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Cohomotopy groups and shape in the sense of Fox
by
Stanistaw Godlewski (Warszawa)

In [2] K. Borsuk introduced the relations of fundamental domination
and fundamental equivalence in the class of eompaet metrizable spaces .
and proved that: (i) homotopy domination (equivalence) implies funda-
mental domination (equivalence), (i) in the class of absolute neighbour-
hood retracts fundamental domination (equivalence) implies homotopy

‘domination (equivalence). In [3] K. Borsuk introduced the notion of the

shape of a eompactum X it is the collection of all compacta fundamentally
equivalent to X. In[4] R. H. Fox extends the notion of shape to arbitrary
metrizable spaces such that for compacta the extended notion coincides
with Borsuk’s original notion of shape and the properties (i) and (ii) are
preserved.

In [5] and [6] I proved that in the class of compacta cohomotopy
groups are invariances of shape and that if a compactum X fundamentally
dominates a compaetum ¥ and there exists an nth cohomotopy group
«*X) of the compactum X, then there exists an nth cohomotopy group
a2 X) of the compactum ¥ and z™Y) is a divisor of z™(X).

The aim of this paper is to extend my results mentioned above to
arbitrary metrizable spaces.

§ 1. Basic notions. In this section we recall the notions introduced by
R. H. Fox in [4].

Consider an arbitrary category F and let ~ be a compositive equiva-
lence relation on the collection MorE of morphisms of E. Two morphisms
of E are concurrent if they have the same domain and the same range.
If u;, u, e MorE are concurrent and if % ¢ MorE is a morphism such that
U U ~Uu U, then u is an equalizer of u, and u,. An object U ¢ ObE is
a predecessor of an object U’ ¢ ObE in E if there exists a morphism 4 ¢ MorE
with domain U and range U’, u: U-U".

A subeategory U of F is called an inverse system if

(1.1) any two objects of U have a common predecessor in U
and

(1.2) any two concurrent morphisms of U have an equalizer in U.
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If U and ¥ are inverse systems in B, then a mulation f: U~V in is
called a collection of morphisms f: U-7V, where feMorE, UeOhU
¥ ¢ Ob¥, such that : ’

(1.3) if ueMorU, fef, veMorV and ofu is defined, then ofu «f,
(1.4)  every object of ¥ is the range of a morphism bélonging to f,
(1.5} any two concwrrent morphisms belonging to f have an equalizer

in U.
Morphisms belonging to a mutation f are called constituents of f.

Consider two mutations f: U~V and g: V—W in E. The composition
g&f of the mutations f and g is the collection of all compositions gf such
that fef and geg and gf is defined. The composition of mutations is
a2 mutation.

The collection # = MorU of all morphisms belonging to an inverse
system U is a mutation from U to itself, u: U—U, and Ju=fand ug=g
whenever these compositions are defined.

Two mutations f,g: U~V are similar (notation f~g) it

{1.6)  concurrent morphisms fef and ge £ always have an equalizer

in U.

Similarity of mutations is a reflexive, symmetrie, transitive zmd com-
positive relation. .

TIWO inverse systems U and ¥ in E are of the same stmilarity type
(notation U~V) if there exist mutations FU>Vand g: V-U sueﬁ that
gf~u= MorU and fg ~v = Mor ¥. This relation is reflexive, symmetric
and transitive.

Consider the category ANR (M) of metrizable absolute neighbour-
hood retracts with continuocus mappings and the relation of homotopy
!&)etween mappings denoted by ~. If the mutations f and g are similar
in the c?,tegory ANR(M) with the relation ~, then f and g are called
homotopic mutations (notation f ~g). The similarity type of an inverse
systen? U i1.1 this category is called the homotopy type of U. By the Kura-
towskx—'WOdeslawski theorem ([1], p. 79) any metrizable space X can
be considered as a closed subset of a space P ¢ ODANR (M). By the first
theorem of Hanner ([1], p. 96) every open neighbourhood of X in P belongs
10. OﬁANR(SUI). Therefore the set of all open neighbourhoods of X in P
with inclusions is an inverse system in the category ANR (). It is called
the complele neighbourhood system of X in P and denoted 1;y U‘(X P)

