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On shape and fundamental
deformation retracts I("

by

Maria Moszyhiska (Warszawa)

Infroduction. The well known theorem of Fox gives a necessary
and sufficient condition for a map to be a homotopy equivalence (see [5]):
TueoREM OF Fox. The map f: X—»>Y is a homotopy equivalence iff
X is homeomorphic to a deformation retract of the mapping cylinder C;.

The purpose of this paper is to give a necessary and sufficient con-
dition for a map to generate a fundamental equivalence. As the main
result we obtain the following

THEOREM (8.1). Let X, Y be two compact meiric spaces. The map
f: XX generaies a fundamenlal equivalence iff X is homeomorphic to
a fundamental deformation retract of the mapping eylinder C;.

The proof is based on the idea of S. Mardesié and J. Segal (see [6], [7]).

We introduce the notions of retract and deformation retract for
inverse systems (§ 1, 2), and define the mapping cylinder for the usual
map of inverse nystema (§ 3). Then, we establish for inclusion-ANR-
systems an analogue of the Fox Theorem, (4.5).

As was shown by K. Borsuk in [4], the basic notions of Shape Theory
introduced in [1], [2] for compact subsets of the Hilbert cube can be
equivalently defined for compact subsets of arbitrary AR-spaces. This
approach is studied in §§ 5, 6 where the class of so called convenient
absolute retracts (CAR) is defined and the results of [7] are generalized
to compact subsets of CARs. Next, we establish the connection between
the notion of retract for inverse systems and the notion of fundamental
retract (§ 7). This enables us to prove the main Theorem 8.1.

Some remarks concerning a limit map and a mapping cylinder are
given in the Appendix.

1. Similarity of maps of inverse systems. Usual maps. We are eoncerned
with inverse systems of arbitrary Hausdorff spaces, i.e. systems of the

(%) When the paper was in press, some stronger results were obtained. These results
will be published as the part IL.
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form X = (X,, pZ, #), # being a closure finite directed set with respect
to the relation > (see [6]), and p¥: X, X, (¢’ > a) being continnoyg
fugncf.’ions §atisfying the following two conditions: if o’ > a'> o then
PPy = p%', and pl = 1x, for every aet.
According to the definitions introduced by S. Mardesié and J. Segal
In [6] (%), given two inverse systems X = (X,,p¥, #), ¥ = (Y5, ¢, 9),
the system f= (g, Jo) is said to be a map of X into ¥ whenever
p: B>+ is an increasing function and f: XY, satisfy the condi-
tion %) ~ gif, for every p'> g, ie. the diagram
o
Lo+ X0,
e
Y, «~—Y,
2

commutes up to homotopy for g’ > B.

The identity map 1y: X—X is defined as a map (1, 1y).
- E[ihe composition of two maps f= (@, f): X=¥, g= (v, g, Y->Z
Is defined as a map gf = (g, 9, Jo) (see [6]).

The maps = (p,f,), f' = (¢, J¢) are said to be homotopic (in symbols
f=~f") whenever

V' e = 0% -
B asepg 0 PO

The map £ X—7Y is said to be a homotopy equivalence iff there is

;.f mla,p £ Y-X which is a homotopy inverse of Sy Le. fg~1, and
1.
) Now, let us define the following relation ~ in the class of all maps
of inverse systems.
Given two inverse systems X=— (X, 0%, #), Y= (¥, 0%, B) and

;wo fni)a,p;f F=Ae,f f =, ), we say that £, f' are similar (in symbols
=2 1 '

ped azq,();{ . JsPon = f1Py-
Obviously f o f' = fo pr.
One can easily prove o
In the elass of all maps
usual maps.

to be an equivalence relation.
of systems let us distinguish the so called

(*) In [6] the authors are concerned with ANR - ‘
y ‘ g R -systems. Obviously their definiti
can be extended to arbitrary inverse systems of topological spaces. e defintions
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The map f= (¢, fz): X—Y is said to be a usual one whenever the
maps f, satisfy the condition f;pff) = g fy, i.e. the diagram

is commutative for every g = 5.
The implication :

f2fing=g = gf~g’f,
which holds for arbitrary maps of systems ([6]) whenever these compo-
sitions are defined, enables us to consider the category TX of inverse systems

with homotopy classes of maps as morphisms. Analogically, the im-
plication

f=frgag=gfgf,

which holds for usual maps, enables us to comsider the category ITZ of
inverse systems with classes of similar usual maps as morphisms.

2. Extension of maps of inverse systems. Retraction. Let f= (¢, f,):
X—Y be any map of the inverse system X = (X, p%, ) into ¥
= (X, qg', B). According to the definition given in [6], f is said to be
regular whenever ¢ is strictly increasing. We say that fis cofinal whenever
the set ¢(B) is cofinal to #A. Notice that

21. If A= B =N —the set of natural numbers, then
[ is regular = f is cofinal .

Proof. If ¢: NN i3 strictly increasing, then ¢(n) > n for every
neXN. In fact, ¢(1)>1 and ¢r—1)= n2—1=¢{n) >e(n—1)> n—1
= g{n) 2 n. Thus A \/ ¢(n’) = n, ie. ¢(N) is cofinal to N°. m

n n
- Let us define an inclusion of inverse systems as follows.

Given two inverse systems X = (X,,p%, #), X = (X,,p7, &), the
map i=(r,4,): X—X is said to be an inclusion of X into X iff 7 is
a usual cofinal one and 7,: X - X, is an inclusion for every a e 4.

The map f: X—¥ is said to be an extension of f: X->Y (in symbols
fCF) whenever there is an inclusion #: X—X such that ficef

Recall that the inverse system (X, p¥, #4) is called an ANR-system
iff X, e ANR for every aet.
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Let us prove the following theorem on extension of a homotopy

is commufa',tive, we obtain
for ANR -gystems (%).

