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On families of large oscillation
by

W. W. Comfort* (Middletown, Conn.) and S. Negreponti-s**
(Montréal, Canada and Athens, Greece)

A theorem of Erdoés and Rado characterizes those pairs x, a of cardi-
nals (with o regular and with o < » < a) for which every collection of
a sets, each with fewer than » elements, has a subfamily with ¢ members
every two of which have the same intersection. We note a topological
description of such pairs x, a, in terms of the Souslin number of certain
product spaces in the x-box topology (Theorem 2.3); we then connect
these results (as they apply to non-limit cardinals «t) with the concept
of a family of functions from a to a of x-large oscillation to obtain
o number of conditions equivalent to the condition ¢ = aZ (Theorem 3.1).
A result of our investigations is that the existence of a family of funetions
from a to a of x-large oscillation with a* elements implies the existence
of such a family with 2¢ elements. This dichotomy may account for the
use of families of x-large oscillation in avoiding the generalized continuum
hypothesis. ) .

Theorem 3.1 implies the following result of Tarski: If a = of then
there is a family of 2° functions from a to 2 of x-large oscillation. It
follows that for strongly compact cardinals x there are 22% %-complete
ultrafilters on the discrete set a (Corollary 4.2). We next apply the
results of § 3 to the Rudin-Keisler order of types of ultrafilters. We prove
that if a= aZ and  is regular and each x-complete filter on the set «
extends to a »-complete ultrafilter, then the set of types of x-complete
ultrafilters on « is (2°)*- directed in the Rudin-Keisler order (Theorem 4.3).
Tn particular if (2°)* = 22° then there is in the set of types of #(a) a Well-
ordered, cofinal subset (with 2*° elements).

* This author gratefully acknowledges support received from the National Science
Foundation (USA) under grant NSF-GP-18825.
** This author wishes to acknowledge partial suppo
Research Council under grant A—4035.
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§ 1. Definitions and terminology. The axiom of choice is assumed. An
ordinal number is the set of ordinal numbers which precede it. A cardinal
number is an ordinal number which is not in one-to-one correspondence
with any smaller ordinal number. Ordinal numbers are denoted by ¢, ¢,
7, & 0, and 7, and cardinals by a, 8, y, %, and 1; » denotes the first infinite
cardinal. The symbol ¢-+1 denotes the immediate ordinal successor of
the ordinal &, and o is the smallest cardinal exceeding a. We write

aﬁ:Z{a’l: A< ).

The cardinal a is said to be regular provided that the sum of fewer than «
cardinals, each less than «, is itself lesy than .
whenever o> o.

For each set § we write

§(8) = {A: ACS}.

For sets § and T the symbol T° denotes the family of functions from §
into T or occasionally, when the sets § and 7 -happen to be cardinals,
the cardinal number of that family. In general, the cardinal number of
a set § is denoted |8|. !

The density character ‘of a topological space: X, denoted. d(X), is
the smallest cardinal which is equal to the cardinal number of a dense
subset of X. The Souslin number §(X) of X is the smallest cardinal a for
which no family of pairwise disjoint, nonvoid, open subsets of X has o
elements.

The x-box topology on a product space [] X is that topology with

i€l .
a base consisting of all sets of the form [] U; where each U, is open in X;
iel
and U;= X, with less than » exceptions. The space [] X, with this
¢ iel

topology is denoted ([] X;),. The x-completion of a topology B on
1€l

% space X is the smallest topology on X containing 6 and closed under
the operation of intersection of fewer than x elements. A topological
space is said to-be x-complete if it coincides with its own % - completion.
It should be observed that unless the nonvoid spaces X are themselves
»-complete then ( ]JI X3), is not %-complete. (When » = w of course the

#-box topology on HIX‘ is the usual product topology, and is »-complete.)
1€, I

The x-completion of the product topology has
nection with compactness pro
ParoviGenko [29],

. been considered in con-
. perties by a number of authors, including
Keisler and Tarski [19], and Monk and Scott [26].

Thus «* is regular
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§ 2. The Erdds-Rado Theorem.

DErFNITION (*). Let a and x be cardinals, with o < « and » < g. Then
a is strongly x-inaccessible provided that f* < o whenever f < a and 1 < x.

We remark that for any regular, infinite cardinal o with z < a,
a is strongly x-inaccessible if and only if

n{ﬁ;: E<}<a

whenever A < » and each f8, < aj for this latter condition surely implies
that a is strongly x-inaccessible (take each B, = B), while if « is strongly
%-inaccessible and each f; < a then with

B= DB £<2}

we have f<< a (because a is regular) and hence

[l e<n<p<a.