_Let X and ¥ be closed subsets of ANR(9)-spaces P and @ ,l‘eS:
pectively, and let f: X->¥ be a continuous mapping. Then there ,exist
% UeObU(X,P) and a continuous m b I

& tinuo apping f: U-Q such that f (z)
= f(#) for xe X. The mapping f determines uniquely a mutation I
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U(X,P)>V(Y,Q) from the complete neighbourhood system U(X,P)
of X in P to the complete neighbourhood system V(X,Q) of ¥ in @;
the constituents of f are all mappings g: f “{¥) ~ U~V defined by g(x)
= f (), where Ue ObU(X, P) and ¥V ¢ Ob V(T @). Such a mutation f is
called an extension of the mapping f. It is easy to see that a composition
gf of estensions f and g of the mappings f and g, respectively, is an ex-
tension of the composition gf of the mappings f and g.

By Theorem (3.2) of [4] the homotopy type of U(X, P) does not
depend either on P or on the manner in which X is imbedded as a closed
subset in P. The homotopy type of U(X, P) is called the shape of X and
denoted by ShX.

Two compacta X and ¥ are fundamentally equivalent ([2], p. 233)
if and only if ShX = ShY ([4], Theorem (4.3)).

e shall say that the shape of X is dominated by the shape of ¥
(notation ShX < ShY) if there exist mufations f: U(X, P)=>FV(¥,Q)
and g: (Y, Q)»>U(X, P) such that gf~u= MorU. The domination of
shapes is well defined (i.e. it does not depend on the choice of P and @)
by Theorem (4.3) of [4].

Tt follows by (4.6) and (4.7) of [4] that if X and Y are compacta,
then ShX < 8hY if and only if X is fundamentally dominated by ¥

=

([21, p. 233).

§ 2. Mappings into ANR(9)-spaces and mutations of complete neigh-
bourhood systems. Consider a metrizable space X and an ANR (9) -space Z.
Suppose that X is a closed subset of an ANR (I)-space P and consider
the complete neighbourhood systems U{X, P) and W(Z, Z). The system
W(Z,Z) consists of only one object Z and only one morphism which
is an identity mapping on Z (it is a so-called rudimentary system, cf. [4]).

Let us prove that

(2.1)  Every mutation f: U(X,P)—>W(Z, Z) is homotopic to a mulation
g UX,P)->W(Z,Z), which is an extension of a mapping

g: X—+Z.

Proof. Take an arbitrary mapping f, € f; for Up—> %, U, e OBU(X, P).
Let g: U(X, P)=W(Z, Z) be the mutation consisting of all restrictions
folT where U C U,y and U ¢ ObU(X, P). The mutation g is an extension
of the mapping g = f,/X: X—~Z. It remains to prove that g=f Take
arbitrary concurrent morphisms fief and g eg; fi,g: Ui~ Z, U,
e ObU(X, P). Obviously U, C U, and ¢, = folU;. Let u;: U, Uy be an
inclusion. Then g, = fou;. Since f;ef and u; e MorU(X, P), we have
by (1.3) fou, € f- The constituents fyu; and f; of f are concurrent. By (1.5)
they have an equalizer u, e MorU(X, P). Therefore there exist a U
e ObU(X, P) and an inclusion map uy: U,~T; such that fyu,u, > fiu,.


Artur


178 8. Godlewski
Hence g;u, = fi4,. Therefore the morphisms g, and f, have an equalizer
in U(X,P); thus g=~f (see (1.6)) and the proof is finighed.

(2.2) Letf,g: X—~Z be continuous mappings of a metrizable space X into
an ANR (M) -space Z and let f, g: U(X, P)>W(Z, Z) be extensions

of the mappings f and g, respectively. If f~g then fx~g.

Proof. The mutation f consists of maps of the form f | U, where
UCU,, U,U,cObU(X,P) and f: U,~>Z is an extension of f. The
mutation g consists of maps of the form §|U, where UC T, U, U,
cObU(X,P) and g: U,~Z isAan extension of g. Take U, < ObU(X, P)
such that U, C Uy~ U,. Then f | U, and §|U, are concurrent constituents
of the mutations f and g, respectively. Since f~g, then the morphisms
f1Usand §|U, have an equalizer in U(X, P). Therefore there exists
a U, ObU(X, P) such that U,C Uy and f|U,~§|U,. Hence f|X ~j|X,
thus f~g. .

