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Introduction. Corresponding to vanishing degree, the notion of non-
singularity of set-valued compact fields in locally convex spaces is
introduced. Results parallel to degree theory in [16] are derived. This
notion of non-singularity in some application works as well as degree
theory. The domains of maps in degree theory must be the closures of
open sets but the domain of our maps can be any closed sets. The difference
between ours and Cellina [3], Granas [10] is that our locally convex spaces
are in general, not necessarily metrizable.

§ 1. Preliminary. Let & be a separated locally convex space-and JCF
the family of all non-empty compact convex subsets of E. A set-valued
map F defined on a Hausdorff space X into JE is said to be upper semi-
continuous ‘at & point o € X if for each open subset W of B with F(a) C W,
there exists a neighbourhood V of a4 eX such that F(V)C W where
F(Vy= |J{F(x): <V} and F is said to be upper semicontinuous on X
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if 7' is upper semicontinuous at every point of X. An upper semicontinuous
set-valued map F: X JeF is said to be a compact map if F(X) is relatively
compact in I and F is said to be finite dimensional if F(X) is contained
in some finite dimensional vector subspace of E.

Let E be a separated locally convex space and JE the family of
all non-empty compact convex subsets of F. Let Y be a subset of E.
A set-valued map f: ¥—=JFE is called a set-valued compact field if the
map F: ¥ JE defined by F(y) = y—f(y) for y ¢ ¥ is a compact map.
Let I denote the closed unit interval [0, 1]. A set-valued map k: ¥ x I JE
is called a homotopy if the map H: ¥ X I>JE defined by H(y, t) = y—
—hiy,t) for (y,t) e ¥ X I is a compact map. The maps I, H mentioned
above are said to be compact maps corresponding to f and h respectively.
A set-valued compact field or homotopy are said to be finite dimensional
if their corresponding compact maps are finite dimensional. Let X C ¥
be two subsets of F and p ¢ E. We shall denote by (X, Y, p) the family
of all set-valued compact fields f: ¥ — HFE such that p ¢ f(X).

Two set-valued compact fields f,g in O(X,Y,p) are said to be
homotopic in O(X, X, p) if there exists a homotopy h: ¥ X I->JE such
that k(y, 0)=f(y), h(y,1)=g(y) for all ye¥ and p¢h(X xI). For
general properties of set-valued compact fields in locally convex spaces,
see [16]. The following theorems are significant. ‘

(1.1) TeEeOREM ([16]; 4.1, 4.2). Let X C Y be two closed subsets of
a separated locally convex space B, p e B and E the family of all non-empty
compact convex subsets of E. Then every set-valued compact field in O (X, Y, p)
18 homotopic to a finite dimensional set-valued compact field in O (X, Y, p).
Furthermore if f, g are finite dimensional set-valued compact fields homo-
topic in C(X, Y, p), then f,g are homotopic under a finite dimensional
set-valued homotopy in C(X,7Y, p).

(1.2) TemorEM ([16]; 5.2, 5.3). Let X CY be two closed subsets of
a finite dimensional vector space B, p ¢ B and BE the family of all mon-
empty compact convex subsets of B. Then every set-valued compact field in
0(X,Y, p) is homotopic to a single-valued compact field in C(X,Y,p). Fur-
thermore if f, g are two single-valued compact fields homotopic in C (X, Y,p),
then f, g are homotopic under a single-valued homotopy in O(X,Y,p).

(1.3) GENERALIZATION OF DUGUNDIPS EXTENSION THROREM ([16],
2.1). Let A be a closed subset of a metrizable space X , B a separated locally
conver space ond RE the family of all non-empty compact convex subsels
of B. If f: A>RE is an upper semicontinuous set-valued map on A, then f
has an upper semicontinuous set-valued extension g: X~>3CE such that
g(X) is contained in the convex hull of f(4).

