m-41, such that zy=10 for m+1 i<t or j>ay,

i
> agmi < 1fn,—1jn, implies

i=m+1
i

Z i’w;;—f—U,C U,-

i=m+1 §=0
Clearly, if the induction hypothesis is true for all ¢ and m, then |z} < 1/nn
implies @ € Unm. The induction hypothesis is true for ¢ = m-1, because
APy < 10y —1[0,,, implies a,,.; < 7o/, —1, hence o, ;e U,
for 1<j< a,,, implies that
am+i

2 T35 U C Mnga/Pn=1) Uy F U = (g g 1fn) Uy C Uy -

=0
Suppose the induction hypothesis is proved for m < < s—1. Then, let
8
> ayjni < 1np—1jns. For ks=nfn,; we pubt as=fks-+-bs, with

t=m+1

bs < ks, and f>> 0. Suppose rye Uy for 1 <j < a;, then

s ai s ai f-1  (n+Diks as
o= 3 Ba= 3 Sar 31wl S
em 3 Sa= 3 e ST 3
f{=m+1 j=1 i=m+1 j=1 a=0 j=nks+l J=1+7ks

We write the bracketed expression as ypg with p = s—1 and ¢ = n+a,_;-}1,
which is in U,_, and we write 2y = ¥y if ¢ = fks4j. If we put oy = gy
for i << s, we find

as-1+1

=2 o« be
r= ( 2 2 y”)+ 2 Ys_1i+ Zﬂ’sj
i=1 j=1

i=m-+1 j=1

and
8 5§—1
nm—1/ng = 2 aifng = 2 i+ flgng+bgn,,
i=m+1 i=m+1
S0
8—2
1nm— b+, > D) asfnit(ag_y+5) Mgy -
. i=m+1

bs
So (z— 3 #s;)+U,_,C U, by the induction hypothesis and because

j=1

1n,—1[ng_y = 1[n,— (be+1)[n, .
So for any y e U,, we may put y = ¥, with ¢= b,+1 and we find

bs bs+1 bs
z+y = (‘E_' 2%,‘)‘*‘ Zysje(w_ Zysj)_I_U—l’
‘ j=1 =1 : =1

which is contained in Usy. We have proved the induction hypothesis '
for ¢ =, thereby the lemma.
8*
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§ 2. Refining any first countable group topology. Now given & first count-
able group topology 7' on @, we may choose a basis of symmetric neighbor-
hoods ¥ for T, with a given rate of convergence k. Any sequence F of
symmetric subsets of ¥ gives rise t0.a ¢ = {n, F} with n; = Ry by for
all ¢ > 0. For this ¢, T'(p) is finer than or equal to 7. The next few lemma’y
and definitions will show how the ¥; may be chosen to obtain g T(p)
that is strictly finer than 7. .

A consequence of this is, that finest nondiscrete group topologies
on @ (which exist by Zorn’s Lemma and the existence of nondiscrete
topologies on any infinite abelian @ (cf. [5], also 4.1)), cannot be metrizable,

2.1. DeFINITIONs. For ¢ a nonzero positive integer, let @, denote
{a: iz = 0} and let ¢, = G. For a topological group @, let #(@) be the
smallest ¢ (integer or o) such that @, is open.

2.2, LemwA, Let @G be a first countable Hausdorff topological group.
Let {Hi: ¢ <L} be an at most countable collection of mowhere dense closed
subgroups of G. Let A be a subset of G, consisting of isolated points and not
containing 0. Then for any n, 0 < n < H@) and any © e L, there emist arbi-
trarily small b e \H;, with n-b~ A empty.

Proof. For'a.n'y ze@, v+~ 0, define

k(#) =min{k: k-2~ 4 + 0}.

Then % is upper semicontinuous in points where k(z) is finite. Thig is
clear in case k(z) =1 and otherwise (k(z)—1)-w ~ A = @, implies that
for U small enough and y ex+ T, (B(@)—1)-y~n 4 =0, so E(y) = k().
Furthermore, it follows that % (#)zed or —k(®)xeA. When k(z) < n
n < t(@), then there exists for every neighborhood U of 0, an 4 ¢ U\G,,i
with %(z)(z-+y) ¢ 4, because 4 consists of isolated points and G,, for
n< t(f}), is nowhere dense and closed. Tt follows that k(z) < k(mj{—y).
?L‘hep it i‘?oﬁows that {z: k(z) >n} is everywhere dense, 50 has nonempty
intersection with V\H; for every open neighborhood ¥ of 0 and every i e L.