In an earlier version of this paper we gave a detailed proof of the
following theorem, and we showed its relations to Theorems I and II
of the Erdos—Rado paper [12]. Subsequently A. Hajnal drew to our
attention the existence of the second Erdés-Radoe paper [13]. Since
Lemma 1 of [13] is precisely (a)= (b) below, and (b)= (a) is a special
case of Lemma 2 of [13], we give here only a short outline of our proof.
The proof that (a) = (b) is related to arguments given by Calezyrska—
Kartowicz [4], Marek [24], Davies [8], and Mostowski (Theorem 13.3.1
in [27]). It is different from that of Erdss and Rado, but in all likelihood
it is the same as the unpublished, alternative proof of Davies to which
they refer (p. 469 in [13]).

2.1. THEOREM. If a is an infinite, regular cardinal and =< a, then
the following statements are equivalent:

(a) a is strongly x-inaccessible;

(0) if {Sc}scq is any family of sels with |8 < % for £ < a, then there
exist a set J and a subset A of o« with |4| = a for which 8; n 8, = J whenever
E,Ced and & £ L.

Proof. [In the statement of (b), the sets §; need not be distinct for
distinet subscripts & and the set J to be defined may be empty.]

(a) = (b). [Outline]. One may assume that |J {8 E<_ a}Ca an_d
that for some fixed [ with < 1 each of the sets §; with [<a i
isomorphic as an ordered set to the well-ordered set (. Writing 8

(15 Tt has been brought to our attention by S. Shelah that this 'concep't has
been introduced (using different terminclogy) and used in connection with 2
generalization of Lio&’ ultraproduct theorem by G. Fuhrken, Languages with added
quantifier “There exist at least N,” in The Theory of Models, Proe. 1963 Interna-
tional Berkeley Symposium, Amsterdam 1965, pp. 121-131.
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= {18, With gi < 7} whenever 0 < {<{'<( .and defining & = sup {z:
&< a}, one defines &= sup{e;: {< Z} and considers separately the cages
in which ¢ is less than, or equal to, a. In the former case there are, im-
mediately, o sets S; whose pairwise intersections coincide. In the latter
case, with £(0) the smallest ordinal £ for which & = a, there exists B Cq,
with |B| =a, for which sup{nf”: &eB'}=a whenever B'CB and
|B'] = q; by hypothesis (a) the set; B may be chosen so that, for some set J,

{f: <O}~ {mpr £ <L) =

whenever £ and £ are distinct elements of B. The desired set 4 = {y(o):
o< a} is now defined recursively: »(0) is any element of B, (1) is any
element of B for which #{{} > sup[8,] and in general, if y(o) has been
defined in B for o <C 7 80 that S,y N Sy = J Whenever 0 <o <o’ <71,
then 9(z) is any element of B for which

"15((23 > supLlU Syl -
o<t

(b) = (a). If cardinals A and § exist for which 1<% and << a and
B* > q, then there is a family {f.},., of functions from A to B for which
fo # fe, Whenever 0 < & < §,<< a. Writing

G(&) = {[n, filn): n< 4}

we see that for no subset J of 21X § can there exist a subset 4 of a with
|4} = a for which G(&)n G(&)=J whenever & and & are distinet
elements of A. Indeed if |4| > § (J being given) then, since {fy(n)}seu C B
for each 7 < 4, there is for each such % an element ¢(%) of B with

¢(n) = fu(n) = fu(n)

for some pair (&, &) of distinet elements of A, hence for each such pair.
Thus 4] =1 if |4]> g, a contradiction.

If #= w, condition (a) of Theorem 2.1 is satisfied and (b) becomes
the following assertion: ‘ .

If o is an uncountable, regular cardinal and {8:}ee, is a family of
finite sets, then there are a set J, and a subset 4 of o with |A| = a, such
that 8;~ 8§; = J whenever £ and { are distinet elements of A.

This result was first stated by Shanin [34] and used by him in [35]
to prove a statement related to that of (¢) in Theorem 2.3 below (for
a = ) involving the notion of caliber. It is proved explicitly by Mazur [25]
and implicitly by Marezewski [23], Bockstein [3], and Solovay and
Tennenbaum [36].

We note the following statement, which can be derived from Theo-

rem 2.1 in the same way that Engelking and Kartowicz prove Theorem 1
of [11] from the Erdés-Rado theorem of [12]: )

icm®

On families of large oscillation 279

Let a be a regular, strongly x-inaccessible cardinal with o < a and
%< a, and let £ and B be families of sets for which |A]< » and 1Bl < a
and 4 n B # @ whenever A e 4 and B € $. Then there is a set ¢ for which
|0] < a such that A ~n B n O + @ whenever A ¢4 and B e 3.