. THEOREM. Let f, g: X~ ¥ be two maps of inverse systems, ¥ being B) A V(@ = F@) (@)= 08), (B A FpS = 6P A
an ,A_NR system. If f~g and fCF: XY, then there exists o g: XY peb wek - .
suck thai f~g and gC§. AP fepw)
Proof. Let X= (X,, 9%, #), Y= (¥;, ¢}, B), ¥, being ANR-spaces Let us fix such o' for every § e B and define $": B> &, p'(f) =d. By

for BeB; let f=(p,fp), 8= (9, 9}y @59t ;‘B—>A: bemg two mﬂeasmg

Lemmsa 5 of [6] there is an increasing funetion ¢: $--£ such that
functions, fp: Xpn>Ys g5t Ly~ Xp- Assume f~g, ie. ‘

2{f) = v'(p) for every feB. We have
M I a0 = 9050 ) NG ORI EIDR

Tet fCf=(@,f): X—>Y where X = (Xoy DY, &), @1 B4,
XA s> Y5, and let i=(r,4,): X»X De a corresponding inclusion,
i, e i iy usual and cofinal, and 7, is an inclusion for every o e #. Moreover,

Since Y; ¢ ANR for every <&, we can apply the Bor»uk Theorem
on extension of homotopy {see [3], p. 94): fﬁpw) ; gﬁp,@ X w@—>1’ 5 are

r

homotopie and f,p C fﬁpm Xyo~>X;, s0 there exists a s Xn(m—>Y;,

f= fz, i.e. - such that
2) NV e = Telse e - (7) 9258 C 45
Bed aed) T30 :
and
Since i is cofinal, we have
’ (8) fﬁpﬁigﬁ =~ g,a ,
3 : A% 'V.ae ' It remains to prove g = (¢, §,) to be a map of systems and to satisfy
. - a€ a'€

the conditions:
"Notice that in both of the conditions (1), (2). the index « can be
replaced by any greater one; so by (1), (2), (3) we obtain

@ AV (@) = ¢(B), v(h) 0 (B)) A (o035 = 4 0750) A

gCg and fog
Let us consider two diagra,ms:

BedB olek X f;%g;) . i' P;((‘g;) -
NS253 = FotsmPrsty) - e ey RO Xfw )
Thus ‘ﬁl W, ﬂgl lvp' ,
@) A Ve = BIA) > 0(8), p(O)A (055 = g7 ) Yo <z o T oYy
BeB oA s 8
NP = FolsnDed) - the first one being commutative up to homotopy. By (8),

Since iggpis) = Disie; i-e. the diagram

~ o)

5,055 Nfﬁpdﬁ)pr(ﬂ) *fﬁqu(m

pr%) ‘ and
‘X‘f‘ <I__X1a' e e
; l # 1_( ) ‘1595' qﬁfplp,p(p') —fg%‘@?ﬁﬁg—*—fwﬁ?;
#B) o«
A A thus th i m e 8 y g
Fo - %, ' hus the second diagram commufes up to homotopy as well, and then

£ is a map of systems.
We have to prove gCg, i.e.

(*) This statement is related to Patkowska’s Theorem on the extension of a homo-

2 o = G glam Do «
topy for fundamental sequences (see [9]). 9ePeer = Ists0Proer

BeB az=y(B),TH(2)
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Take 8 ¢ % and leb a= 75 (B). By (6), a = (B). By (7), f]ﬁiw) = gﬁpwué(:;’)’ so

IsbsmPise = G0 Plam = 9pPyori
thus g Cg. L
Finally, we prove that f ~g, i.e.

AN
ﬁg u"?‘q\i\(ﬁ{)ﬁ(ﬂ) BLG(B) BLH(B)
In fact, putting a” = P(B) for e B, we obtain by (6) a”’ > @(B) and,

by (8),

fpl’dﬁ) fﬁ?m = 0pP5) = 9sP%) -
Thus the proof is complete. m
The map r: X— X is said to be a retraction iff 15 Cr, i.e. there is an
inclusion # such that ri = 1. If, moreover, ir ~13, then r is said to be a
defarmatmnal retraction. The inverse system X is called a retract (deformatwn

retract) of X whenever a retraction (deformational 1etra.c1:1on) r XX
does exist.

If the ANR- bybtem X= (X, p%, #£) is an inclusion-ANR-s ystem,
i.e. all the maps p% are inclusions, then obviously any two inclusions
i,#: X->X are similar. This enables us to prove the following

2.3. PROPOSITION. If X . @ an inclusion-ANR -system, and i: XX is
an inclusion, then

(i) X is a retract of X <=1 has a left homotopy inverse,
(ii) X is a deformation retract of Xe=iisa homotopy equivalence.

Proof. The implications = obviously hold for arbitrary inverse
systems. Let us prove <.

Assume k: XX to be a left homotopy inverse of i, ie.

(1) : hi~1y.
Obviously we have
(2) hHCh.

