34 B. Fitzpatrick, Jr.

Now, let @ be some definite point of X. By the local compactness
of X, there exists a sequence My, M,, My, ... of nondegenerate connected
point sets containing @ such that diam. M, < 1/n, for each n=1,2,3, ..,
For each n, let B, denote a countable dense subset of M, and let B
= A4 B+ By+By+... Then B is 2 countable fie.nse subget of X such
that, for some point  of X, every open set containing ¢ has 2 component
which contains infinitely many points of B. Clearly, there is no homeo-
morphism from X onto X that takes A onto B.
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Images of Borel sets and k-analytic sets (*)

by
Ronald C. Freiwald (St. Louis, Mo.)

Section 1. Introduction and preliminaries. Throughout this paper, all
given spaces are assumed to be metrizable. Our aim is to consider the
preservation of Borel and “analytic” properties of spaces under images
and inverse images by certain maps, generalizing and extending a number
of known results to wider classes of mappings and spaces; the familiar
results will be mentioned throughout the paper as terminology is intro-
duced. The basic properties of Borel and %-analytic sets are discussed
in Kuratowski [9] and Stone [13]. Ve gather together here some of the
basic definitions and establish some notation.

Gy(X) is the family of open sets of X. For each ordinal a<< o,
G (X) is the family of all countable intersections (unions) of sets of class
G,(X), p< @, if a is odd (even). Fy(X) is the family of closed sets of X,
and F(X) is the family of all countable unions (intersections) of sets
of class Fy(X), f<< o, if ¢ is odd (even). Since X is perfectly normal,
G(X)CF,,(X) and F(X)C &, ,(X) for each a<< w,. Hence |JF (X)

= |J G,(X), and this is the family of Borel sets of X. A set in F(X)n

~ G, (X) is said to be ambiguous of class a in X. Gy, Gy ... (Fy,Fy, ...)
sets in X are also called @, Gy, ... (F,,F,...) sets of X. X is called
absolutely G(F,) if it is a G (F)) set in any (metrizable) space ¥ in which
X is topologically embedded. We denote this by X € 8,(F,), where G,(F,)
is the property “absolute G.” (“absolute # ).

Willard [16] showed the following are equivalent for a > 1: (a) X €8,
(b) X is a @, in some complete space, (c) X is a G, in X, (d) X is a G, in
some compaectification of X, (e) X is a @, in every compactification of X.

(*) This research comprises a part of the author’s doctoral dissertation at the Uni-
versity of Rochester, Rochester, N. Y., 1970, and was conducted under the direction
of A. H. Stone, to whom the author expresses his deep appreciation. The author was
supported during this research by a grant from the Danforth Foundation. '
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The equivalence of the analogous statements for &, s(?ts (a>9)
was recently established by R. Hansell [6]: (a) XeF,, (b) X is an F_ in
some complete space, (¢) X is an F,~ G, set in fX, (d) X is an F, n @,
set in some compactification of X, (e) X is an F, ~ G, set in every com-
pactification of X. ' '

A map (not necessarily continuous) f: XY is Borel measurable
if for O open in ¥, f~0) is Borel in X; f is Borel megm.lra.ble of .class o
it £Y0) € G(X), a even, or F(X), a 0dd; [ is perfect if it is continuous,
closed, and each set f~*(y) is compact. If f is one-to-one aqd onto, and
both f and f~* are Borel measurable, then f is called a Bo_rel isomorphism;
if f and f~* are Borel measurable of class o and p respectively, f is called
a generalized homeomorphism of class (a, f).

If X C Y, and k is an infinite cardinal, we say X is k-analytic in ¥

oo
if one can write X = (\F(t, ..., ), where F(ir, ..., 1) is 2 zero
ieB(k) m=1

set of ¥ and where B (k) is the product of countably many discrete spaces
of cardinal k. For separable metrizable spaces and k= &,, this defines
the classical analytic or Souslin sets. The notion of k-analytic sets was
introduced, and their basic properties were studied, in Stone [13]. We
say X is absolutely k-amalytic, and write X e #x, if X is k-analytic in
every (metrizable) space ¥ in which X is topologically embedded. This

is equivalent to X being k-analytic in some complete space (Stone, [13]).