When E is metrizable, it is due to Cellina ([31, 2). In Dugundji {5],
E is not necessarily metrizable.
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(1.4) HoMoTOPY EXTENSION THEOREM (Cellina [3], 24). Let XC T
be two closed subsets of a complete metrizable locally convex space B, p ¢ E '
and B the family of all non-empty compact convex subsets of E. Let’jp be
homotopic set-valued compaet field in O (X, X, p). If f* is a set—vzllgued
compact field in C(X, Y, p) such that fflx= [y then there exists set-valued
compact field g* in C(Y,Y, p) such that 9"l = g and f* =¢"in O(¥,7T 15)
(1.5) LeMMA. Let X C X be two closed subsets of a metrizable Zoc’ally
convex space B, RE the family of all non-empty compact conver subsets
of B, By a complete vector subspace of B and peBy. Let f be a set-valued
compact field in C(X, X, p) with F (X)C E, where F is the compact map
corresponding to f. If flerm con be ewtended over ¢ (Y~ By, Y~ E,,p)
then f can be emtended over O(Y, 7Y, ) : ’

Proof. Let g be a set-valued compact field in C{(Y~E,, Y~ E,p)
With glxnm, = flxnz,- Then the compact map & Y~ B~ E corres-
ponding to ¢ is'an extension of Flyag, such that G(¥ n E,) CE,. Let
I'=Xuv (Y~ E,) and let G T—>%E Ve defined by G'lx=F and
#lrom, = G- Then ¢ is a compact map. By (1.3), there exists an upper
semicontinuous set-valued map H: Y -+3F such that H lp =& and
H(Y)CcoG'(T). Since G'(T) is relatively compact, it is precompact and
so coG'(T) is a precompact subset of the complete veetor subspace H,.
Hence co¢'(T) is relatively compact in % and H is a compact map. Define
My)=y—H(y) for ye« ¥. Then h is an extension of Slx. If for some
ye¥, y—peH(y)CE,, then ye¥Y n E, and y—Dp € G(y), contrary to
? ¢ (Y n E,). Thus & is the required extension.

Generalization of Granas [10] to set-valued compact fields in Banach
spaces can be dervied from (1.1), (1.2), (1.4) and (1.5). However influenced
by Leray-Schauder [15], we shall introduce the notion of non-gingular
set-valued compact fields which is different from Granas [10]. Tt will
allow us to handle compact fields in non-metrizable locally convex spaces.
We shall use (1.4), (1.5) only when E is finite dimensional.

§ 2. Definition of non-singularity and its homotopy invariance. Let X C ¥
be two closed subsets of a separated locally convex space B, XFE the
family of all non-empty compact convex subsets of B and p ¢ B. A finite
dimensional set-valued compact tield f in (XY, p) with corresponding
compact map F is said to be bad if there exists a finite dimensional vector
subspace B, containing F(¥) and the point p such that flxez, can be
extended over C(¥ ~nH,, ¥ ~ By, p). A set-valued compact field g in
0(X, Y, p) is said to be non-singular in C(X,7Y, p) it there exists a bad
finite dimensional set-valued compact field f homotopic to g in €(X, ¥, p).
A set-valued compact field in (X, ¥,p) is said to be singular in
0(X, ¥, p) it it is not non-singular in C(X, ¥, p). Note that the termi-
Rology “bad finite dimensional set-valued compact field” will be abandoned
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after (2.2). We introduced it temporarily only for our convenience to
state the definition of non-singularity and to prove (2.1) and (2.2). The
following lemma is to clarify this.

(2.1) Lemma. Let X C Y be closed subsets of a separated locally conver
space B, p ¢ B and XE the family of all mon-empty cqm?oact conves subsets
of B. Let f be a finite dimensional set-valued compa'ct field in 0(X,Y,p)
with corresponding compact map F. Then f is non—smgular mn O’( X,Y,p)
iff there emists a finite dimensional vector subspace Fy containing F(Y)
and p such that flxng, can be extended over C(Y~E, Y E,Dp).