By Theorem 2.2 (on extension of homotopy for inverse systems), since

X is an ANR-system, it follows by (1), (2) that there exists an r: X X,
such that

{3) 1;Cr
and .
(4) reh,

By (3), r is a retraction, which proves (i)

icm®
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Ass ume now that k is a homotopy inverse of 7, i.e. that it satis-
fies (1) a
{5) ith~1z.
By (4), (5) the retraction r satisfies
(8) ir~1x,
which proves (ii). m
Finally, let us notice that

2.4, If r={0,7): X=X is a retraction, i = (7, 1;): XX is a corre-
sponding inclusion, X =1imX and p,: X > X,, aek, are projections, then

/\ [raig(a)prg(a) = pa .
a
Proof. By the assumption, ri = 1,, ie.
. , o
V Toloe) Pooty = Py

a eo'>Zo,7ol0)
80

2 a0 —
V ra zg(a}prg(a)pa’ - pupa' .

a o’Zze,rpla)
Since pZpy = P, a0d Py P = Pryeys We Obtain
olgyProte) = Do 1OT €VErY aeA. W
3. Mapping cylinder for a usual map of inverse systems. Consider
two arbitfrary inverse systems of topological spaces, X = (X,, pd, £),
= (¥, qg', $) and a usual map f= (¢, fz): X—Y. By a mapping cylinder
of f we understand the system Z= (Z,, 5, B) defined as follows:
Z,is a mapping cylinder of fz: Xq,w,—»l’!3 ,ie Zy= ((XW)XI) v Tl
where I = (0,1, and the equivalence relation ~ is defined by the con-
ditions:
for (z,8), (&, 1) e X X I, (2,0)~(2,t")<|(z, 1) = (&, ')V
V[t =1t = 1afz) = fa")] ,
for y,y" ¢ ¥, Y~y =y=y,
for (x,t) e X I, yeX;, (r,f)~y<e>t=1Af{z)=y;

ey | PR 3 2= [, 1]
Ul gwn it e=1y]
Since the mapping cylinder of a map of spaces f: X ¥ is usually denoted
by €}, we shall use the symbol C;to denote the mapping eylinder of the
map of inverse systems f: X—=Y.

Let us prove that

Fundamenta Mathematicae, T. LXXV 11

for every ' = f.
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3.1. C, is an inverse system.

Proof. First let us verify the continuity of +§. Since pg, ¢ are
continuous, it suffices to show that

Ble, 1= r{[fulx)] for zeXy /=4
Since (pZ5)(x), 1) ~f,p28) (@) = ¢ fz(®), We have

iz, 1] = [p5)(@), 11 = [¢f Fp(@)] = 7§ [ fol@)] -
Take f” > ' > p and show that §7) = »}". If 2= [, 1], then
187 (@) = (w2 (@), 1] =[5 (@), 8] = 1§ ()
if z=[y], then
515 (2) = 6§ & W] = [¢f (1] =15"() -
Obviously ri(z) =z2. =

3.2, If X, Y are both ANR-systems, then C,is an ANR-system as well.

Proof. By the Borsuk Theorem on the matching of ANRs (see [3],
p. 116), C, ¢ ANR for every feB. Thus Cr= (G',ﬁ,rp,ﬂfo) is an ANR-
system.

Obviously

3.3. If all the maps D7, gﬁ' are inclusions, then rﬁ' are inclusions as well,

4. Fox Theorem for inverse systems. Consider a usual cofinal map of
inverse systems, f= (¢, f;): XY, and let Z be the mapping cylinder
of f. We define the following two maps i: X—~Z, j: ¥Y-Z:

i=(p,iy), 1 Xog—>Zsy @) =[x,0] dfor = € X, feB,
j= (laajﬂ): jp: YB"—}Z(N jﬁ(?/) = [y] for ye Yp, BeB
Let: us notice that k
4.1. Both i, j are usual maps.

Proof. Consider the diagrams

ﬁ,

B
Poid)
>4 #1(8) < X-p(p') Y,g<———- Y.
K i i’.ﬂ' ; fﬁl j,iﬂ' for A= P
[ &

Wé have

iP5 (2) = [pf&), 01 = 8, 0] = ig(x)  for every = € X 59

icm
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and
3@ @) =[5 ()] = rflyl = rfjp(y)  for every ye X,.

So i, j are usual maps.
We are going to generalize the Fox Theorem to the inverse systems
(4.5) (%). First, let us establish two lemmas.

4.2. i~jf.

Proof. We have to show that

- L o oy
NV 4pen =ifiten s o %o
8 a=elB) fﬁ P

7, |1
ipl
¥
- Zﬂ
Let us take a= ¢(p) for any fe3.
For z e X5, we have
ig(x) =[x, 01, Jpfalz) = [f3(@)] = [=, 1].
Obviously, the map & XpXI—+2Z;, defined by the formula
&z, 1) = [, 1], is the required homotopy. m
4.3. There exists a usual map h: Z—Y whieh is a homotopy inverse
of j: Y>Z.
Proof. Let

z for z=[o,t], = sX

h=(ghy), hyle) = 7@ L, 2] o
y for z2=[y], =zeX,;.

Consider the diagram o

¢
Zye— Zp
L .
L
yﬂ'(—-—l— Y v

%

We have
. r"( 2= T8 () for  z=[a, t]] _ ‘qﬁ'fﬁ,(m) for z=[®,f]
A for 2=[y] A for 2z={[y]

= @hylz) for B >P.

Thus k is a usual map.

{) The proof of 4.5 is a modification of the proof given by Fox in [5].
11*
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The map k& is a left homotopy inverse of j (moreover, it is a left
inverse): :

h=Qg,hsig)y Tplgly) =y; 0 Bj=1y and thus hj=~1,.

Finally, prove h to be a right homotopy inverse of j. We have

jh = (1$)jﬁhﬁ);

[fie)l for =z= [z, t]] {[m, 11 for 2={=,1],
[yl for z={y] [v] for  2=T[y].

Js k,s(z) = {

Sinee the map 2 Zyx I-+Z, defined by the formula

[[x,s—{—t(l—«s)] for z=[z,1],

Sz,s:
159) ] for  z=[y],

DI ’

satisfies the conditions: (2, 0).= ¢, Lal2y 1) = Jghy(2), we have Jahg 1,
. . B
for every f<®. Thus jh~1,. m - : ‘
By 4.2 and 4.3 it follows that .
+.4. f is a homotopy equivalence <> i is a homotopy equivalence.