‘ ‘We now can show that on any first countable topological group
a finer topology can be defined, even under preservation of the property
that all H;,ieL are nowhere denge, A

_ 2.3. Lmwa. Let (@, T) be a nondiscrete Eausdoi’ff topological group
with topology T, satisfying the first aziom of countability. Let A = {g;: 4 e N}{
be a sequence of elements of G eonverging to zero, g1 0 for all i e N and
suppose {Hy: 4 e L) is an at most countable collection of nowhere dense closed
subgrouj?s. Let n= {ns: i « N} be such that M= 1, N < nyyp, mln,, . Then
t‘here exists in G a sequence {b;: i e N, 34 >0} and o syom:w i oo
ing 0, Fy, such that for F; = {~b1,0,83} for i >0 ang ¢ = {n, F}, the
sequence A does not converge in the @-topology T(g) and such th:zt 1,1 i 18
nowhere dense and closed witl, respect to T(p), for all i L. z

wetric set contain-
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Proof. We may suppose T induced by a norm f. Let
‘ Bl{a)= {x: f(@)< a} and 7=1¢(G).

First we choose F such that it generates G. Let & > 0 be such that B\ B(e)
contains a point, 2y, and B(e) C&,. Then put

Fy = (\B(e) v {0}

For x¢Fy, fletiay) = fla)—flw) = 3o, 50 ageFy, -7, eFy and hence
G = F,—F,.
‘We will now choose b; recursively, in such a way that

AnF,=AnF,

which is a finite set. Define b, @, such that 2,-b,~n A=0. As F,
= Fyw ny-b, we have the beginning step of the recursion already. For
the next steps we need a sequence of elements of L, {m:: ¢ ¢ N}, such that
for all %, {ms: i >k} = L; it is clear such a sequence exists since L is at
most countable.

Suppose by, ..., b, are already defined such that »,F;; ~ 4 =0.
Observe that Iy, = FownyFy,, hence 4 nF; ;= A4 ~nF;. Observe also
that n, Fp, is finite and hence there exists an e, such that B(¢) C &, and
(n Fy N\{0}) -~ B(e) contains no points of A.

Let n be such that n+1 =min(n;,,,7) and let by, e B(e/n\H,,,
such that n-b,.; ~ 4 = 0. Now we need an auxiliary formula, which is
intuitively clear, namely:

Fl,m C (nl/)‘l‘m)Fl'**‘Fl—l,m .

This formula is evident for 7 = m-+1 and one may prove it by induction
on the differénce between I and m:

Frm=TFp o kb, CFpo (km((”l+1/"m+1)Fl+1+-Fl,m+1))
CFpy o ((paftn) Frpy 4+ Fp Ty ) '
C (g g/ ) Fy 4+ (Fy © by By ia) = g/ ) By +Fry -
Consequently
0y Cng (i) Py 0y By = g Fy g +0,Fp
Now nyy 7,y = nyyy-by, C B(e). Hence
“ nFy \{0} C (B(E)‘]‘(WlFm\{O})) Mgy by,

which does not contain points of A.


Artur


108 J. W. Nienhuys

U, in the ¢-topology is just | J I, and from the construction follows
leN

that 4 ~ Uy= A ~ Fy, which is a finite set. On the other hand, every 7,
containg {b;: j > m} hence elements from the complement of each H. 1 % eL.
So none of the H; is open in the ¢-topology. As they are all ‘closed in the
¢-topology, they are nowhere dense. : ’

2.4. TaEOREM. Let (G, T) be an abelian nondiscrete Hausdorff topo-
logical group. Let {Hi: i e L} be a finite or countadle set of mowhere dense
closed subgroups of G. If (@, T) is meitrizable, then there ewists a non-
discrete Hausdorff topology T' on @, finer than T, which does not satisfy
the firsi aziom of countability, such that H; is nowhere dense and closed
for all i eL.

Proof. By Zorn’s Lemma. Let {T,: a e A} be a totally ordered sef
of topologies, finer than T and such that H; is nowhere dense and closed
with respect to 7,, for all a ¢ 4. Then the H; enjoy the same property

for the union of the 7,. As the previous lemma shows that a maximal -

topology, stronger than T, such that all H; are nowhere dense and closed,
cannot be metrizable (otherwise it was not maximal), we are done.