Section 2. Inverse images. Throughout this section, f is a function
from X onto Y. We are concerned with the following sort of question:
if ¥ is absolutely Borel (absolutely- %-analytic), when is X absolutely
Borel (absolutely k-analytic)? ’ :

The statements “Y is absolutely open”, “Y is absolutely closed”,
“Y- is an absolute- #—F", i.e., is absolutely the difference of two closed
‘sets”, and “Y is an absolute F.”, are respectively equivalent to “X¥ is
empty”, “¥ is compact”, “Y is loeally compact” and “¥Y is o-locally
compact”. (The first two equivalences are routine, and the third and
fourth are in Stone, [12].) Hence, if Y is absolutely open, so is X, for
any f; if Y is absolutely closed or absolutely F— F', then so is X, provided
f is perfect. Tt is eagy to show that the inverse image of a o-locally com-
Pach space by a perfect map is again o-locally compact. Thus' the inverse
image of an absolute F, by a perfect map is an absolute F,.

Vainstein [157 showed that perfect maps also preserve absolute Borel
sets of higher class, as well as absolute n,-analytic sets, under inverse
images. Our first aim is to extend this theorem to a wider class of spaces
and maps. For this purpose, we first use a technique of R. W. Hansell [6]
to investigate the embedding of absolute %-analytic sets in their Stone—
(ech compactifications. '
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Prorositiox: 2.1. The following statements are equivalent:

(1) X is absolutely k-analytic, )

(2) X is the intersection of a k-analytic set and .a Gy set in some com-
pactification BX,

(3) X is the intersection of a k-analytic set and a Gy set in pX,

(4) X s k-analytic in some complete metric space,

(3) X is L-analytic in every metrizable space Y in which X is topologic-
ally embedded.

Proof. (1) implies (5) implies (1) is in Stone, [13].

(1) implies (2). X is k-analytic in its completion (with respect to
any chosen metric), X. X is in turn a G, in BX. Since each zero set of
X is the restriction of a zero set of fX, it follows that X is the intersection
of a k-analytic set with a G, in its compactification fX.

(2) implies (3). If X is the intersection of a %-analytic set K and
a G, set G in BX, and if 7: fX+BX is the Stone extension of the identity
map i on X, then 7 YX)=X and X =7 "YX) 7 YG), which are
respectively k-analytic and G in pX.

(3) implies (4). Pick a metric d for X and let (¥, d) = X be its com-
pletion. Let i: X=X be the injection map and let 3: X —~BX De its Stone
extension. Put X* = 7-%(X) and, for # and 9 in X*, let s(z,y) = a7 (2),7% ().
Tt is easy to verify that 7: (X* s)—(X,d) is perfect and that (X* s) is
a complete pseudo-metrie space with a topology coarser than the X -in-
duced topology. Let X™* denote the space (X¥ s). One can verify that:

(2) if U is open in AX and V = Intx.(U ~ X*), then Un X =V n X,

(b) if Z is a zero set in X, then there is a G set, G, in X* such that
GD X and cgZn X)C Z. -

e
Nowsuppose X = {J [ F(l, s, ..., ta) » H, where each F(f, ..., ts)
teB(F) n=1

o0
is a zero set of fX and where H = [\ Hy, with H, open in fX. Let B

n=1

= teg('k) ,QlF(tl’ ooy fn). For each (fy, ..., ), =1, 2, ..., pick, using (b),

a Gy set G(t,,...,1) in X* containing X, and such that

oyt B (s ey T} A ) C P8y, oy T)
Let

<)

