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Fixed point theorems
for non-compact approximative ANR’s*

by
Michael J. Powers (Dekalb, Ill.)

1. Introduction. Compact approximative ANR’s were first introduced
by H. Noguchi and in 1968 A. Granas proved that they were Lefschetz
spaces. More recently J. Jaworowski proved the -Lefschetz fixed point
theorem for upper semi-continuous, acyclic multi-valued maps of these
compact approximative ANR’s.

On the other hand there is much recent interest in Lefschetz fixed
point theory for compact maps of non-compact spaces. A space X is
a A-space if for every compact continuous map f: XX, the Lefschetz
number A(f) exists and f has a fixed point whenever A(f) = 0. For
example, ANR’s are s-spaces ([2], [4]). The corresponding concepts, M-
Lefschetz space and MA-space, for certain multi-valued maps have been
studied. (The maps used need not be acyclic; it suffices to require that
they be compositions of acyclic maps.) ANR’s are known to be M A-spaces.
(See [7].)

In this note, it is shown that (non-compact) approximative ANR’s
are /A-spaces. It is also proved that a second related class of spaces are
M A-spaces. ;

2. Preliminary definitions. In this section we recall the pertinent facts
about multi-valued maps, establish the homology theories under which
we will be working, and recall the definitions of A-space and MA-gpace.
The reader is referred to [7] for the details of this section. )

A map is said to be compact if its image is contained in a compact
set. A multi-valued map F: XY is upper semi-continuous (u.s.c.) if

(i) F(x) is compact for each z in X and

(ii) for each # in X and each open set V containing F(x), there is
an open neighborhood U of # such that F(U)CV.

* AMS 1970 subject classifications. 54C55, 54C60, 55C20.
Key words and phrases. Absolute neighborhood retract, approximative absolute
neighborhood retract, Lefschetz fixed point theorem, multi-valued map.
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H F: X»Y and G: Y—Z are multi-valued maps, the composition
of F and G is denoted @ o F: X+ Z and is defined by G o F’ = | | G(y).

Vel (2)
A point @ is a fized point for F: X>X if w e F(2).

Next with regard to the homology theories, let J denote the category
of Hausdorff spaces and continuous maps and # the category of graded
vector spaces and homomorphisms of degree zero. J: J— s can be any
covarient functor which has compact support, satisfies the homotopy
axiom, and agrees with the Cech hoinology functor H on the full sub-
category of compaect spaces. In particular, when working with multi-
valued maps we will use the functor H. (H(X) iy the direct limit of groups
H(K) taken over the compact subsets K of X. See [6].) Let F: XY be
an 1.8.c. multi-valued map of spaces in J. F is acyclic (w.x.t. H) if for
each z in X, F () is an acyclic subset of ¥. When F is acyeclic the induced
homomorphism H(F) = F, is defined ((2.1) [7]).

Finally, we recall the definitions of A-space and MA-space. J, will
denote a subcategory of J. Refer to § 2 of [7] for the definitions of gener-
alized trace, finite type, and Lefschetz number for homomorphisms in #£.

(2.1) DEPINITION. An-w.§.c. map F: X ->X of a space in J is udmissible
(rel. to J,) if there are maps G2 ¥;—» ¥, ,,i=10,..,n (where ¥, =Y, ,
= X) satisfying

(i) F=Gpo..o0Gy,

“(ii) G4 is acyclic and u.s.c. for each i =0, .., n, and

(iii) Y is in J, for i =1, ..., n.

Bach such sequence is called an admissible sequence for F.

(2.2) DEFINITION. An admissible map F: XX is an M- Lefschetz
map (rel. to Jp) if

(i) for each admissible sequence Gy, ..., Gy for F, G o ... o Gy has
finite type and

(ii) whenever Gy, ..., G, is an admissible sequence with Lefschetz
number A(G,. o... @) # 0, then F must have a fixed point.

A continuous single-valued map f: XX is a Lefschetz map if
Je(f) = f, has finite type and whenever 4(f,) # 0, then f has a fixed point.

(2.3). DEFINITION. A space X is an MA-space (rel. to J;) if each com-

pact admissible map F: XX (rel. to J,) is an M -Lefschetz map (el
to ).

A space X is a A-space if each compact continuous (single-valued)
map f: X->X is a Lefschetz map.

3. Main results. In this section we identify the two topological cate-
gories in which we are interested and state the two main theorems.
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First consider two maps f,g: XY and aeCov¥. Recall that f
and g are a-near if for each x in X, there is an element U of o containing
both f(z) and g(x). Similarly, if ¥ is a metric space and ¢ is a positive
real number, f and g are said to be e-near if for each # in X, d(f(«), g(@)< e.

(3.1) DEFINITION. Let X be a subspace of ¥. For a ¢ Cov.X, a continu-
ous map 7,: ¥-X is an a-retraction if r,|y and 1y are a-near. X is an
approximative retract of Y if for each a e CovX there is an a-retraction
r,: Y—>X. X is an approximative neighborhood retract of Y if there is an
open set U in Y such that X C U and X is an approximative retract of T.

(3.2) DeFINITION. Let ¥ be a metric space, X a subspace and &
a positive real number. A continuous map »: Y->X is an e-retraction
if 7|y and 1y are e-near. X is a weak approrimative reiract of ¥ if for
each ¢ >0 there is an e-retraction r,: ¥—+X. X is a weak approximative
neighborhood retract of Y if there is an open set U in ¥ such that X CU
and X is a weak approximative retract of U.