§ 3. Refining a group topology for which there exist noncontinuous characters.
In this section, the completion of a topological group (@, T) will be de-
noted by (¢ ) TY. We recall, that G, denotes @ with the discrete topology.

Le}; a fixed topological group (G, T) be given. Let H be the group
of -contmfuous characters.of (¢, T). H has the discrete topology throughout
this sectmn.. The group of continuous characters of any compact or discrete
group X will be denoted by X, the dual of X with its usual topology.

As is wellknown, to every inclusion map of a submodule A of (@)"
there eorrequnds an epimorphism a: G;—~A4 in the category of 1003.]13;
compact a,belAlan groups. The map 4 iy defined by a(g)x = %(g). The
topology of A4 is defined by pointwise convergence on 4, 80 we seé that

& is continuous with respect to 7' if and onl if each i bi
with respect to T. 8o ‘we have v et s contiaons

3.1. Lemma, a: (G, T)~>A is continuous if and only if ACH.
- The discontinuity of a ean be m

easured i
the extent to which small 7 -neighborh; e other way, namely

xent 00ds of @ are sprayed around in A.
. ;},, EFINITION. For a: (@, T)> 4 define A, the discontinuily core
@ wth respect.io T, as the intersection of the closures of a(U), in which U
runs through all T-neighborhoods of 0 in G ,
Now clearly 4 is a cloged subgroup of 4.

3.3. LmMMA. Let a: (G, T)->4 be gi i->B
; : gwen and also q: A5 2
of compact abelian groy s, then the composition, qa: (G;q T) S B in comtimons

if and only if kerg> 1. - B iz continuous
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Proof. Here and in the following we denote by ¢l(S) the closure of S.
Because A is compact,

¢d =( Udfa(?) = U glal(a(0))) =
0eU 0l

qa is continuous, if and only if B = 0.

3.4. LEMvA. A = (H ~ A)+ = [4)(H ~ 4))

Proof. From 3.1 follows that for surjective maps 4 —B, the compo-
sition (@, T)—>A4 B is continuous if and only if BCH ~ 4, whence
by duality and 8.3 the result.

3.5. DEFINITION. For a topological group (@, T) and A C(Gy) ,
let T4 be the topology on @ with neighborhood Dasis at 0 consisting of
sets Una~YV) in which U is a 7T-neighborhood of 0¢@ and V is
a neighborhood in A and a: G, A the canonical map.

3.6. Leava. Let ACBC (G ; let : B> 4, a: G,~ A4 and b: G;»B
be the canonical dual maps. Then b is continuous with respect to T4 if and
only if A+H = B-+H. »

Proof. cl(b(U A a‘l(V))) = d(b(T) A ba Y(V)) = cl{p(T) ~ g~(V)). Let
N = kerq. Tt is easy to compute

BAN=(B4+EHA~B)) .

On the other hand, for each U and T, there is a neighborhood W of 0 in B
such that (N~ B)+WDcl(p(U)n ¢ XV)) DN ~ B. Tt follows that the
discontinuity core of b with respect to T4 is just & n B. This is zero if
and only if A+ H= B4+ H. ‘

3.7. COROLLARY. The group of characters of G that are continuous with
respect to T4 is just H-+A.

Proof. Obviously all characters from H and A are continuous with
respect to T.; conversely, let y ¢ H+A, then F=y- Z+HA+A # H+4,
hence (G, T)—F is not continuous, so y eannot be in the group of charac-
ters of (@, T.) that are continuous with respect to Ta. ;

Now if a T4 Cauchy-net {z;} in & is T'-convergent to zero then a(=z;)
converges to an element of A. So if we complete, we have an exact
sequence

(*)

U cl{qa(T) = B.

0elU

~

04> (6, Ta)P (G, TF-0.