E= U N l“la(z,, -A..,in)(F(tl’ vy tn) “X)h

teB(k) n=1

K is k-analytic in X* and E~nX =Hn X.
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Finally, for each n=1,2, .., let Op= Intx(Hs X*). It follows,
using (a), that X = ﬁ (O ~ K). Hepce X is the intersection of a k-ana-

n=1
Iytic and a @ set in X* In particular, X is k-analytic in X*, so we can

write X = |UJ ﬂ L(ty, «.vy t), Where each L(t;,...,%) is closed in X*
teB(k) n=1 :
Tt follows from the definitions of s and 7, and the fact that the L's are

closed, that

z(ﬂL byy ey tu)) = 6 UL (tyy ey ta)) -

Hence

@M= U N Lty wCE,

te B(k) n=1
and since 7 is closed it follows that 7 (X) = X is k-analytic in X

DerINTioN 2.2 (Krolovee, [8]). Let ¢ be a continuous map from the
T, space X onto the T, space Y. fis locally perfect if each » in X has
a neighborhood U, such that f(clUs) is closed in ¥ and f|elUs, is perfect.

Every perfect map between T, spaces and every continuous map
of a locally compact T, space onto a T, space is locally perfect. The
projection map of [0,1]x[0,1) onto [0,1] is locally perfect but not
closed. By mapping any non-locally compact metrizable space onto
a point, one sees that a continuous closed map between metrizable spaces
need not be locally perfect.

THEOREM 2.3. Let f be o locally perfect map of X onto Y. If Y e Az,
then X ey, If YeS, (1< a<< wy), then X eS,. If YeF, < a< ),
then X ¢ F,

Proof. There is a Tychonoff space ¥ which contains X as a dense
open subset, and an extension of f to a perfect map f of X onto ¥ (Kro-
lovec, [8]). Let T* denote the Stone extension of 7 to a map f*: pX - Y.
Since T is perfect, (F*)"%(¥)= X. If ¥ e#, then ¥ = K ~ H, where K
and H are respectively k-analytic and @, in Y. Then X = (f*)"{(K)~
~ (F*)"YH) is the mtersectwn of a %-analytic and a @, set in X, and hence,
since X is open in X X is also such an intersection in its compactifica-
tion pX. Therefore X e #; by Proposition 2.1.

IerQa,theninsa.G in 87, so (F*)"Y¥)=X is a G, in pX;
therefore X is G, in A%, and so X ¢S,. By Hangell’s theorem, Y ¢ &,
if and only if ¥ is the intersection of an ¥, and a @; in BY; from thls,
a8 above, it follows that X is an F,~ G, in its compactification pX;
hence, again by Hansels result, X ¢ ¥,

Our next result extends to k ana.lytxc sets a similar result of Vain-
stein, using entirely different methods. We need the following lemma.
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TEMMA 2.4, Let 4 be a o-discrete family of sets in the space X. Then X
admits @ meiric s with respect to which # is o-melrically discrele, i.e., #,

(=8

= | n, where, for each n, there is a positive e, such that any two sets in s
n=1

are at &-distance = &

Proof. Without loss, we may. assume the sets in st are closed. Let

A_ C #,, where each family st, is discrete. Pick any metrie, d, for X
n=1

satisfying d < 1. The set Fy = | {41 4 e #,} is closed; define a metric d,
on X by extending to all of X (Hausdorff, [7]) the following equivalent
metric on Fa: dijz, y) = d(z,y) if both # and y are in some set 4 € &,
and dn(.z*,y)— 1 otherwise. Now put d,(z,y)=min{d,(»,y),1}. Then
d) <1, @, is equivalent to d, on X, and, if B and C are in #,, B # C,
then d”(B C) = 1. Thus 4, is metrically discrete with respect to d,,.

Now let s(z,y) = 2 d; (z, y)[2". s is equivalent to d and, with respect
n=1
to §, £ i3 o-metrically discrete.