Proof. By 4.3, there is a map h: Z-—¥ which is a homotopy inverse
of j;-thus j, k are both homotopy equivalences.
By 4.2, we have :

(1) i~ jf;
and thus ki = kjf. Since Aj~1,, we get
2) f~hi.

Obviously the composition of two homotopy equivalences is a homo-
topy equivalence again; hence, by (1), we obtain the implication =, and,
by (2), the implication <. m

Rema‘rlf. Thfa maps iy, jp aTe both topological imbeddings for every
B € B. Thus, identifying [, 0] with z and [y] with y for z e Xopys ¥ € Xy,
one can assume X, ¥, to be subsets of Zs. Then the maps #,j are
both inclusions.

By the statements 2.3, 4.4 and the above remark, we obtain the
following

'4.5. COROLLARY (®). Let X be an inclusion-ANR -system, ¥ — an
arbitrary inverse system, and f: XY a usual cofinal map., Then f is

() If Xpgy, X are not assumed to be subsets of Zg, then CoroH;'«rry 4.5 should be
formmulated asAfollows: £ is a homotopy equivalence iff X is isomorphic (in the sense of
the category I2) to a deformation retract of the mapping cylinder Cy.

icm®
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a homotopy equivalence iff X is a deformation relract of the mapping
cylinder C.

5. Convenient absolute retracts. Let us recall the basic notions of
Borsuk’s shape theory (see [1], [2], [4]). Consider two pairs of compacta
(M, X), (N,X), the spaces M, N being arbitrary ARs. The sequence
of maps f™: M-> N is said to be a fundamental sequence from X to Y relative
to (I, N) (in symbols f= (f*, X, Y),, x) whenever for any neighbour-
hood 7" of ¥ in N there exist a neighbourhood U of X in I and an
index n, such that

U =fMT  in V for every n > n,.

Two fundamental sequences f= (f*, X, ¥)y v, =X, Yy
are said to be homotopie (f~f') iff for any neighbourhood ¥ of ¥ in &
there are a neighbourhood U of X in M and an index n, such that

U ~f™U in¥V for n>n,.

Two compacta X, X are said to be of the same shape, (X = Y), iff there
exist I, N eAR and two fundamental sequences f= (f*, X, Y); v,
g= (9", ¥, X)y y such that fg =1r, gf ~ 1y (i.e. f is a fundamental equiva-
lence rel. M, N). - o

X is a fundamental retract of X iff there exist 3, I ¢ AR and a fun-
damental sequence r = (r", ¥, X )iz,3r such that +"(x) = x for every xe X
(i.e. r is a fundamenial retraction rel. T, M). If, moreover, r satisfies
the condition ir~1g, i= (i, X, X)Jm} being the inelusion (i.e. i (@) = =
for every x € M) then r is a fundamental deformational retraction and X is
a fundamental deformation retract of X. .

S. Mardesié and J. Segal in [7] are concerned with the case of M
= N = @, @ being the Hilbert cube. They study the so called inclusion-
ANR-sequences associated with compact subsets of ¢. One can easily
verify that the only properties of the Hilbert cube needed in [7] are the
following two: . :

1° @ € AR,
2° for every compact subset X of @ there is a decreasing sequence
of ANRs, {X,},_;.. ., such that
oo
X =0 X,, every X, being a neighbourhood of X in Q.
n=1

Hence, all the results of [7] remain valid if any pair (Q, X) is replaced
by the pair (M, X), where M satisfies both of the conditions 1°, 2°. Such


Artur


156 M. Moszyiska

a space M will be referred to as a convenient absolute retract (in symbols
M < CAR) (®).

Obviously

5.1. CAR is a topological invariant.

We are interested in preserving the class CAR under the operation
of matching (see [3], p. 116). We start with proving three Lemmas 5.2-5.4.

Consider two arbitrary disjoint spaces M, N, the closed subset I,
of M and the map g: My~ N.

Tet w: M v N—>M u N be the natural projection.

g

8.2.If X = XC M, Y = YCN, the sets U,V are neighbourhoods of X, ¥
in M, N respectively, and X ~ My= g~X), Un M, = g V), then for
any open neighbourhood V' of ¥ in N such that V' CV there is an open
neighbourhood U’ of X in M such that U'C U and alg(TYC T vV,

Proof. Take an open neighbourhood V' of ¥ in N such that V' C T,
and put U";:r g }(V’). Since g is continuous, the set U, is open in If,.

Since X~ My=g~4Y) and U~ M,=g~(V), we have

(1) XnM,CU,CU.
Notice that
(2) a (T C U n V'
Let U” be an open neighbourhood of X in M, U” CU. Put
(3) U =U,v[(M—M)nT"].

The set U is open in M;
X=(Myn D)V [(M—-M)n XIC Ty [(H—M) nT"]1=T

and U’ CU;
moreover,

a;z‘ims( U) = a 'n{Uy) v o n{(M—M,) ~ T”),
where

a”'x(Uy) C Upo V' by (2), and a 'w({(M—My)~U")= (M—M) n T"
gince z|M— M, is a topological imbedding; Thus
2@ CUu Vo [(M—M)A T ]=T' uV'. m
5.3. W is a neighbourhood of a compactum Z in M w N <> a~ (W) is

a neighbourhood of n~(Z) in M U N. !

(%) As was shown by K. Borsuk in [3], p. 156, there exist absolute retracts which
are not convenient ones.
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Proof. The implication = is an immediate consequence of the
continuity of =. ‘
Let us prove =, Assume z (W) to be a neighbourhood of =z (Z)
in M uXN. Put :
X=a¥yZ)ynll, Y=aYYZ)~XN
and .
U=ayW)~ndl, V=za4W)~X.
Since M AN =0, U is a neighbourhood of X' in I, and ¥ is
a neighbourhood of Y in N. Moreover,

XnMy=gY) and Un M= g V).