Proof. Suppose that f is non-singular in C(X, Y, p). By definition,
there exists a bad finite dimensional set-valued compach fie}d g ?101’1’101.301')10
to fin (X, ¥, p). By (1.1), f, g are homotopic under a finite dimensional
homotopy & in (X, ¥, p). Let ¢, H be the compact maps corresponding
to g and & respectively. Since g-is Dad, there exists a finite dimensional
vector subspace B, containing the point p and &(Y) such that glx,g,
can be extended over O(¥ ~ B, Y ~ Ey, p). Let I, be a finite dimensional
vector subspace containing B, and H(¥ xI). By (1.5), glxnp, can be
extended over C{Y ~E,, Y nE,, p). Since hlxqgyxs 18 & homotopy
for flyng ~¥lxnm in C(Xn By, X~ By,p), by (1.4), fixnp, can be
extended over (Y n By, ¥ ~ B,, p). The converse is trivial.

(2.2) TeeorEM. Let X C-Y be closed subsets of a separated locally
convex space E, XE the family of all non-empty compact convex subsets
of E and p € E. Let f, g be set-valued compact fields in C(X,Y,p) Iff,gare
homotopic in C(X, Y, p) and if f is non-singular in C(X, Y, p), theng 18
non-singular in C(X, X, p).

Proof. Since f is non-singular in 0(X, ¥, p), there exists a bad finite
dimensional set-valued compact field & homotopic to f in C(X, Y,p).
Then A is also homotopic to g in ¢(X, Y, p). Hence ¢ is non-singular
in (X, Y, p)

§ 3. Existence of roots and reduction theorems.

(3.1) TueoREM. Let X C X be two closed subsets of a separated locally
conver space, XE the family of all non-empty compact convex subsets of B
and pe E. If f is a singular set-valued compact field in C(X, XY, p), then
we have p € f(Y).

Proof. Suppose that p ¢ f(¥). Then f is a set-valued compact field
in (XY, X, p). By (L1), f is homotopic to some finite dimensional set-
valued compact field ¢ in C(¥,Y,p). Let E;, be a finite dimensional
vector subspace containing the point p and G(¥) where @ is the compact
map corresponding to g. Then gy, is an extension of glyngz OVEr
0(Y ~ By, Y » By, p). By (2.1), g is non-singular in (X, ¥, p). Clearly
f~gin C(X,Y, p) and hence f is non-singular. This completes the proof.

icm®

Non-singular set-valued compact fields in locally conver 8paces

253

(3.2) THEOREM. Let X C Y be two closed subsets
convex space, B the family of all non-

and p e B. Let f be a set-valued compact field in 0(X .

i Y with -
ponding compact mfzp F and B, a vector subspace of B co;zm,iﬁi)ng the :ZZ:;
of F( Y)_ and the point p. If f|p,, B, U8 Non-singular in O (XnEB, YAE
then f is non-singular in C(X,Y, p). 05 02 D),

Proof. By [16], 3.2, let V be a convex s i i
ymmetric neighbourhood
of 0B such that (p-+V)~f(04) = @. By [16], 3.1, let B, be a finite
dimensional vector subspace of B and G¢: Y—#F a compact map such
that the following conditions hold: ?

of a separated locally
empty compact conver subsets of B

peB,CH, GY)CEH,,

and

G(Y)CF(y)+V  for all yeX.
Define

99 =y—Gy) for ye¥,
and

R(t)= 1—0f(y)+gly)  for (y,8) e TxI.