THEOREM 2.5. Let f be a continuous closed map of X onto ¥. If ¥ e A,
then X e 4y, provided each set f~'(y) e Az. If Y ¢S, and each set f~'(y)
€8, I1<a< w), then XeS,,. If YeF, and each set fy)eF,
(2<a<< wy), then X e F,yy.

Proof Let Y= {yeXY: f~Yy) iy compact}, ¥Y,=¥-%,, G
={fy): ye¥} and Co= {{'(y): ye ¥o}. Put X, = UG, X, = G,
= X— X1

G, is o-discrete (La¥nev [10]) and sinece f is continuous and closed 1t
follows that ¥, is a o-discrete set of points. Hence ¥; is a G, in ¥ and
therefore ia in Az, G, or &, whenever Y is in 4, G, or &, respectively.
Since f~Y = X; and f 'XI is perfect, it follows from Theorem 2.3 tha.t
X, is respectlvelv in gz, G, or ¥, whenever Y is.

Since G, is o-discrete we may, using Lemma 2.4, assume that X
has a metrie, d, with respect to which G, is ¢-metrically discrete. Hence
the family of sets C, is also o-metrically discrete in the completion (%, d).
If each set of C, is in A, §, or F,, then X,, as a union of a ¢-discrete
tamily of such sets in X, is k-analytie, &,,,, or F,,, in X, and hence is
in Ak, G,y OT Fouy.

Thus if each set f~'(y) is in #4, §,, or F,, then X=X, v X, is
respectively k-analytic, &,,,, or F_,, in the complete space X, and hence
Xedy, Sopqy OF Fopy.

It turns out that in certain special cases the assumption that f is
eontinuous may be weakened to the assumption that f is Borel measurable

of some fixed class f << w,. This is discussed in Section 3, Corollary 3.10:
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In any event, some assumption on the sets f~*(y) similar to that in 2.5
seems necessary as the following example shows. :

ExamprE 2.6, For each ¢ < wy, let R, be the real line and let @,
be a subset of R which is of additive class « but not of additive class § for
any f < a. Let 4 be the disjoint topological sum of the spaces R,, a < oy,
and let X = |J{6,; a< o} Put Y= {a: a<<ay}, with the discrete
topology. Y is an absolute G, Define fi: XY by f(z) = a if and only
if #e@,. Then f is continuous, open, closed and each set FYa) is ab-
solutely Borel, since it is Borel in R,. Yet X is not absolutely @, for any ¢,
else its open subset G, would be absolutely of additive class £, contrary
" to construction. X is, however, absolutely x,-analytic, by Theorem 2.5.

That the pathology of this example lies precisely in the fact that no
countable bound exists on the Borel classes of the sets f~(a) is shown
in the preceding theorem.

Section 3. Forward images. In Section 3 we take the opposite point
of view. If f is a function from X onto ¥ and X is absolutely Borel
(absolutely k-analytic), when is Y absolutely Borel (absolutely %-ana-
Iytic)? For X an absolutely open, closed, F—F", or F, set, this comes
down to finding eonditions on f which preserve the topologically equivalent
properties mentioned in Section 2. For example, continuous closed maps f
preserve absolute F—F" sets and absolute F, sets.

Coban [1] recently announced that continuous closed maps preserve
absolute Borel sets, as do continuous open maps, provided each set f~*(y)
is complete. Our chief aim in Section 3 is to show that these results also
hold whenever the hypothesis of continuity is replaced by Borel measur-
ability of some fixed class, and that they apply, in this case, to absolutely
k-analytic sets as well.

As a first step, we include a considerably simplified proof of -a special
case of a result of Vainstein [15] on the extension of perfect maps
between metric spaces.

TeErorEM 3.1. Let f be a perfect map of X onto Y. Thén there exist
{metrizable) absolute G, sets M and N, containing X and ¥ respectively,
such that f extends to a perfect map f* of M onto N.