Let 7' be an open neighbourhood of Y in N such that ¥/ CV. By 5.2,
there is an open neighbourhood U’ of X in M such that U'C U and
T m(UYCT uV.

Let: W’I)_—: U'vV'. The set W' is an open subset of 3 v ¥ and
aHZYCW Ca (W) 50 ZCa(W)CW. Let us show that m(W') is
open in M v N. In fact, by the definition of quotient topology, it suffices

g
to prove that 7 lz(W') = W'. Since a 'z(W’)=z"'=(U0') vz '=(V’),
2N being a topological imbedding, we have x '=(W)C U ¥’ = W';
thus = 'z(W') = W".

Hence, z(W’) is an open neighbourhood of Z contained in W, and

therefore W is a neighbourhood of Z in WU N. m
g
54. Let Z be a compact subset of Mo N, X =a%Z)n M,
g

Y=aZ) AN If X,CM, TuCX, g(Xpn M) C Ty for n=1,2, ...,
> o0

£ o
X="%p, Y=Y, and Zy=a(Xpw Yy), then Z ="\ Zy.
n=1 n=1 n=1
Proof. We have
Z=a(XuvX)
20 o =0 E oo
=a( 1 Xpu 1 Y, C n(_;""; (Xnw I"n))Cﬁ a(XpoX¥p)=)Z,.
n=1 =1 n=1 n=1 n=1

On the other hand, since ¢(X, ~ 3) C ¥, we have

a7 .i; Zy) = i, (7w (X v ¥a) z‘ﬁ (a7 (Xn) © w w( ¥a))
n=1 n=1 n=1
=0 Frog T = [ Tao N0 @) -

[
L.

i
k) n=1 n=1

=YugHY)CXu Y¥=aZ);
thus 1 ZxCZ. m

n=1
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It is useful to generalize the notion of CAR to pairs of spaces.
For M, + O:
(M, M) e CAR;»M ¢ AR, M, AR and for every compaet pair

(X, X)C (M, My such that X,= X ~ M,, there exists a decreasing
sequence of pairs (X, X,g) C (3, M) such that X=X, ~ M, X, iz
a neighbourhood of X in M, moreover Xn, X, ¢ ANR and X=" X, ("
n=1
C(M,9) EGARd;-;MeCAR.

Obviously the following implication holds

5.5. If (M, M) « CAR, then for every pair of neighbourhoods (U, Uy) of
a compact pair (X, Xo) in (M, M) such that Uy = My~ Uand Xy = My~ X,
there is a pair of neighbourhoods (U, U,) C(U,Uy) such that U’ U, € ANR
and Upg= Ty T (¥).

Now, let us establish the theoreni on the matching of CARs:

5.6. THEOREM. Let M, C M and M ~ N = 0. For any map g: M- 1N,
if (3, M,) e CAR and N ¢ CAR then M v N «CAR.

g

Proof. By the Borsuk Theorem on the matching of ARs ([3], p. 121,
(9.17)), M v N € AR. '
g

Given a compactum ZC M u N, prove that there is a decreasing
g

sequence of mneighbourhoods {Zn}n;,,z,‘,_ of Z in MouXN such that
. ) g

Znye ANR for n=1,2,.., and Z= Z,.

n=1 )
Let X=aY2) M, Xo=aZ) M, and Y =a"YZ)n DV,
a: Mo N->M v N being the natural projection. Since N ¢ CAR, there

is a decreasing sequence {Y,},.,, . of neighbourhoods of ¥ in N such

that ¥, ¢ ANR for n=1,2,.. and ¥ =" ¥,. By the continuity of g,

n=1

for every n there is a neighbourhood'fw of X, in M, suchthatg (Xm) CYy.

(*) Using the terminology introduced for pairs in [8], by Theorems A.1, B.1 of [8]
we can express this definition as follows:

(M, M) e CARc];; (M, M,) & AR and for every compact pair (X, X,) C (M, M) there
is a decreasing sequence of neighbourhoods (X,, X,,) of (X, X,) in (M, M,) such that
oo fee]
(th XM) € ANR and (m X, me) = (X, -Xn)~

#=1 Re=
(#) Using the term.inology for pairs: if(M, M) ¢« CAR, then for every neighbourhood
(U, T,) of a compact pair (X, X,) in (M, M,) there is a neighbourhood (U, U}) C (U, Uy)
such that (U, Ug) ¢ ANR.

- iom®
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o

Let X, be a neighbourhood of X in I such that ¥, n My= X,,. Since
(M, M,) e CAR, by (5.5) there iz a pair (Xa, X,,) of ANRs such that
X, CX, and X, = X, ~ I, the set X, being a neighbourhood of X in
M. Obviously {X,},_,... can be made decreasing. Let g,: X\~ Y, be
defined by the formula

ga(r) = g(x) for v e X ;.
Since

X,CX,, X,nY,=0 and I, X, Y, <ANR,
thus by the theorem on the matching of ANRs ([3], p. 116),
' Xnu Y, e ANR, ie. =n(Xau Ya)e ANR.
I

Setting
" Z(Xpvw ¥y for n=1,2,..

we obtain the required sequence of ANRs, {Z,},_;... - In fact, we have

AN Za) D X w ¥y, 80 77 (Zy) is aneighbourhood of X ¥ in Mu N and

thus, by 5.3. Z, is a neighbourhood of Z in M v N; obviously {Z,}, ;... i8
g %

decreasing and, by 5.4, (1 Za=Z. W
n=1
Let us notice that the following condition is sufficient for (AL, 3f,)

to be a CAR-pair:

(*) For any £>0 there exists a finite collection of pairs (4,, 4,)
such that:

M=14,, /\MOA'Aﬂ:ArO?

N[44, e ARvA,~ A, =0Ir[4,,n A, e ARVA, A A, = 0],

and
Ad4,)<e.