Then % is a homotO]_py for frg in O(X, Y, p) and bz nggxz i8 & homotopy
for flynz, :g[y,@o in (X B, Y E,p) with respect to the vector
subspace E,. Since flp.z it non-singular in ¢ (X'~ By, Y~ Ey, p),

by (2.2), 9lpnzm, i5 & non-singular finite dimensional set-valued compa.ct

© field in O(X A By, ¥ ~ B, p). There exists a finite dimensional vector

subspace By of 'B such that p «F, CH,, G(Y)C B, and g|lyng can be
extended over C(Y ~H,, Y~ B, p). Let B, be a finite dm;ensional
vector subspace of E, containing B, and #,. By (1.5), glxnz, can be ex-
tended over C(Y ~ By, ¥ ~ Hy, p). Hence g is non-singular inaG'(X, Y, p).
By (2.1), f is non-singular in C(X, ¥, p). This completes the proof.
(3.3) TumoREM. Let A be an open subset of a separated locolly convex
space B, p ¢ B and RE the family of all non-empty compact conver subsets
of B. Let {As: § € J} be a family of disjoint open subsets of A and f: A~ 3E
@ set-valued compact field with p e E\f(A\ | 4;). Then for all except only
7

a finite number of indices jedJ,f) 5 98 non-singular in 004y, Az, p).
Furthermore if for each jed,f| 4 18 non-singular in C(844, 4;, p), then
[ is non-singular in (24, 4, p). h
Proof. Let X = A\U;4;. Then f is a set-valued compact field
in C(X, 4, p). By (1.1), let f* be a finite dimensional set-valued compact
field homotopie to f in C(X, 4,p). Then for each jed, f*!;j:flg, in
C(644, 4;, p). By [16], 15.2, there exists a finite subset J, of J such that
D € B\ f*(4;) for all j e J\J,. By (3.1), f*|z; is non-singular in ¢'(24;, 45, p)
f'or all jed\J,. By (2.2), flz is non-gingular in C (045, 4;, p) for all
J €I\J,. Furthermore, if for all j ¢ J, f] 4 1s non-singular in ¢ (24,, 4, p),
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9). #*| - is non-singular in 0(24;, 4;, p). Let F* be the compact
if; 1()3zr§i.s1))«;£dli£igg to g*. ]ggy (2.1), for éacl: je J, there exigts a finite
dimensibn vector subspace E; containing F*(4;) and the point p iueh
that f*[ﬁAjﬂEj can be extended over G(A,.-r.\Ey, A;~ By, p). Let B* be
2 finite dimensional vector subspace containing U Bs. By (1.5), for each

jeJo
jedoyf*losynms can be extended to some ¢t in O(dyn B, 450 E¥, p)
Define
ffy)  for ?/eA”E*\.L;A’J‘,
= 1€Jdo
o) gfy) for yed;~E* and jed. |

Then ¢ is @ set-valued compact field in C(AnE, 4~ B, p) with
Gloseme = I loanms- BY (2.1), f* is non-singular in C (94, 4, p). By (2.2),
f is non-singular in O (24, 4, p). This completes the proof.

§ 4. Translation invariance and component dependence. .

(4.1) TEEOREM. Let X C Y be two closed subsets of a separated locally
convex space B, KE the family of all non-empty compact convex . subsets
of E,p.e E and f a set-valued compact field in 0X, :.Y, p). If gy) = fly)—»p
for all y ¢ Y, then g is a set-valued compact field in oX, ¥, p). Further-
more g is non-singular in C(X,X, o) iff f is non-singular in 0(X,X,p).

Proof. Suppose that f is non-singular in (X, ¥, p). By (1.1?, let 7:1?43
a homotopy of f to a finite dimensional set-valued compact fliﬂd fin
0(X,Y, p). By (22), f* is non-singular in ¢(X,Y,p). Let. G b_e the
compact map corresponding to f*. By (2.1), there exists a finite dimen-
sional vector subspace B, containing F*(Y) and the point p such that
Ff*lxnm, can be extended over C(Y ~ By, ¥ ~ By, p). Define

By, ) =h{y,)—p for (y,)e¥xI
and _
g =5"y)—p for ye¥.

Then i* is a homotopy of g to the finite dimensional set-valued compact
field g* in C(X,Y,0) and ¢*|x.z, can be extended over C(¥ ~ By, Y n
~ B, 0). By (2.1), g is also non-singular. The converse follows by similar
argument. .