Proof. Let X and ¥ denote the completions of X and ¥ with respect
to any metrics. Then f extends to a continuous map f: B—>A = f (B),
where B is a- @, in X, BD X, and where ¥D AD ¥ (Kuratowski, [9]).
Since B is an absolute &, it is completely metrizable. By remetrizing X,
Wwe Inay assume X= B, so that we have a continuous extension of f,
F:XE-A=T (_X C¥. Let T px —>,3A be the Stone extension of f. Since
f is perfect, 7* ﬁX X) CﬁA Y, so f*p¥—X) C,BA——

Put M= ﬁX FH-(r )(ﬂX——X) We have XD MDX g0 M is
metrizable. Since X is a G in 8%, pX—X is an F,in ﬁX ‘and thus, since
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J* is closed, M is a G, in ﬁi’ and therefore also in X itself. Hence 3f is
an absolute G,. Define f* = f*| M. Since I is an inverse image set of 7
f* is a perfect map of I onto N = f*(I). Since N CAC ¥, N is metriz-
able, and, as a perfect image of an absolute G5 is an absolute @, (Frolik, [4]).

We shall also need the following simple characterization of closed
maps.

ProrostrioN 3.2. Let f map X onto ¥ and let I'= {(x, f(2)) e X x ¥:
x e X} be its graph. Let z, denote the projection map of X X Y~Y. Then
[ is closed (not necessarily continuous) if and only if =, |I' is a closed map
of I onto ¥.

» Proof. The proof is routine using the following characterization of
closed maps from X onto ¥ (Kuratowski, [9]): f is closed if and only if,
given y ¢ Y, a sequence {y,: n=1,2,..} in ¥, with y, # y for each n,
and, for each n, a point 2, € f~'(y»), then there exists a point = e f~(y)
to which some subsequence of {z,: n =1, 2, ..} converges.

An analogous result for open maps is in Proposition 3.7.
We can now state and prove the following theorem.

THEOREM 3.3. Let f be a closed map of X onto Y that is Borel measur-
able of class a, a< w;. If X ey, then Y ey, If X is absolutely Borel,
Y is absolutely Borel. More specifically, if X €S, 1<E< w, (or Fe,
2 < E< o), then

(1) Ye8, (F,) if a+1 <& and £
(2) YeFoyy (Seyy) if a1 < E and E< w,,
(B8) YeS,\y (Fapy) if atl > & and &> w,,
(1) YeF o (Suyn) of atl >& and &< w,.

Proof. We first assume a = 0, i.e., that f is continuous. We may
assume, without further loss of generality, then f is perfect. Indeed, if f is
continuous and closed, then there is a closed set A C X such that f(4d)= Y
and f| A4 is perfect. Smce A ety if X e Ay, and AeQ (Fe) if X eG, (F),
no generality is lost. For convenience we also assume £ > 2, since the
case £ =1 is well known anyway (Frolik, [4]). -

Let A, N, and f* be chosen as in Theorem 3.1. Remetrizing X and ¥
if necessary, and replacing M and N by cln_,X and clyY, we may assume
that M and N are respectively X and 17 the metric completions of X
and ¥. Since f* is perfect, (f*)7Y(¥)=

Let F: ¥->2%, the space of closed subsets of X, by F( y) (FYy).
Since f* is contmuous and closed, & is upper semi-continuous, and, sirce
each F(y) is complete, there is a ¢g: ¥+X sa,tlsfymg g(y) € F(y) for each y

and g~%0) is an F, in ¥ whenever 0 is open in X, i.e., ¢ is Borel measur-
able of class 1 (Engelkmg, [2]).

Wy,
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Let I == {(m @) weX), I"= o), ) yeXl, a.n.dl”' —{( il )
ze X}, Since g is Borel measurable of class 1, I is a G4 in X><Y
and therefore an absolute @, (Ruratowski, [9]). I" is homeomorphic
to X. Hence I and I ~ I" are in A if X e #by; and I' and IV ~ T are
in G (57, if Xe6; (Fe)- .