Of course, the pair (Q"x I, Q" (1)), Q" being the n-dimensional cube,
satisties condition (*). On the other hand, for any & > 0 there is a natural
number # such that @ = Q"X @', where Q’ff Q and 6{Q") < &
D

Thus, we have the following example of a CAR-pair:

5.7. (@ x I, Q% (1)) e CAR.

By 5.6 and 5.7 we obtain

5.8. COROLLARY. For any map f: @—0Q

Cre CAR.
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Proof. Obviously, Oy = @Xx I v @, where g: @ X (1)@, g(x, 1) = f(x)
g
for every we@. Setting, in 5.6, M=@QXI, My=0Qx (1), N=0Q, we
infer that Cre CAR. m ’

6. ANR - sequence associated with a mapping cylinder. Let us generalize
the notions of [7] as follows: )

Given the pair (M, X), the space M being a convenient absolute
retract and X — a compact subset of M, the inclusion ANR-sequence
X = (X, p.g, N) is said to be associated with X in M whenever
{X.netg,... 18 & decreasing sequence of neighbourhoods of X in M and
X = X,. We write simply X = (X,, p¥).

=1
‘ According to the definitions given in [7], X is associated with X
iff X is associated with X in Q.

‘ Let X, Y be two inclusion-ANR-sequences associated with X, ¥
in M, N respectively, X= (X,,p"), ¥=(Y,,q"). The regular map
f=1(g,fa): XY and the fundamental sequence f= (f*, X, Y), v are

said to be related one to another provided the following two conditions
are satisfied:

(@) B, ¥ = p(n) = FH1X g 2 f¥|X ) i T,

(i) fa(x) = f(x) for every zeX,,.

6.1. PROI’()SI"I‘ION. ‘Let X, Y be two compact subsets of the Hilbert cube (.
Let X, Y be two inclusion-ANR-sequences associated with X , Y respectively
and let _f be a fundamental sequence (rel. (Q, Q)) generated by the map f: X7,
Then there exist a usual map f: X-> Y related to f and a space R ¢ CAR
such that C; is an inclusion-ANR-sequence associated with Oy in R.

Pro?\’f. Sinee_]:‘ is generated by f: X+, it is of the form f = '(fw, X,Y),
the map f: ¢ @ being an extension of f. By'Lemma, 2 of [7], Ehere is a.map
of sequences f= (p, fu): X— Y related to Ty Le. fulz) = ﬂw) for # ¢ X 4

- ’ 7 - - ™’
Since py, gy are inclusions, we have

fnpﬁ::;)(m) = f(‘l') = Q:ifn’(‘r) for &€ X«;(n’);
thus f is usual.
Let us put
R = Cy.
It follows by 5.8, that R e CAR.

Eo;re th to be an inclus%on»ANR-sequence associated with Cr in R.
act, by 3.1-3.3, Cs iz an inclusion-ANR - sequence. Tt remains

1,2,.%

to show that C is associated with ¢y in R, ie. COr= ﬁ C,.,{C..}
- . b nln=
n=1

icm®
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Deing a decreasing sequence of neighbourhoods of Oy in R. It follows
by 5.4 that

C;=N 04, .
n=1

Since {Xu}, {¥n} are both decreasing, {0, } is decreasing as well.

Finally, by 5.3, since Xy I is a neighbourhood of XxIin @I
and Y is a neighbourhood of ¥ in @, the set Cy is a neighbourhood of
¢y in R, which completes the proof.

7. Retracts of ANR-systems and fundamental retracts of compacta. We are
going to establish the connection between the notion of retract of ANR-
system (see § 2) and that of fundamental retract (see [1], [2], or § 5 of
this paper). We start with proving proposition 7.1, which states the
connection between the motion of inclusion of ANR-system, as defined
in § 2, and the notion of inclusion in the sense of Borsuk (see [2]). Given
two convenient absolute retracts M, M, let us consider the inclusion
ANR-sequences X = (X,,p¥), X=(X,,7") associated with the com-
pacta X, X in M, M respectively. Recall that the fundamental se-
quence i = (i", X, X) 5. is said to bean inclusion (in the sense of Borsuk)
whenever i"i) = & for every x e M (then obviously M C .

7.1. If a regular map i= (1,1ia): X-»X is related to o fundamental
sequence i = (i", X, X)y 5 then
(1) i is the inclusion in the sense of Borsuk = i 1is an inclusion,

(2) i s an inclusion = i is homotopic to the inclusion in the sense of
Borsuk.

Proof. Since i and i are related one to another, we have ia(z) = 7 (z5)
for every o ¢ X- ’ K

{1): Let i be the inclusion in the sense of Borsuk, i.e. i"(#) = & for
every z ¢ M. Then in(z) = z for # € X,i,,), and thus i, are inclusions. By 2.1,
sinee i is regular, it is cofinal. Moreover, since p* are inclusions, # is usual.
Thus i is an inclusion. _

(2): Let i be an inclusion, i.e. in(x) =z for = ¢ X:(n)' Let iz M—>M
e the inclusion. Obviously, the inclusion i’ = (iu, X, X)yr 47 I8 related to i

'So i,i’ are both related to i and thus, by Lemma 5 of [7], = i.m

Let us prove that

7.2. If a regular map ¥ = (0,7s): XX is related to a fundamental
sequence = (™ X, Xy, i= (v,1n): X->X is an inclusion and Pa:
X >X, are inclusions for n=1,2, ..., then

[/\ Tnip(n)prg(n) = p"]
"

= [r has a subsequence r' which is a fundamenial retraction] .
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Proof. By the assumption, P lom Protm(®) = Pl) for every g e X,
the map pn: XX, being an inclusion for every m; thus () = z for
every s« X. Since r and r are related one to another, r,(z) = M) for
every ¢e X, and thus ra(z) = r"(z) for zeX.