‘We omit the details of the proof. In a preliminary version of this
paper we inquired whether the converse implication was valid, ie.,
whether it is true that if g and 1 are cardinals for which 2 << a
and p* > o then there must exist families # and B of sets with 141
=] and |B|=pand A ~B 5 @ whenever A4 and Be%, with the
property that each set € meeting 4 ~ B (for each A4 in £ and each
B in $) must satisfy |0| > a. The following construction, answering
this question affirmatively, was furnished to us by P. Erdos
and A. Hajnal and is included here with their kind permission. Let
f be any one-to-one map from o« into p* and for £ < a let

A, =18V 6(f(&) and  By={& v (AxPNG(f(£)

where as above G(f(é) denotes the set {{r, f(£)(n)): n <A}, Then the
families #= {4,},., and $ = {BJ. , are as required.

One result of Erdos—Rado type not a special case of Theorem 2.1
is Lemma 10.2 of Kunen’s thesis [20]. This is used by him (Lemma 10.3)
to compute the Souslin number of a large product space under the topo-
logy of thin sets, a topology which is intermediate between the usual
product topology and the x-box topology.

We introduce the following notation. Suppose that U is a subset

of the product [] X; which is basic in the x-box topology, so that U
iel)

=[] U; with each U; open in X; and with U;= X; except for those ¢
i€l

belonging to a set ‘with fewer than » elements. We denote this latter
set R(U) (read: the restriction set of U). For each nonvoid subset J
of I we write X; = [] X; and we denote by m, the projection from X,
ieJ
onto X;. Using these notations, it is easy to check that for nonvoid sets
U=]] U; and V =[] V; the following assertions are equivalent: (1)
iel iel
UnV=0; 2) U;nV,=0 for some ¢ in R(U)n R(V); (3) B(U)n
AR(V) # @ and m,[ U] ~ m,{V] = @ whenever R(U)~ R(V)CJ CLI.

2.2. COROLLARY. If o dis regular and sirongly s-inaccessible with
o< %< a, and if {Xi},., i any collection of topological spaces for which
8((X,),) < @ whenever J CI and |J| < x, then S(([l X)) <a

1€

Proof. If §(([] X,),) > a there is a family {U,, of pairwise disjoint,
iel

nonvoid subsets of [ X; with each U, basic in the »-box topology. We
i€l
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have |[R(U,)| < for §< e, 80 by condition (b) there exist a set J, and
a subset A of a with |4] = o, for which

R(U) ~ E(U,) =

whenever & and ¢ are different elements of 4. It 1mpossﬂale in this case
that J = @, so the sefs 7, U] with & in A are nonvoid, pairwise disjoint,
and open in (Xj;),. (Because |J| < #, the space (X;), is X 7 with the usual

‘box topology; it has as a Dbase all sets of the form [] Us with U; open
e

in X;.) This contradicts the hypothesis S(( ” X)) <

2.3. THEOREM. If a is regular and o < » < a, then the followmg state-
‘ment is equivalent to each of the statements of Theorem 2.1: :

(¢) if d(Xi)< a for each i in I, then S HXz 4 < a

Proof. (a)=-(c). Let JCI with |J| < and for each 4 in J let D1

“be dense in X; with [D;| < . Then with D = [] D; we have: D is dense
ieJ

in (X;), and (as was remarked in the paragraph preceding the statement
.of Theorem 3.1) |D|< a from. condition (a). Thus S((X J),c) <aq SO
: {HX)”)<aby 3.2.

(c) = (a). Let g and 1 be cardinals for which < a and A < ». With g
viewed as a discrete space, the space (%), is discrete. For any discrete
space X we have 8(X)= |X|*, so from condition (e) it follows that
BF <o, ie, f<a

Our derlvatlon of condition (e) from (a) and (b) used the regularity
.of a. We wish to remark that, even with » = w, statement (¢) becomes
false in case a is not regunlar. To see this, we recall from Erdos and Tarski
14], Theorem 1, that for each space X the Souslin number §(X), if in-

finite, is regular, and we suppose that « is singular, so that a = supa;
tel
with ¢; < o and with |I] << «. Then with X; the discrete space a; we have

for each j
( H .Xi) S (Xy) =

iel

50 that 8(J] Xi) > a. Since a is not regular we have §( (IT X:) = ot so0

tel iel
((from (c), with « replaced by o) it follows that S ([] Xi) = ot
iel

~ Suppose thabt the conditions of Theorem 2.3 are satisfied and let
{Xi}ier be a collection of spaces with w(X;)< « for each 4. (Here w(X)
denotes the weight of X —i.e., the smallest cardinal which is equal to the
-cardinal number of an open base for X.) It is clear that if ¥; denotes
the x-completion of X; then w(¥:) << a: if w(X;)= p< o then w(¥s)
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<) £ and this sum, the sum of x or fewer cardinals each less than «,
A<n

is less than a sinee a is regular. Now [] X, and H Y: have the same

iel

x-completion, namely ( H Y,),, and from (c) above. We have S(( H Y.).)
< a. Stated in terms of the spaces X;, this result takes the followmg
form