Tet = be the projection from Xx¥ to X. Since (f*)7YY)= X,

g(¥)==a("" ~nI"). But =l is a homeomorphism, and I'DI" A",
Hence if X ez, then g(Y) e s; and if X G, (3’5) so is ¢g(¥).

Now put ¢(¥) = B, g(Y) A, and let b= f*|B. h and g are inverse
functions between B and Y. Smce g is Borel measurable of class 1,
h: B->Y is a generalized homeomorphism of class (0, 1) and h(4d) = Y,

o0
It X e Az, then A e Az, 50 we can write A= U NI, ..t
teB(k) n=1

where each F(t,.,%) is a zero set of B. Then

U N Aty ey ta),

teB(k) n=1

Y = hid) =

and each hF(t, ..,ts) is a G, set in ¥, Hence Y is k-analytic in 17,
50 ¥ e A, by Proposition 2.1.

It X €G; (F), then A e§; (). If £ < w,y, then, since f carries open
(closed) sets of B to F (G,) sets of Y, it follows by a simple induction that
Y="h(4) is an P, (G¢y,) in Y 50 Y eF,yy (8eyy). If &= wy, then 4

=] [=~]
= {J By or [ Bs, where each B, is Borel of a finite class in X. Then

n=1 n=i
Y is a union or intersection, respectively, of Borel sets of finite class m Y,
80 ¥ €8, (F,,). Finally, if £ > w,, a simple transfinite mductlon, beginning
this txme at w,, shows that ¥ is a &, (F,) in Y, 0¥ 8, (F,), completing
the proof of the theorem for eontinuous closed maps f. :

For the general case, suppose now that f: X—Y is closed and Borel
measurable of class a. Then I', the graph of f, iy a Borel set of multlph-
cative class o in X x ¥, where now, ¥ is any metric completion of Y.
If X ey, then Xx ¥ is in .7%;,, 50 I' e #ty; if X €8, (F,), then XIxYeS,
(F¢) and

(a) T'eS, (F)) if a+1<E,
(b) Te Sy (Fuyy) if a1 > £

Let #': XX Y—+Y be the projection map. By Proposition 3.2, /| is
closed. Thus X e &, ¥ = n'(I') € 45 by the first part of the proof. And
if X €8, (F;), then (a) and (b) hold, ¥ = ='(I'), and using the computations
from the first part of the proof, condltlons (1)—(4) of the theorem follow
immediately. o
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Letting ¥ be the topological sum of a non-Borel subset of R, the
real numbers, with its complement, and mapping R to ¥ by the identity,
we see that a one-to-one closed open image of R needn’t be absolutely
Borel, so the assumption of Borel measurability in Theorem 3.3 is not
superfluous. It might be interesting to know if the hypothesis “f is Borel
measurable of class a” could be replaced by “f is Borel measurable”; but
it is not known if this class of mappings is really more extensive
anyway.

COROLLARY 3.4. Let f: X—=Y be a generalized homeomorphism of class
(a, 0). If X ey, then ¥ e #yz; if X is absolutely Borel, so is Y, and (1)~(4)
of Theorem 3.3 still hold.

The preceding corollary slightly sharpens a result achieved by
R. Hansell [5] using entirely different techniques. It can obviously also
be viewed as an “inverse image” theorem for generalized homeomor phisms
of class (0, a). The followmg corollary extends to k-analytic sets a result
announced by Coban [1].

COROLLARY 3.5. Let f be a continuous open map of X onto Y such that,
for some fixed metric on X, each set f~\(y) is complete. If X e /g, then Y e sy,
IfXeSy1<Ei< o, (Fpy 2<E< ), then ¥ e Fpyy (Spy0) of << w0 and
Y eS8 (Fy) if E= wy. In particrular, the result holds if f is continuous, open
and finite-to-one.