Because (&, T,)° is topologically embedded in (&, TyY®A (byvcontinuous

extension of 1@a: G—~G@A), we see that the injeetion 4—(&, Ta)°
in (#) is also a homeomorphism onto the image and moreover, if H C 4 is
a direct summand of 4, then A is a direct summand of (¢, T'4)°. Now
let G4 be the full inverse image of @ under the morphism (¢, T4)°— (&, T)".
Then we can formulate:


Artur


110 J. W. Nienhuys

3.8. THEOREM. Let (G, T) be a topological group and H the groﬁp of
continuous characters of (G, T'). Then to any exact sequence Bl with an A
that is a group of characters of (Gy)" and that contains H,

E1 _ 0>H->A>A/H-0
there corresponds an ewact sequence of topological groups
E2 , 0<- (G, TV« (Ga, Ta) <A >0,

in which A= (A[H)" and A is the group of continuous characters of
(G, Ta); if G is comgplete with respect to T, then G4 is so with respect to Ty
if E1 splits, then B2 splits topologically; B2 splits algebraically cmywayi

3.9. CoROLLARY. Let G be an infinite abelian group ond T a Jinest

topology on G. Then (G,)" is just the group of continuous characters of (&, 7).

.§ 4, Const.ructi.on of complete topologies on any infinite abelian group. In this
section we wﬂl discuss topologies T on an arbitrary abelian group @,
SI.IC»h that G is complete with respect to T; if such topologies are non-
discrete, we call them selfcomplete.

A se]ipomplete topology on Z was found in § 8 of [6] and § 8 of [2]
and we will construct another example in § 5.

We will prove :

4.1. THROREM. On any infinite abelian gr )
topolosiss f no group G ewist selfcomplete

Outline of proof. We prove a Lemma that b
. ‘ ] - We reaks up the proof
in three parts, one of which is proved by the preceding remark a,ng the

two remaining ones are dealt with separatel i
roughl
method used in § 8 of [6]. ’ T FONGEY spesiding by he

First we observe the following: :
. 1-,0L61b G be an abelian group and H an infinite subgroup of @. Let T be

pc])logy on H a“nd let " be the topology on G defined by taking
a neighborhood basis at 0 for T a8 neighborhood basis at 0 for 7”. Then

lige al; discrete if and onl*:y if T iz discrete; Hausdortf, selfcomplete, with
; y-cumpfmt completion or satisfying the first axiom of countabilit
respectively if and only if 7' is such. ’ g

We will now construct topologies o NPT :
constructing them on subgroups, gie8 on any infinite abelian group by

4.2. Lemwa, For @ an infinite abelia
group H of one of the Jollowing Finds:
(i) H = Z;
(1) H 22 3{Zi(py): p, prime, i e N};
(i) H = Zj(p>).

N group, G has an infinite sub-
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sRemark. This is also proved in [5], see also Math. Rev., 1955, p. 11.
For comprehensiveness we include here a proof.

Proof. We may suppose @ is a torsiongroup, and as such the snm
of its primary components. If an infinite number of these are nontrivial
we may choose infinitely many primes p; and nonzero elements ;e G,
such thabt purs = 0. Hence the z; generate a subgroup of kind (ii). Now
@ is infinite, so if there are a finite number of primary components, at
least one of them is infinite, say C, the p-primary component. Denote
by O the subgroup {x e C: p™z = 0}. If for some n, Oy is infinite, C; is
infinite, hence because it is a module over Z/(p), a vectorspace, %0 of
kind (ii). Now suppose (; and hence Cy for all #» > 1 are finite. Then C,
must contain elements of infinite height, otherwise, by Corollary 33.3
of [1], € is isomorphic to a direct sum of an infinite number of cyclie
p-groups, hence C, infinite. Put #,= 0, #; an element of infinite height
in ¢, and suppose we have constructed ;e C; for 0 < i< n, such that
pawy = w;_, and »; of infinite height, for 1 <7 <n. Then &, = p*yr has
a solution for all k. So for all &, p**yx € C,,,. Because C,., is finite,
it contains an element z such that p* ly; =z for infinitely many .
Hence z has also infinite height, and moreover pz = z,. Put x,., = 2.
Now the subgroup generated by the a; is of kind (iii).

4.3. LeMwa. Let G = Y {G: i e N}, in which each of the Gy is a finite
eyclic group. Then there exists a selfcomplete topology on G.

Proof. Let I be an ideal of the power set of N with the property
that for every infinite B, there exists an infinite A ¢ I, with A C B. Such
ideals exist, see § 8, [6]. If we denote an arbitrary element of G by =,
then its ith coordinate will be denoted by #°. The product of all G; is
denoted by P, and the ith coordinate of an element of P likewise by
a, superseript 4. .

For Ael let T4 be the topology on @, defined by

Uyp=1{reG: i<n oriecA implies zt = 0}.