2.4. COROLLARY. Let o < » < a with a and x regular and with a strongly
%-inaccessible and let {X;};.; be a collection of space with w(X;) < a

~ for each i. Then each family of pairwise disjoint, nonvoid sets, each of which

is the intersection of fewer than = open subsets of [[ X, has fewer than «
. iel '
members.

This corollary has been given by Engelking and Karlowicz [11],
Theorem 6 (see also Engelking [10], Theorem 7) in the case that a = m™,
x=n% and m"=m.

§ 3. Families of large oscillation. According to the classical theorem of
Hausdorff [16], proved earlier by Fichtenholz and Kantorovitch [15]
for the cases a = w and a = 2°, if a is an infinite cardinal there is a family 8
of subsets of a with [8] = 2° for which: if ¥ and § are disjoint, finite sub-
sets of § then '

NE: FeFin{\F: FeG} #0.

(Such a family § is said to be an independent family of subsels of a.)
Using Hausdorff’s theorem Engelking and Karlowicz [11] proved the
following result: if a is an infinite cardinal there is a family ¥ of functions
from a to a with |F| = 2° satisfying the following property: given distinct
functions fy, fi, ..., fo In & and (not necessarily distinct) elements &, &, ...
vy &n of a, there is o< a such that fi(o) = & for 0<%k < n. Such
a family & of functions is said to be a family of large oscillation. (This
terminology was given by Kenneth Kunen in an. early version of his

' paper [22], but was later replaced by the terminology “mdependent

family?.)

DEFINITION. Let a, § and x be cardinals, and let ¥ C g° The family
§F is a family of x-large oscillation provided: if A<<x and {f;},.; are
(distinct) elements of ¥ and {£,},., are (not necessarily distinet) elements
of a, then there is cr< a such that f,(o) = & for { < A

3.1. TeEOREM. Let o and » be cardinals for which w < » < a. Then
the following statements are equivalent:

(a) a=aZ;

(b) if {8:lscar 18 any family of sets with |8, < x for £<C a, then there
are a set J and a subset A of ot with |A| = o for which 8,8, =4J
whenever &,C e A and & #

Fundamentg Mathematicae, T. LXXV 20


Artur


o
(23]
[

W.W. Comfort and S. Negrepontis

e) if d(X:) < a for each i in I, then S(([] X,),) <

iel
2% and !

(d) there exists & F
F

(e) there ewists F
(f) d((a®),) = o
() d((d™),)= a

C o for which |F| =
C o® for which |F| = o™ and

has x-large oscillation;
has »-large oscillation;

Proof. [In conditions (f) and (g) the space a has the discrete topology; .

it is relative to this topology that the x-box topology is taken on o®*
and a®].

We note first that in the present theorem the pair x, at satisfies
the- conditions imposed on x, a in Theorems 2.1 and 2.3. Further, the
present conditions (a), (b) and (c) precisely duplicate the eorresponding
conditions of 2.1 and 2.3 (with « replaced by o*). This is clear for (b)

“and (e), and for (a) we observe simply that o™ is strongly x-inaccessible
if and only if ¢* = « whenever 1< x, i.e., a¥= a. Thus (a), (b) and (c)
of the present theorem are equivalent by Theorems 2.1 and 2.3.

We prove next that (a) = (d). Let

S=\J{e®X{F}: FCa, GCTI), |Fj < |G <ux}.

It FCa and |F| = A< %, then the number of families & of fewer than x
subsets of F' is- (2*)%, a cardinal not exceeding (a*)% < &% = a; and for each
such family @ we have

[a% X {F}| = |a®] < a% = «.
Thus
8l < Za-a- [{F: FCa, |F|< x}| = a-a~aff= o

and it will s ufflce, in order to establish (d), to find F C o® with |7 | = 2%
for 'which & is of x-large oscillation.

For each subset A of a we define f4 from § to « as follows: If (s Fy
e a® x {F} with G C$(F) and |G| < », then

{s(AmF) it AnFe@,
0 it AnFeq.