Proof. There is a closed subset 4 of X such that f(4)= Y and
fl4 is perfect (Michael, [11]). If X e+, then 4 e #4; and if X G, (Fy),
then A €S, (F,). Then the result follows from Theorem 3.3 with
a=0. '

For open maps, the hypothesis on the sets f~'(y) cannot be improved
very much, if at all, as the following example shows.

Exavprr 3.6. In [14], Taimonov gives a construction to show that
any Borel set in [0, 1], say B;, is the continuous image of a @, in [0,1]X
x[0,1], say C,;, by a continuous, open, countable-to-one map, f,. Let
this be done for each 1 < w,, always choosing B, to be a Borel set of exact
additive class 4, i.e., B; is of additive class 1, but not of any lower class
(Kuratowski, [9]). Let X be the disjoint topological sum of the C,’s,
and Y the disjoint topological sum of the B,’s. Then f= {Jf; is continu-

A

ous, open, and countable-to-one. In particular, each set f~'(y) is an
absolute F,. Also X €G,,, but ¥ is not absolutely Borel. For if it were,
say, absolutely of additive class a, then its open subset B, , would also
be absolutely of additive class a, contrary to construction.

As in the case of continuous closed maps, however, the assumption
“f ig continuous” can be weakened to. “f is Borel measurable of some
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class «”. To do this we need the following proposition, all but the last
statement of which is due to R. Hansell. It is the open analogue of Pro-
position 3.2

PHOPOSITIOl\ 3.7. Let f be a Borel measurable mapping of class a,
a< w, of X onto Y. Let X' be the space (X, T"), where 1" is the topology
generated by the original topology on X together with all sets of form f~YV )
where V is open in Y. Then the map g{x) = ( , f(w)) is a homeomorphism
of X' onto I'y the graph of f. The projection ms|l: I'>X is o generalized
homeomorphism of class (0, a). If f carries open sets in X to sets of additive
class B in Y, then the projection map 7, \I" carries open seis n I' to sels ad-
ditive class B in Y. (In particular, if f is open, so is o, |I'; and if f is one-lo-one,
m,\I" is a generalized homeomorphism of class (0, f).)

Proof. g is one-to-one and onto. It is continuous because zy o g = iden-
tity map from X’ to X, and =, - g: X'~>Y is continuous by construction.
I 0 is open in X and V is open in ¥, then 0 » f~YV) is a typical basic
open set in X', and g(0 ~f(V))= I~ (0xV); hence g is open.

That #z|l is a (0, ¢) homeomorphism is in Hansell [5].

Suppose that {V,,: aed, n=1,2,..} is a o-discrete open basis
for ¥, with each family {V,,: a € A} being discrete. Then a basis for X’ is

n=1,2,..}. Fixing n,

given by {Unf(V,,): acAd, U open in X,
let P, be of form U[U A f“’( ) But then f(P,) is the union of

a discrete collection of sets of additive class g in ¥, and therefore is itself
of additive class 8. Since each open set of X’ is a union of countably many
Py’s, it follows that f carries open sets in X’ to sets of additive class B
in ¥. Thus if 0 is openin I', @ |I'(0) = f(g‘l(O)) is of additive class fin Y.

THEOREM 3.8. Let f be an open map of X onto Y that is Borel measur-
able of class a, a<< w;, and suppose that each set f~*(y) is complele in
some fia:ed metric on X. Then if X ey, Yeds. If XeG,,1<E< w,
(Fey 2 < E< y); and 4 = max (a, &), then Y is absolutely ambiguous of class
A4-2, and absolutely ambiguous of class A+1 if A > w,.

Proof. Let d be a metric on X making each set f~(y) complete
and let s be any metric on Y. I', the graph of f, is of multiplicative class a
in X% ¥, where ¥ is the completion of (¥, s) (Kuratowski, [9]). Hence
T e LEXed&k Since XX ¥ ¢§, (F,) if X ¢§, (F,), in this case I" is ab-
solutely ambiguous “of class H—l.