(4.2) THEOREM. Let X C Y be two closed subsets of a separated locally
conver space B, RE the family of all non-emply compact convex subsets
of E and f: Y—~XRE a set-valued compact field. Let a,b belong to the same
component of ENf(X). Then f is non-singular in C(X,Y, a) iff f is non-
singular in 0(X,Y,b). :

Proof. Bince F is locally connected, there exists a continmous single-
valued map s: I->E\f(X) such that s(0) = ¢ and s(1) = b. Define h(y, 1)
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= f(y)—s(t) for (y,%) e Y X I. Then h is & homotoi)y in ¢
f is non-singular in C(X,Y, a) iff h, is non-
pon-singular in 0(X,Y, o)

( (X,Y,0). Now
. : singular in C(X,Y, o) iff hy is
iff f is non-singular in ¢ (X,Y,0b).

§ 5. Fixed point theorems,

(5.1) Lemwa. Let X be a non-empty closed subset of a separated locally
convex space B,a ¢ EINX and A a component of ENX. Let ypo(y) = y—;;

for all ye B and ¥ = X w A. Then )y is non-singular compact field in
O(X,Y,0)iff a¢ A.

Proof. If a¢ A, then o ¢v,(¥) and by (4.1), vy is non-gingular.
Conversely if ya|r is non-singular in ¢(X, ¥, o), then by (2.1), there exists
a finite dimensional vector subspace H, containing the point & such that
VYalxam, can be extended to some f* in (¥~ B, ¥ B, o) with
respect to E,. Let F* be the compact map corresponding to f*. Define

F*y) for
Gly)=y -
a for

yeYnHE,
yeB\A.

Then @ is a compact map defined on E; into the family of all non-empty
compact convex subsets of B;. Applying Kakutani Fixed Point Theorem
[13] o the restriction of & to the closed convex hull of G(H,), there exists

b e By such that beG(b). The fact o ¢ f*(¥ ~ E,) shows that b e BN\A,
ie. =10 ¢ A. This completes the proof.

(5.2) THEOREM. Let A be an open neighbourhood of the origin in
a separated locally comvex space B and JE the family of all non-empty
compact convex subsets of B. If f is non-singular set-valued compact field

in. 004, 4, 0), then there exists #<8A and A >0 such that —Ax e fla).

Proof. Tet B be the component of 4 containing oe® and let
Y = B u (24). Suppose that for each z ¢ 24 and 1 > 0, we have — Az ¢ f(x).
Define yw(y) = y and h(y,t) = y—tF(y) for all y ¢« ¥ and teI. Then % is
2 homotopy for y ~fin C(24,Y, o). Since f is non-singular in ¢(24, 4, o),
fl¥ is also non-singular in €(84,Y,0). By (2.2), » is non-singular in
(24, ¥, 0). By (5.1), we have o ¢ B which is a contradiction. This com-
pletes the proof. ’

Note that from (5.2) and (3.1) we can derive a fixed point theorem
for set-valued compact map defined on non-convez neighbourhood of the
origin in a separated locally convex space. See [16], 16.1.

(6.3) TemorREM. Let A be an open convews symmetric neighbourhood
of the origin in a separated locally comnvex space B, JE the family of all
non-empty compact conver subsets of E and f a set-valued compact field in
C(0A, 4,0). If f is a non-singular set-valued compact field in C (24, 4, o),
then there exist x €3A and A >0 with f(z) ~ Af (—2) = @.
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Proof. Suppose that for each z edA and l.> 0, we have f(z) A
A Mf(—a) =0. By [16], 9.4, leb f* be a finite dgnenswr.la.l set-.valued
antipodal compact field homotopic to fin C(e4, 4,o0). Since f is non-
singular in C(24, 4, 0), 5o is f*. Let F* be the compact map corresponding
to f*. By (2.1), there exists a finite dimensional vector subspace
containing F*(4) such that f*|,4nz can be extended to some g* in
04~ By, A~ By, o). Since ¢*loinm, = [ loanmy & is antlpodal. By [16],
9.5, there exists a bounded open convex symmetric neighbourhood B
of 0 ¢ B, and a set-valued compact field g, in (8B, B, 0) such that the
following conditions hold: '

(8) WB)C B,

(®) aly)=g'y) forall ye IAE B,
(© 0¢g"(@ A T\B) w go(B\4) ,

(@) - go@)nAg(—2)=0 for all xeB, 1>0.