Put G4 = (G, T)° and let c.i: GG, be the natural embedding. As T4 is
finer than the topology of coordinatewise convergence, the injection
g: G- P factors through G4, g=jea.

Let x = {xx: ke A} be a Cauchy net relative T4. Then, for each =,
there is & K e A such that 2} = o} when k> X and > K and i<n
or ¢ ¢ A. Tt follows that for L such that o} = 0 if { > I, holds that =} = 0
for k> K, i>L, i< A. So we see, if we put 4, = {{ ¢ 4: 1> L}, = con-
verges coordinatewise on the complement of A;, whereas =0 k>K
and ieA;. So in particular a Cauchy net in @ which converges co-
ordinatewise to 0 in P, converges to zero in @, hence j is injective. The
image of j consists of all # ¢ P, such that there exists an I with the property
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that ¢ e 4, implies &’ = 0. Now let 7 be the union of all T4 Ae7,
A Cauchy net for T'is a Cauchy net for ', for all A e I. Let {xs: ke A}
bea Tl ~Cauchy-net. Suppose for an infinite set B C N, it holds that for
ieB, {zi: & eA} does not converge to 0. Then there exists an infinite
A eI, ACB and the net is not a convergent T4 Cauchy-net. Hence the
T-Cauchy-nets in & converge to an element of @, so T is selfcomplete.

4.4, Lmmva. Let g be a fixed positive integer, ¢ >1 and let G = Z|(¢~)
(the group of rationals that have ¢ for denominator, modulo 1). Then there
exists a selfeomplete topology T on Q.

Pr09f. For A an infinite subset of N, 0e A4, define |.|l, by Jali

= m;}.{x}q‘x], in which |.] is the usual absolute value norm on R/Z. Let G4
1€
De the set of all @ € R/Z, such that lim |¢%z| = 0. Clearly G c Gy, for all 4.
ied
.GA is complete fo‘r [I-lla, because |izlls < || and, moreover, if {w,: n e A}
s a C?Juchy net, ¢'z, 18 a bounded function of 4 from A to R/Z, vanishing
zm‘A infinity, for each n. Furthermore, these functions form a Cauchy net
_th.]? r('espegt to the uniform norm, hence the limit is a bounded function
w.mmsh’mg at 11'1finity, defined on A. The limit is given by {¢%: ¢ ¢ 4},
in which z =.11n3w,,. Also we see, that 4’ C 4 implies |#]la < |jo])a.
NE.

For any 4 CN, let g(4), the mazimal gap width, be defined as the
maximum of the difference between two consecutive elements of A4, if
tl?ls exists, and g(4)= oo otherwise. We show that |.Jx induces ‘,che
discrete topology on @, if and only if g(4) < oo.

k
So, let g(4) < coand let 2= ) a;q"mod1 and let az = 0. Let a be
=1

the lalsct element of 4 smaller than %, then k—a < m, m = g(4). Hence
—a

@, —i ] _
e *jg; 45140 mod1 € ¢“"*Z]Z, hence |g%| > ¢** > ¢~™. On the other

hand, let g(4) = oo and let & be given. Choose % such that 0" < ¢ and
;ftlk-}—l e A be such that for the last element a of 4, preceding k-1

f)ds k—a> " Then{ for = ¢ *modl,ic A implies that eit]:er q'z
=0modl or |g'z(=¢" * < ¢*F < g™ < s Now, let we R/Z\@ De ar-

bitrary. So z = 3 a;q~7 i '
y j_g;ajq mod 1, with not almost all a; equal to 0 and not

almost all a; equal to g—1. Then the set B — (i gz >

and hence for any infinite 4 such that A C B, (LIS Js infinite

% ¢ G4. This is clear, because

if a # - 3
37 0 and a; # ¢—1, then ¢~ = ajlg+ 3 @545 107*mod1, which

exceeds 1/g in absolute value. Tf for almost all % holds a,

then there are infinitely many i, such that a =0 or a;= ¢—1,

=¢—1 and a;,, = 0. So
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let a;=g¢—1 and @a;;,= 0. Then g""l.rq’«(q—l)/q-i—Z‘arm-_lq“"modl,»
i=3

which exceeds 1/g—1/¢> in absolute value.
Now suppose I is a collection of subsets of N, such that

(i) AeI,Aecl implies AnA’el,
(if) g(A)= co and A is infinite for all 4 L.

w®

(iii) For all infinite B, theve exists an A eI such that A CB.