Metrize X x¥ by 7'((931; Y1) 5 (%ay ys)) = d(s, )+ (Y1, ¥o). Let ¢
= m,|I. Then for y ¢ ¥, ¢7(y) = f~y) X {y}, an r-complete subset of I
It follows from Proposition 3.7 that g is open. Henee Corollary 3.5 applies
to g: I'>Y and the conclusion follows immediately.

We remark that the numerical calculations can be slightly sha,rpened
by distinguishing the cases of & even and & odd.
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With the necessary tools now at hand, we conclude with the following
inverse image theorem alluded to in Section 2; its Corollary 3.10 strengthens
Theorem 2.5 in certain cases.

THEOREM 3.9. Let f be a closed map of X onto Y that is Borel measur-
able of class B, B < wy, and let I' be its graph. If each set f~Y(y) e #z, thén
I'er; and if each set f~'y)eS: (for fixed §), then I' is absolu-
tely Borel.

Proof. By Proposition 3.7, ()~ X—I"is a generalized homeo-
morphism of class (#,0). Let g =z, |I: I'>Y. By Proposition 3.2 g is
closed, and, of course, continuous. Since g~'(y) = k(f~(y)), it follows
from Corollary 3.4 that each g~(y) is absolutely Borel of some fixed class
if each f~'(y) is, and each ¢ '(y) e A if each f~Y(y) ¢ #x. It now follows
from Theorem 2.5 that if ¥ is absolutely Borel or k-analytic, then I is
absolutely Borel or absolutely k-analytic respectively. (Clearly, in the
Borel case, one could use the previous results to get a bound on the class
of I' if desired).

CoROLLARY 3.10. Let f be a closed map of X onto Y that is Borel measur-
able of class f, 8 < w,. Suppose Y and each set f~'(y) are in G, for some
fized &. Then X is absolutely Borel if either X is absoluiely s,-analytic or
if both X and Y are separable.

Proof. g = ms|I": I'> X is a generalized homeomorphism of class (0, #)
by Proposition 3.7. If X = g(I') is absolutely &,-analytic, it is absolutely
Borel (Hansell, [5], p. 79). If X and Y are separable, the result follows
from a theorem of Stone ([13], p. 32).
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Real functions having graphs connected
and dense in the plane
by
David Phillips (Athens, Ga.)
Introduction. In this paper a theorem proved by Jack Brown m 1]

is utilized to.prove theorems concerning the class of all real functions
having graphs connected and dense in the plane. Only real functions

will be considered here and the word graph will refer to the graph of

a real function.

Definitions and notation. Tf f is a point set in the plane, then the
X -projection of f is the set of all abscissas of points of f and will be de-
noted by fz. The statement that the number set 3 is ¢-dense in the
number set N means that if I is an open interval containing an element
of N, then the cardinality of I ~ (M ~ N) is that of the continuum. The
cardinality of the continuum will be denoted by ¢. The set of all real
numbers will be denoted by E. ’

Lemua 1. If the graph f has connected X -projection and intersects
every lower semi-continuous graph with X -projection a subinierval of the .
X -projection: of f, then f is connected. )

This lemma follows easily from the theorem that Jack Brown states
and proves in [1]. ‘

TEEOREM 1. If C, is a subset of B such that each of C, and B— O, is
c-dense in E, then there is a totally disconnected graph g with X - projection C,
such that if M is a point set containing g and having X-projection B, then
M is connected and dense in the plane.

Proof of Theorem 1. Suppose 0; is a subset of F such that each
of ¢, and E— 0, is c-dense in E.

Let W denote the collection to which w belongs if and only if w is
a lower semi-continuous graph with X-projection an interval. The col-
lection W has cardinality c. Let Q be a meaning of precédes such that (1)
W is well ordered with respect to @ and (2) if w is an element of the col-
lection W, then the set of all elements of W that precede w has cardinality
less -than W. . ‘
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