Define Rh(z, t) = [gy®)—tg{—2))/(1+1) for (x,t)edBXI. Then hgz 7y
in (2B, 8B, o). By (b).and (c), g, is an extension of %, over C(B, B, o).
By (1.4), h; can be extended to some k* in ¢(B, B, 0). Since By is anti-
podal, so is A*. By [16], 9.6, X = ¥, there exists a single-valued antipodal
compaet field g in O(B, B, o). In other words, we find a continuous
single-valued antipodal non-vanishing map defined on B into F,. This
well-known conftradietion completes the proof.

Note that from (5.3) and (3.1), we can derive a fixed point theorem
for antipodal compact map. See [16], 16.3.

§ 6. Extension of Borsuk’s sweeping theorem.

(6.1) LeMmA. Let X be a closed subset of a separated locally convex
space B and a, b two points in ENX. Let yu(@) = s—a and py(®) = s—b

Jor all # € E. Then a, b belong to the same component of E\X iff walx ~volx
in 0{X, X, o). .

Proof. If a,b belong to the same component of E\X, there exists
a single-valued continuous map s: I->E\X such that s(0) = a, s(1) = b.
Consequently h(z,?) =a—s(f) for (x,7)eXxI is a homotopy for
Yalx 29|z in O(X, X, 0). Conversely suppose that yalx = yplx in 0 (X, X, 0)
and suppose that a, b belong to different components of E\X. By (1.1),
there exists a finite dimensional homotopy & for yu|x ~ |z in 0(X, X, 0).
Let H be the compact map corresponding to A and E, a finite dimensional
vector subspace containing H(X) and the points a,b. Then a, b belong

to different components of B\X. Let 4 be a component of HN\X with
aed and b¢4. Let X; =X F, and Y, =X, U A
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Define
a for yeX,,t=0,
K*(:’/at)z H(?I,t) for YyeX,, tel,
b for ye¥, t=1.

Then K*: (X, xT) v ¥,x {0,1}>%F is a compact map. By (1.3), let
K: Y, XI—~>RE be a compact map extending K*. Define k(y, 1) — y
—~K(y, ) for (y,7) ¢ ¥;x I. Then k is a homotopy for ygly, ~pply. in
0(X,,Y,,0) with respect to the vector subspace ;. By (5,11), %]; is
non-singular but ya|y, is singular in ¢(X,¥, o). This eontradiction to (5.2)
completes the proof.

'With this lemama, we can prove the following extension of Borsuk’s
sweeping theorem without appealing to degree theory.

(6.2) THROREM ([16], 17.1). Let ¥ be a closed subset of a separated
locally convex space B, E the family of all non-empty compact conver sub-
sets of B and h: Y X I->3RE a set-valued homotopy such thai hiy,o)=y
for all ye Y. If a, b belong to different components of B\Y but the same
component of ENh(Y,1), then aeh(X¥xI) or b eh(¥ x I).

When b is single-valued map in Banach space, see Granas [10].

§ 7. Extension of Borsuk-Ulam’s theorem.

(7.1) THEOREM. Let A be an open comvex symmelric neighbourhood
of the origin in a separated locally conver space B and RF the Sfamily of
all mon-emptly compact convex subsets of E. If f is a singular set-valued

compact field in (04, 4, 0), then for every b edA, there exists A > 0 such
that b e f(A).