To see that the functions f4 from 8 to « are distinct for different subsets A
of a, and in fact to see that the family { fa}ac, i8 a family of x-large
oscillation, let 2 < » and let {4,},_, be a family of (distinet) subsets of «

and let {£};; be (not necessarily distinet) elements of a. For each pair
(£,2') of ordinals with 0 <{ <& < 1 we choose

T € (ANAy) © (4N\4,) '

fals, F) =

and we set

={me: 0<I< <2},
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Wiiting
= {4, AP [< D}
we define s from @ to a by the rule
 s4nF)=&.

(This function s is well-defined because 4, ~ F = 4, ~Ffor 0
Then (s, F) e 8, and

<L)

fa(s, 17') =s(4,~nF)=¢

as required. The proof that (a) = (d) is complete.

To see that (d) and (f) are equlva,lent we note that for any family &
of functions from « to a, F is of x-large oscillation if and only if the set
{2 (M}y<ar, With (p(n));= f(x), is dense in «¥ in the x-box topology. This
shows also that (e) and (g) are equivalent. Since any subfamily of a family
of x-large oscillation is another such family, we have (d) = (e). Thus to
complete the proof of the present theorem it suffices to show (g) = ().

To this end suppose that d(Xi) < « for each ¢ in I but that ([T X,),

el
has a family {U;};.,. of pairwise disjoint, nonvoid, basic opén subsets.
‘Writing
J=U{R(T,)

wehave: |[J| < oF - x = o and {m,[ U]} is & family of pairwise disjoint,
nonvoid, open sets in (X;), . For each ¢ in J there is a (continnous) function
from (the discrete space) a onto & dense subspace of X;, and the product.
of these functions takes ("), continyously onto a dense subspace
of (X;),. Since d((a“))=a by (g) we then have d(( X;),) <a, con-
tradicting the existence of the family {m,[U,1};pe-

‘We remark that Theorem 3.1 prov1des characterizations of those
infinite cardinals a for which a = o® As is well-known (see for example
Bachmann [1]), these are the cardinals a which are regular and satisfy
the equality a = 2°.

The conditions of Theorem 3.1 are, of course, (not simply equivalent
but in fact) true in case x = w. We have already given several references
relating to (a), (b) and (c) in this case, and condition (d) with » = o is
Theorem 2 of Engelking and Karlowicz [11] (®),(f). The first theorem

of the form
d(Xi)ga:S(HXi) <at
itel

t<a*}

(*) In remark 3 of [11] it is asserted without proof that for arbltra.ry % and a with
® < # < ¢ there is a family & of x-large oscillation of mappings from a% to o with
|| = 2% This assertion is true in case the generalized continuum hypothesis is assumed,

20*
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is due to Szpilrajn—Marczewski [37], [23] for a= w. For related results
and generalizations see [32], [5], [28] and our forthcoming book [7]. Con-
dition (f) for » = w was given by Pondiczery [30] and Hewitt [17].

Consider the following conditions on a pair %, a of cardinal numbers
with o <% < a:

(¢') 8((2%),) < ot for each set I;

(d") there exists F C2* for which {F|=2" and ¥ is of x-large
oscillation; ;

(¢') there exists F C2° for which |F|= o™ and F is of x-large
oscillation;

() a{(227),) < o

() 42 < a
Bach of these primed conditions follows from its unprimed analogue
in 3.1. (This is obvious in the cases of (¢’), (f') and (g'). In the cases of
(d") and (e') it suffices to observe that if & is a family of »-large oscillation
of functions from ¢ to a, and if @ is any mapping from « onto 2, then the
map f->mof is one-to-one from F onto a family of x-large oscillation
of functions from a to 2.) Thus, since the conditions of 3.1 are true when
% = o, the conditions (¢’), (d"), (¢'), (f') and (g') are true when x» = .
We do not know (%) if these conditions are equivalent for arbitrary » < «,
though it is clear as in the proof of 3.1 that

(@) <= () = (') = (g') = (¢') > a = 2%,

It is well known that from Hausdorff’s theorem, which is the statement (d’)
with » = w and arbitrary o, it follows that a set with o elements hag 22°
ultrafilters; this fact was firgt stated explieitly, and established by another
method, by Pospigil [31].

or if » is regular, but in general it fails in some models of set theory. Suppose for example
that 2% = R, ne; for n <o (cf. Easton [9]), and set x= a = N,. Then

a8 = Naa < Mol < (@8)°.

From the implicasion (e)=-(a) of Theorem 4.1 (with a replaced by af) it follows that
no family of functions of a-large oscillation from a2 to o has more than o2 elements.
In particular, since 2°> oS (from the inequality of < (a%)%), no such family has 2°
elements.