Then the coarsest topology T, finer than all topologies induced by
I.ll4, 4 € I, has the property that it is selfcomplete: Indeed, none of the
I.Ls-topologies are diserete and if {z;} is & Cauchy net for 7T, then {z;}
must be a Cauchy net for.all ||.].s-topologies, so {z,} cannot converge
to any element not in G. '

§ 5. The finest topology on Z in which a fast increasing sequence converges.
In this section we apply the theory of MED -groups as developed in [6],
to investigate topologies on Z for which a given fast increasing sequence
converges.

The crucial point is again, to show that the coefficients a; in the
representation z = D asnq, such that > laslps is minimal, can be used
as 2 kind of coordinates to be used in statements like: convergence implies
coordinatewise convergence. In [6] we were dealing with the situation
that n,,,/n: was integer, so that the subgroup generated by {ns i >j}
did not contain n;. Here we will investigate the situation that Limn, el
= oo, s0 that the subgroup generated by {n:: ¢ > j} may contain ny, bub
only as linear combination of n; with “large” coefficients.

5.1. Notations. {n;: i e N} will denote a given increasing sequence
of positive integers. Z as a group is generated by {n:: ¢ e N}. We define
by k= s/ and p = {ps: .7 ¢ N} will denote a sequence of positive
reals. The MRD-norm with respeet to ni, p; is the largest group norm
satisfying || < p:. We recall that, when in all relations the equality
sign holds, the MRD-norm is called an MED-norm. Let ¢z denote the
largest integer smaller tham z—1, so #— (&) > 1.

5.1. TEMMA. If |as] < <k for all 4, 0 <i<<m, then
1
(1) nyyy > 3 aing for all 1< m.
i=o

(ii) For each 1 < m such that a; # 0 and each s, 0 <s<1,

1
\Zaiml > 1 .

i=s
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Proof. (i) is clear. (i) is proved by induection on £ in the following

statement:
1
l 2 aim’ =Ny

i=l-1

For t=1,
o+ a_ | = n— pmpd gy >mny_, .

. s

The induction step is:

!
i —a A N, 9

‘ 1'5'; aiml >y y—h My > .

t=l—i~1

5.2. LeMuA. If |a), |Bs] and les| are less than {k:>[3 for all 0 <i << m,

i= -

=)

m m m . >
then 3 aini+ Y bing = 3 en; implies a4 by — e for all iy, 0 <i<m
i=0 =0 s
R .

. .
Proof. Consider 0 = 2 (@i+bi—c)ni. If not all the coefficients of
=0

the right hand member of this equation are equal to 0, then at least two
of them are not equal 0. We may obtain then an equation

1 8
2 ding = g ding
i=0 i=l+1

m which d, 5= 0 and l+1.< s. According to 5.1(i) the left hand member
is less than ™41, according to 5.1(ii) the right hand member is more
than e, which is a contradiction.

5.3. LEMMA. Suppose for all 1,

; 12962 1Kk and pi>=p,. .
_there exists a norm |.|| such that ny ' Pi= Piyy Then

= 2.
Proof. Suppose n; = Yayn .Weh r
#2, i74- We have to prove (cf. proof of Lemma 6

in [8]) that ps; < i 1 -
) Ps 5?,——% le:[ps. In view of the monotonicity of the sequence VA

Ny = 2 Aing .-

i>7

We may assume

Then, because of 5.1(ii), for some § > Jy lagl > <k>, hence

2; ladpi > pollsd > 1> 9,
>

From i
Dow on we will assume that ki > 2 for all 1, limk; = oo and

(*) Pt=pia; limpi=0; 1 2 P2 1Kk .
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We denote the MED-norm defined by
gl =p: for all ¢

by [I.l,- We denote {z: |l, <7} by B,(r), -the ball of radius r. When
llell, = 3 lailps and 2 = 3 aini, then we call a; the ith coordinate of z with
respect to p. The coordinates of z may not be uniquely determined, but
within a closed ball of radius 1/3, they are. Consequently, convergence
in B,(1/3) implies coordinatewise convergence and when g¢; < p:, the
coordinates with respect to p and ¢ coincide in B,(1/3). Now observe that
for every norm f on Z, such that limf(n;) = 0, there is an MED-norm g,
defined with respect to m; and p; as in (%).