Proof. Let Ly = {Ab: 2 > 0} for all b «24. Suppose that there exists
b edd, such that Ly~ f(84) = @. By [16], 10.3, there exists a finite di-
mensional set-valued compact field g homotopic to f in €24, 4, 0)
with g(@4) ~ Ly=@. Let B, be a finite dimensional vector subspace
containing the point b and G(4) where G is the compact map corres-
ponding to g. By [16], 10.4, there exists a bounded open convex symmetric
neighbourhood B of ¢ € B, such that b B, BC 4, o ¢ g(4A\B) and giz is
homotopic to some non-zero constant map % in C(éB, B, o). Then g5z 18
homotopic to k| in (8B, 8RB,0). By (1.4), g,z can be extended to
some ¢* in ((B, B, o). Define '

g(y) for yeA\B,
g"(y) for yeB.
Then % is an extension for gl nz to O(4n~ By, A~ E, o). By (2.1)

¢ is non-singular in €(94, 4, o). By (2.2), f is non-singular in C(24, 4, o).
This completes the proof.
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We can derive the following extension of Borsuk-Ulam’s theorem
without using degree theory. |

(7.2) TerorEM ([16], 18.1). Let A be an open convex symmeiric
neighbourhood of the origin n a separated locally convex space B, XK the
family of all non-empty compact convew subsets of B and f:A—+RE o set-
“valued compact field. If there evists a vector subspace M of E such that
f(@4) C M and 8A G M, then there exists @ e OA. su.ch that f(z) ~ f ('~m) Y

When f is single-valued compact field defined on the unit ball of
a Banach space, see Granas [10].

§ 8. Extension of Brouwer’s invariance of domains.

(8.1) Lsmua. Let ¥ be a subset of a separated locally convex space B
and RE the family of all non-empty compact conves subsets of E. The?v,
peX is an interior point of Y iff there ewisis an open convew s:q/mmet1~?,c
'neighbowhood A of 0¢E and a singulor set-valued compact field [ in
Q(@A,d,p) such that f(4)C ¥.

Proof. If p is an interior point of ¥, there exists an open convex
symmetric neighbourhood A of o ¢ B such that p+4 C Y. Define f(z)
= g-+p for e A. Then clearly f is a compact field in 0 (6A,.A7 .p) g.nd
F(A)C Y. Let p(z) =2 for all ¢« 4. By (5.1), since 0 e 4, v is singular
in C(0A, 4, o). By (4.1), f is singular in C(24, 4, o). Conversely suppose
that 4 is an open convex symmetric neighbourhood of 0 < E and f a singu-
lar set-valued compact field in C(04,4,p) with f(4)C Y. Let V be
o convex neighbourhood of oeB such that (p4V) ~f(24)=0. Let
g{@) = f(z)—v for all zeA and veV. Then f~¢g in (64, 4d,p) and
hence g is singular in C(24, 4, p). By (3.1), we have p eg(4) ie. p+o
ef(4)C Y. Since v is an arbitrary point of ¥, we have p+V C Y and
9 is an interior point of ¥.

Let B be an open subset of a separated locally convex space F and &H

the family of all non-empty compact convex subsets of E. Following [16],
a set-valued map g: B—>RE is called a local boundary map if for each
b € B, there exists an open convex symmetric neighbourhood A of o ¢ B
such that b+ A CB and for every =, s, eb+4 with g(z,) ~ (@) # @,
we have x,—x, ¢ 9A. Note that every single-valued injection is a local
‘boundary map. Following [16], a set-valued map g: B—JCE is called
a locally non-opposite map if for each b ¢ B, there exists an open convex
symmetric neighbourhood A of 0 ¢ X such that b+4 CB and for all
4> 0 and @ eb1-84, we have 1(b—) ¢ g(4)—g(b). The following theorem
can be proved without using degree theory.

(8.2) TEEOREM ([16]; 19.2, 19.3). Let B be an open set in a separated
locally conver space B, RE the family of all non-empty compact convew
sMMM#EmﬂmB&kEa%MMmhmwMﬁMiHg%awwwmme
map or a locally non-opposite map, then g(B) is open in B.
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