Consider closed subsets X and Y of ANR(9)-spaces P and Q,
respectively, and an ANR(I)-space Z. Let 2 U(X,P)—> V(Y, @) be
a mutation from the eomplete neighbourhood system U(X , P) to the
complete neighbourhood system V(Y Q). Take an arbitrary continuous
mapping ¢: ¥—=Z. Let ¢: V(Y,Q)>W(Z,Z) be an extension of ?.
Consider the mutation ¢f: U(X, P)~W(Z ;Z). By (2.1) it is homotopic
Eo a mutation ¢: U(X, P)—W(Z, Z), which is an extension of a mapping
g: X ->Z. Therefore to each mapping p: Y% we assign a certain mapping
¢: X—Z. This assignment is not unique, but the homotopy class [¢]
?f the ’mapping @ depends only on the homotopy class [p] of the mapp-
ing g, i.e.

(23) If gy: Y>Z then p~y: X5 7.

Proof. Since g ~y, we have, by Theorem (3.1) of [4], ¢ ~¢. There-
fore ¢f ~¢f. Hence ¢ ~¢ and by (2.2) g~jp. ;

Let us denote by [Z¥] the set of homotopy classes of mappings of
& into Z. By (2.3) we can assign to an arbitrary mutation f: U(X,P)
= V(Y ,Q) and an arbitrary ANR(M)-space Z a function

% (271129
defined by the formula f¥([g])
by the mutation f.

It follows at once from the definition that

= [¢]. It will be called the function induced

(2.4)  If fg then f¥ = g,
(2:8)  If a composition gf is defined, then (gf)¥ — Vo s _
(2.6)

If u=MoU(X, P): U(X, P)>U(X, P), then u#: [2]>[27] is
an identity function. o
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Let us observe that

If f: UX,P)-»V(X,Q) and g: V(T,Q)-U(X, P) are mutations
such that gf~ u= MorU(X, P), then for an arbitrary ANR(IM)-
space Z the function f%: [ZT)-1Z%] is onto and g%: [Z%]>[27]
‘is a single-valued funetion.

(2.7)

Indeed, by (2.4), (2.5) and (2.6) fF¢¥ is an identity function and
hence we obtain (2.7).

§ 3. Homomorphisms of cohomotopy groups induced by mutations of
complete neighbourhood systems. First we recall the definition of the nth
cohomotopy group of a space X.

Let § = 8 be the n-dimensional sphere. Let us choose a point s, e S
and consider the subset

Sv8 = (8x (s0)) v ((80) X 8

of the (Cartesian produet §x 8. Let us define the mapping 2: SvS—>8
by the formula

sef.

Take two arbitrary continuous mappings ¢,y: X->S8. A continuous
mapping

D2(s, 8) = 0O(5y,8) =8 for

G: X 0,188
such that
P(x, 0) = (¢(x), p())
is called a normalizing homotopy for the mappings ¢ and . Then the
mapping y: X8y S defined by the formula y(x) = &(z, 1) is said to be
a normalization of the mappings ¢ and v ([7], p. 210).

Let us suppose that a space X satisfies the following three con-
ditions:

and D(x,1)eSvS for zeX

(3.1) TFor every ftwo continuous mappings ¢,y: X8 there exists
3 normalizing homotopy.

(3.2)  If x is a normalization of mappings ¢ and yp, then the homotopy
class [Qy] of the mapping Qy: X S depends only on the homotopy
classes [g] and [y]. )

(3.3) Addition in the set [8¥] defined by the formula [p]+[p] = [Qy],

where y is a normalization of the mappings ¢ and v, makes the
set [S¥] an Abelian group.
This group is called the n-th cohomotopy group of X and denoted by #"(X).
The addition defined in (3.3) is called the n-th cokomotopy addition. It
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may be defined if the conditions (3.1) and (3.2) are satisﬁfac‘l. In this case
we say that the space X admits the n-th cohomotopy addition. Moreover,
if the condition (3.3) is also satisfied, then we say that the space X
admits the ewistence of the m-th cohomotopy group.