() Note added December 31, 1971. The equivalence (d) <= (f) and the impli-
cation (a) = (d) have been noticed independently by J. A. Ketonen, Doctoral
Dissertation, University of Wisconsin, 1971; the latter implication has been noted
also by 8. Shelah, Every fwo elementarily equivalent models. have isomorphic ullra-
powers, Israel J. Math. 10 (1971), pp. 224-233. o

() In a letter to the authors dated December 14, 1971, S. Shelah proves the
equivalence . (¢')==a > 2%, .
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§ 4. Applications to the Rudin-Keisler order of types. A filter of subsets
of a set is said to be x-complete provided that the intersection of fewer
than x of its elements is again one of of its elements. (Thus, each filter
is w-complete.) Suppose now that o <x << a and a= a% so that (d)
and hence (d') are valid: there is a family & of x-large oscillation of
functions from a to 2 with |[F]| = 2°. For each subset § of F, let

gg = {f7'(1): fe S} v {f7H0): feF\8}.

Because F has x-large oscillation the family pg of subsets of a containing
some element of gg is a x-complete filter. If, further, §, == G,, then gg,
and gg, contain complementary subsets of a and so pg, # pg,- This proves
the following theorem, which appears as Hilfsatz 3.16 in Tarski [39]
(and in preliminary form as L.emme 58 in Tarski [38]).

4.1. THEOREM. Let o < » < o with a = af. Then there is a family U
of x-complete filters on a, with || = 22°, for which each pair of distinct

. elements of W contain complementary subsets of a.

A cardinal number « is measurable if there is on a an «-complete
ultrafilter which is not principal. (Thus o is the first measurable cardinal.)
Let Q,(a) denote the family of x-complete ultrafilters on a (this nsage
differs slightly from that of [6]). It is easy to see, as in [6] or [21] for
example, that if a is a measurable cardinal and o < # < a then 2° < |2, (a)]
< 2%, Kunen has recently shown (Theorems 5.7 and 7.3 of [21]) that it
is consistent with Zermelo-Fraenkel set theory together with the axiom
that an uncountable measurable cardinal exists that the generalized
continuum hypothesis hold and that [2.,(a)] = o for some uncountable
measurable eardinal a. In contrast, Corollary 4.2 shows that for cardinals a
not in the Keisler—Tarski class C; defined in [19] — i.e., for those regular
cardinals o for which every a-complete filter on o exfends t0 an a-com-
plete ultrafilter — we have |2,(a)] = 22°. This corollary, which follows
from Hilfsatz 3.16 of Tarski [39] (a paper we did not know of when in [6]
we agked for an evaluation of |Q,(a)|), has also been noted by Kunen
([21], p. 205) for a= .

4.2. COROLLARY. Let o < # < a with a = a%, and suppose that every
%-complete filter on o ewiends to a x-complete ultrafilier on a. Then
19 ()} = 2%,

Proof. We let U be as given in Theorem 4.1 and extend each element
% of U to an element u’ of Q,(a); then (since u’ 3= 9" when u == ), we have

12,(a)] = W] = 2°°.

Of course, |2,(a)] < 2*° since there are 22° filters on a.
An infinite cardinal » is strongly eompact if each =-complete filter
on each set can be extended to a x-complete ultrafilter. It follows from
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Corollary 4.2 that |@,(a)] = 22 for each strongly compact cardinal » for
which o <% < a=al.

If p and ¢ are elements of a space X we write p ~q if there is an
auto-homeomorphism % of X for which h(p)= ¢q. The ~v-equivalence
class to which p belongs is called the type of p (in X) and is denoted z(p);
. the set of all types in X is denoted T'(X), so that v is the quotient map
from X to T(X) (=X|~). If a is an infinite cardinal and f§(a) denotes
the Stone-Cech compactification of the discrete space a then for p and ¢
in B(a) we have p ~g if and only if @ (p) = ¢ for some permutation x of «
(where 7 denotes the continuous extension of = mapping f(«) onto f#(a)).
Since there are 2° permutations of a one has |z(p)| < 2* for each p in f(a),
so that (since [B{a)] = 2°%) |T(B(a))| = 22°.

For p and ¢ in B{a) we write p < ¢ provided that there is a function f
from « to o for which f(g) = p. When this occurs we have p’ <3¢
whenever p ~p’ and g~¢q', so the relation < induces a relation; also
denoted <2, on T(#(a)). This is the Rudin-Keisler order on the set of

types of p{a). Aceording to a result of M. E. Rudin [33] (cf. Theorem 2.1

in [22]), it p < ¢ and ¢ < p then p~q. Thus on T(8(a)) the order <,
which is clearly transitive and reflexive, .is- also anti-symmetric in the
sense that z(p) = v(g) whenever z(p) < 7(g) and z(q) < 7(p)-

We now let U(a) denote the set of uniform ultrafilters over o, i.e.,
those elements p of f(a) for which |4|= o whenever A ep; and we say
that a partially ordered set 8 is y-directed provided that each subset
of § with fewer than y elements has an upper bound (in §). The following
results concerning the Rudin-Keisler order are known:

(a) z[U(a)] contains a family of 2* mutually incomparable elements
(Theorem 2.7 in Kunen [22]);

(b) T(ﬁ(a)) is w-directed (ITL.B. 3 in M. E. Rudin [33]; Theorem 3.5
in Booth [27]).