Let ' = (1™, X, X)y3 5. Since r is regular, 7' is a subsequence of r.

So as 1*"(x) = ry(z) = @ for every x¢ X, ' is a fundamental retraction, g

7.3. If a reqular map r= (g, 7a): XX is related to a Jundamental
sequence r = (", X’,X)f,’y, then + has a subsequence r' such tha

(i) r is a retraction = ' is a fundamental retraction, '

(ii) r is a deformational retraciion = 7’ is a deformational fundamental

~ retraction.

Proof. By 2.4 and 7.2 we obtain (i)-

Prove (ii). Let i: X->X be an inclusion and let ¢ be a related funda-
mental sequence. By 7.1, 4 is homotopic to the inclusion 4" in the sense
of Borsuk.

If r is a deformational retraction, then r is a retraction and ir~ 1;.
Then, by (i), r has a subsequence 7' which is a fundamental retraction;
moreover, by Lemma 6 of [7], i ~1%. Thus, by the statement (3.4) of
[1], #7"~1%. Hence ¢’ is a deformational fundamental retraction. m

Finally, let us establish ’

7.4. THEOREM. Let M, M € CAR. Let X, X be two inclusion-ANTR.-
-sequences assoctated with the compacta X WX in M, M respectively. Then
X is a (deformation) retract of XX is a (deformation) fundamental

retract of X.

Proof. By the statement 7.3 we obtain the implication =.

Let us prove <. )

Assume X to be a fundamental retract of ¥. Since the motion of
retract does not depend on the choice of M , JI, there are an inclusion
i=("X,X), 4 and a fundamental retractiopn r= ("X, X)py. As
proved in [2], ri~1y. Let i+ X>X, r: XX be related to 7, 7. Then,
by 7.1, is an inclusion; on the other hand, by Lemma 6 of [7], #i ~1y.
Thus, by 2.3, X is a retract of X : )

If, moreover, ir~1g, then ir~1y, and thus X is a deformation
retract of ¥ m ’ »

8. Fox Theorem in the Theory of Shape.

8.1. THEOREM. Let X, Y be tuwo compacta. The map f: XY generates

a fundamental equivalence iff X s homeomorphic 1o a fundamental de-
Jormation retract of the mapping cylinder Cj.

Proof. We can assume X »Y to be subsets of the Hilbert cube Q.
Let Z = Cy; we can also assume X to be 3 subset of Z.

Let us establish the following

icm®
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Let f be a fundamental sequence generated by f. Take inclusion-
AXNR-sequences X . Y associated with X, ¥ respectively. By 6.1, there
is a usual map f: X— ¥ related to f and a space R ¢ CAR such that G is
an inclusion-ANR-sequence associated with Z in R. This maps f can
easily be made cofinal. Let Z = (. Since _f and f are related one to another,
it follows by the arguments used in the proof of Theorem in [7] that
(1) fis a fundamental equivalence <= fis a homotopy equivalence.

By 4.5,

) fis o homotopy equivalence < X is a deformation retract of Z.

Finally, setting in 7.4 M =Q, M = R, X = Z, X = Z, we obtain

(3) X is a deformation retract of Z< X i3 a deformation fundamental
retract of Z.

Thus the proof is complete. m

Appendix. It is known that for any usual map f: X— Y there exists
a limit map f=limf: lim X—1lim ¥. Take

X= (Xafp:'! £), Yz(yﬁng’a By, f= (@:fﬁ)
and let X =1limX, ¥ =lim¥. Then

aefk a'>o

X={{r}e P X A\ pl@) =0}, YT={{y} < 5’33 YﬁﬁQ\ﬁ % (Yp) = Y5}

and the map f: ¥-»¥ is defined by the formula f({z,})= {fo(@a)}
Moreover, if p,: X—+X,, g;: ¥Y->X,; are projections, then f is a unique
map satisfying the condition: g¢,f = SoPuy for every peB.

e are now concerned in the properties of the limit map.

Prorosiriox 1. For any fwo usual maps f,f': X— ¥
fe=f =limf=limf’.
Proof. Take two usual maps f,f: XY, f=(g,f5), f' = (¢, ]3)
and let X¥'=1lmX, ¥ =1lim¥, f=Lmf
Take p;: ¥—X_, g2 Y->T,. We have

.= p¥p, and 0= .
a"/;ap PaP ﬁéﬁ ? s

The map f is a unique one satisfying the condition 4f = [Py for
every fe®; » )
the map f’ is o unique one satisfying the condition QS = fapy

@
for every fe .
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Take an arbitrary f e B. Since f o f*, there is an o> ¢(f), ¢’(8) such that

oo =TePyw -
We thus have

05f = FoDoisy = (FsPiip) P = (foPiria) e fﬂf’«ﬂﬂ) =g’

Hence, by the uniqueness of f, we obtain f=r.

PROPOSITION 2. If i X>Xis an mcluswn, then there ewmist X, X
such that X = 11mX X = lme and hmz XX is an nclusion.

Proof. Let X=(X,, pa,a‘('-),X (X,,7%, £). Take the inclusion
i: XX, i= (v, 4). Pub

e P X Asia)=al, X=|a}eP X A Ba)=a).

aer(a(‘,) a’>a aedk a'>a

Since i is cofinal, 7(#) is cofinal with # and thus X = H«IELX. Obvi-
ously, X = HEX'

Let i = @i: X—>X; we have i{zg) = {is(2,4)} = (@4} for every
{#5} € X, and 5o ¢ is an inclusion, m

Provosrriox 3. If r: X—> X is a usual refraction, then there ewist X, X
such that X ='1*‘1EX, X= lj]_aq:ﬁ? and 1ir£1r: X-+X is a retraction.