Sinceé § e ANR, for arbitrary metrizable spaces X and ¥ any mu-
tation f: U(X,P)~»V(¥,Q) from a complete neighbourh.ood system
U(X,P) to a complete neighbourhood system V(Y, Q) induces the
function f3¥: [87]-[8%]. ‘

Let us prove the following
(3.4) Lemwa. Suppose that the metrizable spaces X and Y both admit

the n-th cohomotopy addition and lel f: U(X, P)—V(Y, Q) be a mu-
tation from a complete neighbourhood system U(X, P) to a ao‘mplete
neighbourhood system V(X, Q). Then for every two continuous
mappings p,p: Y8 we have f¥([p]+y]) = (0] +/¥(y]).

- Proof. Let &: ¥x<0,1>—->8x 8 be a normalizing homotopy for
the mappings ¢ and . Then ®(y,0) = (p(y),v(y)) and P(y,1) e SvE
for 4 ¢ ¥. The mapping x: ¥->8v§ defined by the formula y(y)= ®(y, 1)
is a normalization of the mappings ¢ and . Therefore

(3.5) [o]+Twl =[2¢].
Since 8, SvS, §X § € ANR, there exists a neighbourhood 7, « Ob ¥(Y, Q)
such that the following two conditions are satisfied: ‘
(3.6)  There exist extensions gy Vo8, v Vo=>8 y0 Vo> 8VvS of the
mappings ¢, 9, 1, respectively.
(8.7) There exists an extension @y Vyx (0,1>->8x 8 of the homo-
topy @ such that
Po(y, 0) = (9o(y), wol(y)) and Boly, 1) = xly) for y e V.
Since f: U(X,P)>V(Y,Q) is a mutation, there exists a U,
e ObU(X, P) and fy e f such that fy: U,—>V,. Hence
vofor Uo=>8,  wofoer Up>8, xofy: Up>8VS.
Let
¢ = @ofolX: X8,
(3.8) P =y ol X: X8,
1= reflX: X>8v8.
‘We shall prove that

{3.9) f# o) =[o'l, R =01, FHuD) =[]

Let ¢: V(Y, @)~W(S, 8) be the mutation consisting of all mappings
of the form ¢V, where ¥V ¢ Ob ¥(Y, Q) and ¥ CV,. The. mutation ¢ is
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an extension of the mapping ¢. Let ¢": U(X, P)-W(S, ) be the mu-
tation consisting of all mappings of the form ¢,f,| U, where U ¢ ObU(X, P)
and U C U,. Consider the mutation ¢ft U(X, P)-W(8, §). Let us observe
that gofy € ¢f and g¢ifp e¢’. We show that ¢f~¢’. Take two arbitrary
concurrent constituents ¢f: U—8 and ¢f,]U: U->8 of the mutations
of and ¢', respectively. The mappings f: U~V and f,|]U: U~V are
constituents of the mutation f Therefore by (1.5) there exists a U’
€ ObU(X, P) such that f|T” ~f,|U". Since ¢ = ¢,[V, where ¥ is the range
of f, we have ¢f| U’ ~¢.f,)U". Therefore the morphisms ¢f and ¢,f, have
an equalizer. Thus ¢f~¢’. Hence by the definition of f¥ we obtain
fF(¢l) =[¢'}. Analogously one can prove the remaining two con-
ditions (3.9). i
Let us define the mapping

D': XX0,1)->8x8
by the formula

D'(x, 1) = Blfple), ) for zeX and 0<i<1.
Then by (3.7) and (3.8)

D'z, 0) = By fy(x), 0) = lgufol) , yufol®)) = (¢'(2), v'(2))

D'(, 1) = Bo(folx), 1) = gofolw) = z'(x) for zeX.
Hence

(3.10) lo'l+ [y 1= [24].