To prove (a), Kunen uses a family of 2* functions from « to « of
w-large oscillation, and M. E. Rudin proves (b) by considering what is
in effect a pair of functions with w-large oscillation. Because (a) employs
transfinite induction, it does not appear susceptible to generalization
by the methods of the present paper.

4.3. TEEOREM. Let % be a regular cardinal for which o < » < a = o,
and suppose that each x-complete filter on o emiends to a »-complete ulira-
filter. Then t[Q(a)] is (2°)*-directed.

Proof. [We remark that according to Corollary 4.2 we have 12, ()]
= 22"

It will suffice to show that there is a continuous function g from
2.(0) onto {2()® for which 9[a]1Ca®? for then, given elements
€,y 1< 2% in 2,(a), we need only set ¢ = <g,>, 0 in (2,(a))®” and find p
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in Q(a) for which g(p)=g; then v(g,) < v(p) for each 7z, since
(70, 0 ) (D) = g,-

According to the implication {(a) = (£) of Theorem 3.1, there is a map f
from a onto a dense subspace of the space (o®%),. Viewed as a map from «
to a9, the function f admits a continuous extension f from B(a) onto
{8(a))*?. We denote by g the restriction of f to Q,(a).

To verify that g takes 2,(a) into (2,(a))®?, fix p in Q(a) and 5 2°
and set g, = (7, o g) (p)- Then if {A.}, ; is a collection of elements of the
ultrafilter ¢, (with 2<C ), so that (=, - g)7(4,) ep for each £, there is
an element B of p for which ‘

BC (m, 0 9)*(4y);
<i
then (m, o g)[B]C[| A Further, (w,g)[B]eq,: for p ecly,B, so that
E<a

@y = (70, ° 9)(p) € Clg{m, © g)[B] -
This shows that ¢, is »-complete, i.e., that g, e 2,(a).

We note that the space 2,(a) is »-complete, in the sense that the
intersection of fewer than w» open-and-closed subsets of 2,(e) is open-
and-closed. Indeed, given p (| U, with each U, open-and-closed in £4(a)

<

and A< x, there is A, ep for which
(elﬁ(a)AE) N0 (a)C Ty;
let 4 C) A, with A4 € p; then (clyy4d) N 2,(a) is a neighborhood in Q,(«)

&<

of p, and a subset of (1) 4,.

&<
It remains to show that g takes 2,(a) onto (2,(a))*. Let

4= {lDycsa € (Qx(a))(ga)

and let U be the family of x-box neighborhoods in (2,(a))®? of ¢. Because
|R(U)] < = for each element U of W and x» is regular, the intersection
of fewer than x» elements of U again belongs to U and therefore, because
gla] is dense in ((2,(a)®?),, each such intersection meets g[a]. Thus
{g7U)~na: UeW} is a x-complete filter on « which, accordingly,
extends to an element p of Q(a). We claim that g(p)= g. For each
neighborhood U of ¢ in (2(«))*? we have g (U)~aep, ie,

D e clyg™(U) 0 a)

and therefore, because g is continuous from Q(a) to (2,(a))®?, we have
g(p) e C]‘ﬁ(a)(U n C‘za)),

for each such U. Thus g(p)= ¢ and the proof is complete.
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Ag special cases of Theorem 4.3 we have the following statements.

;1.4. COROLLARY. Let o> o. ,

(a) The set T(B(a)) is (2°)*-directed; .

(b) of % is a strongly compact cardinal and a = af, then [ (a)] is
(2" - directed;

(e) if a¢C, then t[Q,(a)] is (2°)T-directed.

We have seen already that |v[Q,(a)]| < 2** and that each element
of 7[0,(e)] has at most 2° predecessors. Each linearly ordered set has

a well-ordered, cofinal subset, and thus we have the following consequence
of Theorem 4.3.

4.5. COROLLARY. Let % be a regular cardinal for which o < % < a = af,
and suppose that each x-complete filter on o extends to a x-complete ulira-
Silter. If (20)F = 2°% then [Q,(a)] has a well-ordered, cofinal subset with 22°
elements.