Proof. Take the usual retraction r: X X; by the definition, there
is an inclusion i: XX such that ri = 1;. By Proposition 2, there are
X, X which are inverse limits of X, X and are such that i = hmt XX

is an inclusion. By Proposition 1, since lim is a covariant funetor, we
obtain 7= 1x, and so r is a retraction. W

Now, let us establish the connection between the mapping cylinder
of f and the mapping cylinder of lim f.

ProrosITION 4. If fi X—>Y is a wusual cofinal map and f=limf,
then’ Gf = h'mC}.

Proof. Let Z= Cr, Z= C;. We have to find a homeomorphism
z: HmZ—>Z,

Recall that

1° zelimZ e 2={z} e P ZH, 75 (2y) = zyfor f' > B, Where z; = [, 1]
01' = [;Vp]:

the class [z, 1], << 1, consisting of a single point ( W), 1) e X 5 X (0, 1),
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[y;] consisting of a single point y; € ¥,
[Zoeys 1= [Wsl iff =1 and Tol@om) = Yss
Since ¢(B) is cofinal with £, X = hm(Zw), P@(ﬁ) , B). Thus

2° zeZ < z=[x,t] or z=[y], the class [z, {], t <1, consisting of

a single point (&, %) e X %<0, 1), [y] consisting of a single point y e ¥,
[#,8]=1[y] iff t=1 and f(x) =y, where

T = {ma} € P Xu7 Z’f(‘”u') = Ty for o = a,
aeg{B)
y = {yp} €§P$ Y;, le(yp') =y for p=8,
€

and f({zupn}) = {f(@em)}-
Define x by the formula

z()z{[{%@};ﬂ for &= (@, 11}
Dt {yg}] for 2= {{yl}-
It is easy to see that the restrictions of y are both continuous; moreover
{2y, 113 = {91}
= A\ s 1= 5= 1= 10 A fla) =4,

=[{z {5)}; i]= [{w.p(p)}: 1]= [{fﬂ(“}m))}] = [f({‘rtp(ﬁ)})] = [{?/p}] 3
thus y is continuous.

Define now y: Z->1limZ as follows:

7(2) =j {[mqv(ﬂ)? 1} for 2= [{wqp(_b’)}’ i,
" bt [ {[‘yp]} for z= [{?/,3}] .

It is easy to see that the restrictions of ¥’ are both continuous; moreover

Uzt 8l =H{ys}l =t = 1AS @} = (Y} =t = lAp/\ss Jol@pe) = 95

={{T, 1} = {7, 11} = {LFo(@ee) 1} = {[9s1}s =
thus ' is continuous.

Obviously, x’ is an inverse of y, whence y is a homeomorphism.

Let us notice that Proposition 4 fails if £is not assumed to be cofinal.
In fact, let ns consider the following
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Exavrie. Take the subsets of the 3-dilnensiona1 Cartesian space;

R i
Xp= {(wlrwz) @y): 75423 <;b-2 A&y = 1} ;

o, o - L
Yn={(m1,m2,x3):m;—|—m;<gé/\m3==0}, n=1,2,..

and let p*: X,—>Xu, ¢¢: Y,—Y, (n' > n) be the inclusions.
Obviously X = (X,, %), Y= (Y,,¢") are both inverse systems.
Define f= (p,fa): X—>Y as follows:

@(n) —1 for every n, .

@ @ ;
Taly, ®5,1) = (;5, i, 0) for  (zy,2,1) e Xy, n=1,2,.."

o ' i
Obviously imC,= () C,,; this is a cone with the base X; and the
-~ n=1
vertex (0,0, 0). On'the other hand, since lim X and lim Y both consist
of single points, Cims is a segment. Thus Cums # LimC,.

Remark 1. Let T be the category of topological spaces with continu-
ous functions as morphisms and let T* be the category of inverse systems
in T with usual cofinal maps of systems as morphisms. Obviously T can
be considered as a subeategory of T* consisting of constant systems.

-We can define the operation C: MorI*-QbI*:

CH=zG
Then Proposition 4 can be expressed in the form
1imC(f) = C(lim/) ,

which means that the operation C is econtinuous with respect to the in-
verse limit.

Remark 2. In the case of maps of spaces, the mapping cylinder
can be defined by means of the Cartegian product and the matching of
spaces ([3], p. 116): given f: X->¥ we have Cr=XxIu Y, where g:
X x (1)->Y is defined by the formula g(z, 1) = f(=). !

In a similar way the mapping cylinder of a usual map of inverse
systems could be defined. :

First, let us define the Cartesian product Xx T of inverse systems
X=X, 97, 4), T=(T,,s,#) as the system (X,x T, p% X 8%, ),
where (pf x s¥){(x, 1) = (p3(2), s¥(t)); one can easily prove Xx T to be
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an inverse system. Define in turn the matehing of inverse systems: given
two inverse systems (X, X9, ¥, the first one being an inverse system of
pairs (X,, X, X = XJC X, let us take a usual map g = (v, g3): X°~>Y;
we consider the system (X, v ¥, 75, B), where

]

[{p’xfg;’(x)] for z=[a], x « X g,

Ugw1  for a=[yl ye¥p.

Denote this system by X o Y. One can easily prove X o Y to be an
H -4

()=

inverse system.
We have
(I) Im(XXT)=lmXxLmT.

It was proved by E. Puzio that
(IT)  if g is cofinal and prefect (ie. g; is closed and g;'(y) is compact
for every y e ¥, f e B), then lim(Xv ¥)=1mX o lim ¥,
—— g ‘— g —

Obviously, if f= (g, f;), then C;= Xx I v YT where
g

g=1(p,g): Xx(1)=>Y and gyw,1)=fy(x) for ve X, feB.

Hence, in the case of perfect maps, Proposition 4 can be obtained as
a corollary of both (I} and (II).
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