From (3.5), (3.9) and (3.10) we obtain Lemma (3.4).
Lemma (3.4) implies at once the following

(3.11) TurOREM. If metrizable spaces X and Y admit the emistence of
the n-th cohomotopy groups = X) and =™ ¥Y) and f: UX , P)
- V(X,Q) is a mutation from a complete neighbourhood system
U(X, P) to a complele neighbourhood system V(X,Q), then the
induced function f+: a(¥Y)>a"X) is a homomorplism.
§ 4. Cohomotopy groups and the shape of metrizable spaces. Let us
prove the following
(£1) TeEOREM. Suppose X and ¥ are melrizable spaces such that ShX
< ShY. If the space ¥ admits the emistence of the n-th cohomotopy
group x(X), then the space X admits the existence of the n-ih co-
homotopy group aX) and n”(X)gn"(Y), i.e. the group =™X)
s a divisor of the group =™(X). ‘
Proof. By hypothesis there exist mutations £ UX,P)»V(Y,Q)
and g: V(X, Q)->U(X, P) such that gf~u = MorU(X, P).


Artur


182 8. Godlewski

Take two arbitrary continuous mappings ¢,y: X—8 = 8" Since
S e ANR then there exist U, e ObU(X,P) and continuous extensiong
@0, 9ot Up—>8 of the mappings ¢ and v, respectively. Since g is a mutation,
by (1.4) there exist ¥V, e Ob ¥(¥, @) and g, g such that go: V,~>TU,. Hence
podo: Vo8 and yogy: Vo> 8. Let ¢ = g0} Y: Y8 and ' = 90,/ 7:
Y —8. By hypothesis for the mappings ¢’ and 3’ there exists a normalizing
homotopy B: Tx<0,1y>8%x8.

Then for ye Y

B(y,0) = lg'@), v®) = (wdo(®)s wu(), B(y,1) e SVS.
Since Sv &, §x 8§ ¢ ANR, there exists a continuous extension
@: V,x<¢0,1>>8x8, TV.CTV,, V,cObV(¥,Q)
of the homotopy @ such. that '
B(y, 0) = (pogoly) , P goly))
D(y,1) eS8Vl
Take a constituent f; e f whose range is Vy; fi: UV, U, ¢ ODU(X, P).
Let v: V=V, be the inclusion mapping and put f, = of;: U=V, fef.
Then f( X) CVy, gofo: Ur>Uy, gofo €gf. Since gf~ u, by (1.6) there exists
a U, eObU(X,P) such that U,C U, U; and gofy|Us~u: U,—Ty,

u e MorU(X, P). Hence g,folX ~u|X: XU, Therefore there exists
2 homotopy

(4.2) for yeV;.

H: Xx40,1yT,
such that
H(z,0)=2 and H(s,1)= gfia).
Let us define the eontinnous mapping
G: X x<0,1>+8x8
by the formula
(z,1) = pH (2, 1,) pH(2,1) for zeX and 0<t<1.
Then for we X ‘
(2, 0) = (poH (2, 0), wH(w, 0)) = (p(a), olar)) = (p (), v (@),
Gz, 1) = (‘P(I-H(my 1), pH(x, 1)) = (’Po%fo(@: "/’ogofo(‘”)) .
Let us define the mapping
¥ X X(0,1 8% 8

(4.3)

by the formula
Gz, 2t
w ( , l) { ( ] ) for

0<
Pfofx), 20—1)  for 1<
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By (4.2) and (4.3) the mapping ¥ is well defined and continuous and it
is a normalizing homotopy for the mappings ¢ and y. Therefore

(£.4) TFor every two continuons mappings ¢,y: X—§ there exists
a normalizing homotopy.

We shall prove that
(£.5)  If 4: X—>8vS is a normalization of the mappings ¢,yp: X8,
then the homotopy class [2y] depends only on the homotopy
classes [p] and [y].
By (2.7) it follows that
(£.6) g¥: [8%]>a"Y) is a single-valued function.
{
" Let ¢,p: Y-8 be continuous mappings such that
(+.7)  g¥(lg]) = [¢] and g¥([y]) = [y].

By the hypotheses there exists a normalization y: ¥-Sv& of the
mappings ¢ and p and the homotopy class [Q%] depends only on the
homotopy classes [¢] and [y]. In order to prove (4.5) it suffices by (4.6)
and (4.7) to show that

(4.8) &) = (9] -

Since y: X8V 8 is a normalization of the mappings ¢ and ¢, then
there exists a normalizing homotopy

P: Xx{0,1,-~8x8
such that )
Dz, 0) = (), p(z)) and D(x,1)=y(x) for aweX.