Now lét J,(a) denote the set of nonempty, finite subsets of a.
Following Keisler [18] we say that an ultrafilter p on a is at-good if for
each map f from T, (a) to p, with f(F,) D f(F,) whenever F; C F,, there

. is a function ¢ from §,(a) to p for which g(F,) Cf(F;) and g(F, v Fy)
= g(F;) » g(F,) whenever F, ¢S (a) and F,eT (a). The set of at-good
ultrafilters on o is denoted G(a). E

The set of countably incomplete ultrafilters ‘on a—1i.e., those ultra-
filters which are not o*-complete —is denoted I(a).

4.6. LEMMA. Let a*> o

(a) z[U(a)] s cofinal in T(B(a));

(b) z[I{a) ~ G(a)] is cofmal wn v[I(a)].

Proof. Let p € f(a) and let {4:},., be a family of pairwise dlS]omt

subsets of o, each with « elements, for which | J 4, = a. Thereis, for £< a,
f<a

a one-to-one mapping f, from 4, onto «, and for each &< o there is
a unique element p, in cly, A4, for which f(p,) = p (here fe is the continu-
ous extension of f; which takes cly, A, onto §(a)).

Now in (a) let ¢ be any element of f(a) which is uniform over {Ps}sca
(i.e., g € f{a) and each neighborhood in B(a) of ¢ contains « of the ultra-
filters p;) and in (b), it being assumed that p is countably incomplete,
let g be any element of f(a) which is a¥-good over {p.}s, (the existence
of such an wultcafilter without the generalized continuum hypothesis is
proved by Kunen in [22], by another application of the existence of
families of large oscillation). Evidently f(q) = p, where f is ‘the map
from o to a which agrees with f, on A,, so that T(p) < z(g). In (a) we
have g e U(a) because ¢ was chosen uniform over {pe}g<u And in (b) the
ultrafilter g, chosen to be a*-good over {Peteca, is in fact at-good over a
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by Theorem 6 of Keisler [18]; that ¢ is in I(a) follows from the facts that
pel(a) and p<q.
4.7. THEOREM. Let a > o.
(a) The sets t[U(a)], v[I(a)], and v[I(a) ~ G(a)] are (2°)*-directed;
(b) if a is smaller than the first uncountable measurable cardinal and

(20t = 2*°, then T(B(a)) contains a well-ordered, cofinal subset of 22 types
of a*t-good wultrafiliers.

Proof. That :[U(a)] is (2%)*- directed follows from 4.4 (a) and 4.6(a);
that t[I(e)]is (2%)*-directed follows from 4.4 (a) and that fact that ¢ I (a)
whenever p < ¢ and p e I(a); the rest of (a) then follows from 4.6(b).

It is well-known that if neither a nor any of its predecessors is measur-
able, then each non-principal ultrafilter on a is countably incomplete.
Thus G(a)C U(a) CcI (a), so assertion (b) follows from (a) and 4.5 and
4.6(b).
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Menger’s Theorem for topological spaces
by
William J. Gilbert (Waterloo, Ont.)*

§ 1. Introduction. Menger’s Theorem [1] for graphs has been generalized
by Nébeling [3] to locally connected compact metric spaces. In this paper
we generalize Menger’s Theorem to Hausdorff topological spaces with
no other global conditions on the space, but with loeal conditions on the
two subsets involved. ’

TeEEOREM 1.1. Let A and B be disjoint open subsets of o Hausdorff
topological space X. Suppose that the mamimal number of disjoint arcs
from A to B is finite. Then this number is equal to the minimal number of
points that have o be removed from X to separate A and B into different
arc components.

‘When we restrict X to be a graph, our proof of Theorem 1.1 reduces
essentially to Ore’s proof of Menger’s Theorem [4], Chapter 12.

CoROLLARY 1.2 (Menger's Theorem). Let A and B be disjoint sets of
vertices of a finite or infinite graph X. Suppose that there is no edge with
one vertex in A and the other in B. Then the mazimal number of disjoint
ares from A to B is equal to the minimal number of vertices that have o be
removed from X to separate A and B into different components.

Sections 2 and 3 are devoted to proving Theorem 1.1. In seetion 4
we show, by example, that some of the conditions of Theorem 1.1 and
Nobeling’s result cannot be weakened. Finally in section 5 we discuss
the case where the maximal number of arcs is infinite.

The author wishes to thank Michael Mather for his helpful comments
and Mary Ellen Rudin for Example 5.1.

§ 2. Definitions. Let 4 and B be subsets of a topological space X.
Let I = [0, 1] be the closed unit interval and I = (0,1) be the open unit
interval. An are A from A to B in X is an injective map i: I-+X such
that 4(0) e 4 and A(1) « B. The family of ares {4} is said to be disjoint if

Iy~ d) =0
for all arcs Aq, A in the family with ¢ 5 ..
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