5.4, THEOREM. Let n; be a given sequence of positive integers such that
lim (n;y,/n) = oco. Let T be the finest topology such that ng converges to 0
relative to T. Then (Z,T) is a complete topological group.

Remark 1. This theorem was first conjectured by H. Freudenthal,

Remark 2. M. I. Graev in [2], § 8, constructs for any.topology T on
the set 4= {0,1,2!,3!,4!,..} such that 4 is compact with respect
to T, the finest group topology I’ on Z, such that 7" restricted to 4 is 7.

Such a topology exists and is always selfcomplete.

Proof. Suppose not. Then there exists an MED -metric | .||, defined
relative to n; and p; as in (*) such that B,(1/3) in (Z,|.})* contains an
image #¢Z of ye(Z,T) under the natural injection. Let {z,} be
a T'-Cauchy-net in Z, converging to y. Then {,} converges coordinatewise
to # in (Z,]|.1,)°. As & ¢ Z, the set 4 C N of ¢ such that the ith coordinate
of x; does not converge to 0, is infinite. Now choose 1 == ¢; > p; such that
for all 4,

6> Goe; lmgi=10; D'gi= oo
i€d

{r,} converges to 2’ e (Z, ||.]|;)"\Z. Choose in a ball of radius 1/3 around &’

- a e Z~ By(1/3) and consider the net w, = z—z,. We denote by w the

limit of w, relative to ||.|, and by w’ the limit relative to ||.[,. w’' ¢ Z,
w¢Z, w = z—z and w = z—gz. Furthermore, |w'll,, llwll,, lizl,, =], are
all less than 1/3. This means that the i¢th coordinate of w, as, is just
the difference between the ¢th coordinate of 2 and by, the ith coordinate
of x. So for 7 large enough, the coordinates of w, relative p and relative
to ¢ are equal to a;, for 4 > 4,. So |lw|, tends to infinity by the choice
of g. We have arrived at a contradiction.

§ 6. A problem. In [8], an example of a monothetic group on which
no continuous characters exist, was constructed. This was done by
factoring out a discrete infinite cyeclic subgroup from the monothetic
group constructed by S. Rolewicz in [9].
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This process may be described also as “changing a given topology
into & coarser one”.

Tn this paper, in the preceding section, a class of selfcomplete topo-
logies T on Z was constructed. It is not difficult to prove, that for each
of these the set of continuous characters contains a Cantor set ¢ CZ
= R|Z. '

The method used for the construction of selfcomplete topologies
can be very roughly deseribed as “constructing so fine a topology on Z,
that all possible Cauchy nets are convergent to an element of Z”.

So it seems difficult to reconcile the two aims in the following

6.1. Problem. Does there exist a minimally almost periodic and
selfeomplete topology on Z?
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_ Fixed point sets of homeomorphisms on dendrites ()
by
Helga Schirmer (Ottawa)

1. Introduction. It has been known for some time that not every
non-empty closed subset of a dendrite D can be the fixed point set of
s homeomorphism. G. E. Schweigert [5] proved that such a fixed point
set cannot consist of one end point only, and several further restrictions
can be found in [4]. These restrictions are mainly concerned with the
behaviour of the fixed point set on the end points and branch points of D.

Here we show that the fixed point set of a homeomorphism of D is
in fact to a large extent determined by the end points and branch points

which it contains. More precisely: if the fixed point set F of a homeo-

morphism f of D contains points of the closure ¥ of the set of all end
points and branch points of D, then we can construet an isotopy relative
to V which transforms f into a homeomorphism which is fixed point free
on D\V (Theorem 1). If, on the other hand, F' contains no end points
and branch points, then F consists of a single point of order two
(Theorem 2). .

Many, but not all, of the known restrictions on the fixed point set
of a homeomorphism of D also hold for monotone surjective self-maps
[4], [6]. Tt is shown in § 4 that Theorem 1 cannot be extended to monotone
maps. I do not know whether Theorem 2 (suitably modified) is still true
in the monotone case.

2. Dendrites. The purpose of this paragraph is to collect the properties
of dendrites needed in this paper. They can be found in [2], [4], [6], [T]
and [8].

A dendrite D is a metfric continnum (i.e. compaet connected Haus-
dorff space) in which every pair of distinet points is separated by a third
point. It has a partial order structure which was developed by L. E. Ward,

(1) This research was partially supported by the National Research Council of
Canada (Grant A 7579). }
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