Since S, 8v8, 8% 8e¢ANR, then there exists a neighbourhood
UeObU(X, P) sueh that the following two conditions are satisfied:

(4£.9)  There exist continuous extensions g: U8, p: U8, 7: U>Sv8
of the mappings ¢, v, ¥, respectively.

{(4.10) There exists a continuous extension @: Ux <0,1>>8X 8 of the
homotopy & such that

@ (2, 0) = (7 (2), 9 () and B(z,1) = Y (a) for zeT.
Since g: V(Y, Q)~U(X, P) is a mutation, there exist V « Ob F(Y, @)

and g eg such that g: V—U. Then @g, pg: V-5, %g: V->8v8.
Let us put

(£.11) ¢ =v9|Y, ¢ =39\, y =797

Fundamenta Mathematicae, T. LXXV . 13
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Then we have

(412) gD =17, LD =[¥1 &) =[2].

The proof of (4.12) is preeiseiy the same as the proof of the (3.9).
Let us define the continuous mapping ‘

Y. ¥Yx{0,1>>8x8
by the formula -

Py, t)=B(g(y),t) for ye¥ and 0Kt <.
Then by (4.10) and (4.11) we obtain
Py, 0)=Blg(¥),0) = (F9(¥), ¥9(») = [¢'®), ¥'(¥)),
Py, 1) = D(g(y),1) = 79 = £1).

It follows that y' is a normalization of the mappings ¢’ and ¢".
By (4.7) and (4.12) we have ‘

(4.13) [pl=[p] and [p]=[y].

Since the homotopy class [Qy] depends only on the homotopy classes
[¢] and {y] and the homotopy class [2y'] depends only on the homotopy

classes [¢'] and [y'], by (4.13) we obtain [Qy'] = [@y]. Hence by (4.12)

we obtain (4.8) and the proof of (4.5) is completed.
By (4.4) and (4.5) the space X admits the nth cohomotopy addition.

Therefore by Lemma (3.4) for arbitrary continuous mappings ¢, p: X8
and ¢,p: Y-8 we have

(£.14) ¥ e]+Iv)) = g¥(leD) +g%(v))
(415) S 0) = FHe) -+ -

Since g# is a single-valued function and the mth cohomotopy addition
in the group @™ Y) is associative and commutative, by (4.14) it follows that

(416) The nth eohomotopy addition in the set [8%] is associative and
commutative.

Let: [g,] be the zero of the group #*¥) and let [¢;] = f*(z,]). Then
(£17)  [gl+[yl= [¥] for an arbitrary continuous mapping p: X 8.
Tndeed, let [] = g¥([y]). Then []+[3] = [3]. Hence by (4.15) fH(g.])+

0D = FHCpD). But fHig)) = [p] and fH(p) = fHgH(y]) = [v]

Hence we obtain {4.17).
It is easy to see that

(4.18) TFor an arbifrary continuous mapping ¢: XS there exists

4 continuons mapping w: X-»§ such that [p]+ vl = [9)-

cm
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Indeed, if p: Y-8 is a mapping such that g™([¢]) +[¢]= [7,], then by
(4.15) an arbitrary mapping y e f¥([p]) satisfies the required condition.
From (4.16), (4.17) and (4.18) it follows that the space X admits
the existence of the nth cohomotopy group =™(X).
By Theorem (3.11) the functions f*: 2"(¥)—aX) and g¥: =*(X)
~a"(Y) are homomorphisms and since gf~u, Dy (2.4), (2.5) and (2.6)
ffg*: a(X)~>a™X) is an identity function. Therefore =(X) < a(X).

Thus, the proof of Theorem (4.1) is completed.
Theorems (3.11) and (4.1) and also (2.4), (2.3) and (2.6) imply at
once the following '

(£.18) TrrorEM. Suppose X and ¥ are metrizable spaces with ShX
= Sh Y. If the space X admils the existence of the n-th cohomotopy
group a™(X), then the space ¥ admits the existence of the n-th co-
homotopy group a™(X) and the groups a™(X) and «™(¥) are iso-
morphic, i.e. cohomotopy groups are invariances of shape.
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