(3.3) DeFINITION. X is a (metric) approvimative absolute neighbor-
hood retract (A-ANR) if for each homeomorphism h: XM with M
a metric space and h(X) closed in M, the space A(X) is an approximative
neighborhood retract of M.

(3.4) DEFmNITION. X is & (metric) weak approzimaiive absolute neighbor-
hood refract (WA-ANR) if for each homeomorphism h: X— M with M
a metric space and h(X) closed in M, the space h(X) is a weak approxi-
mative neighborhood retract of M.

It is clear that the category of WA-ANR’s contains the category of
A-ANR’s and that restricting to compaet spaces the two categories coincide.

(8.5) Remark. Using the Kuratowski-Wojdyslawski embedding
theorem ([1], p. 79) any metric space X can be embedded as a closed sub-
set of a convex set (' in a Banach space. If X is an A-ANR [or a WA-ANR],
there is an open set U in € such that X is an approximative retract [or
weak approximative retract] of U. The notation ¢ and U will be used
throughout.

It is necessary to consider an additional restriction on the WA-ANR’s.
Its significance is explained in Remark (5.3).

(3.6) ConpnIrTioN K. A WA-ANR X satisfies condition 3 if for each
compact subset K of U it is possible to choose e-vetractions r,: U—X for
each & >0 such that Ll v (K) is compact. :

>0

THEOREM 1. Hvery A-ANR is a A-space.

THEOREM 2. Fvery WA-ANR which -satisfies condition XK is an
MA-space (vel. to Jy) and hence also a A-space. (37 denotes the category
of metric spaces.) '
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4. Proof of Theorem 1. Recall that we are using the notation of (3.5).

(4.1) Lemya. Let X be an A-ANR ond let j: X~T denote thef inclusion
map. Then for any continuous compact map f: XX, kerj,Clkerf,,
where jy: 3(X)~1(T) and fu JG(X)B—>J€(X).

Proof. Take o in kerj,. Since J¢ has compact carriers and agrees
with H on compact spaces, there is a eompqct subget K of X and x
in H(K) such that iy(x) = o (where i: KX is the inclusion). We may
assume that f(X)C K. Let fx: E—~>K be defined by f. To show that
falo) = 0 it will suffice to show (fr)e(%) = 0, _(fK)*: H(K?—»E(K),

Now since K is compact and U is open in O there is an ¢ >0 such
that Bo(K; &) = {y ¢ 0| d(K,y) <&} C U. Take n, such that 1/n, < & and
consider n3>m,. For #,y in K with d(z,y) < 1{% we have P,
C Bo(K; ¢) C U, where P, is the segment in ¢ connecting » and y. Let V,,
be the union of all segments in {P,,| @,y K, d(r,y) < 1/n}. Then
{Vilnsn, i8 8 nested family of compact sets and K = () Va.

n=no

By the continuity of H, H(EK) = L {H (Va)lysny Lt fo: KV, be
the composition of fx with the inclusion K—>V,. Then to show that
(fe)el#) = 0 it suffices to Show fra(x) =0 for each n = n,. ‘

For % > ny let an be the covering of X by balls of radius 1/2n, o
= {Bx(z; 1/2n)] z « X} and let f = f'aneCovX. Since X is an A—A.NR
we have the f-retraction 7;; U-X. Consider the diagram, where i is
the inclusion and f' is defined by f.

In

K—=T,
. 4
i 17'

Since 7,]x and 1y are f-near, for each  in K there is some Y (Bx(7; 1/2m))
in B containing z and r,(x). Thus d(fa(a), ' o750 §'(@)) = &(f(@), f o 74(2))
<1n and Py v, g0ia) C7V,. Hence the diagram is homotopy com-
mutative and f,. = fx o #4 o ji. Finally jy(o) =0 implies ji(x) =0 and
hence f,.(x) = 0. Q.B.D.

(4.2) LemwmA. Let X be an A-ANR and let j: XU denote the inclusion.
There is an aq in CovX such that for each refinement o of a, and each a-re-
traction r;2 U>X, ju=Jx°Ts o Jx.

Proof. Since U is open in ¢ and X C U, for each # in X there is an
£z > 0 such that Be{z; e;) C U. Moreover, the ball is convex since C i8
convex. Let ay= {Bx(®; e5)] # € X} e CovX. ,

Now take a > u, and an a-retraction r,: U—X. For each » in X there
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is an element 0 of a containing x and 7 («). Thus for some Z in X we have
z,7,{z) in 0 C Bx(Z; &) C Be(%; ;) C U and hence the segment Py 18
contained in U. Finally we conclude that j is homotopic to j o 7, o j. Q.E.D.

Theorem 1 is now an easy consequence of the following generating
theorem. (See [4], (4.1).)

(4.3) TeEOREM. Let X be a Ty-space and D a cofinal subset of CovX.
Let f: XX be a continuous compact map. Suppose that for each a in D
there i3 a A-space Y, and continuous maps g, X—-¥, and h;: ¥Y,>X
satisfying

(a) h, is compact,

() By 0 goo = fi, and

(e) hyog, and f are a-near.

Then f is a Lefschetz map.

THEEOREM 1. Fach A-ANR is a A-space.

Proof. Let f: X—+X be a continuous ecompaet map of an A-ANR.
We use (4.3) to show that fis a Lefschetz map. Let ¢, be as in (4.2); then
D = {a e CovX| a>q} is cofinal in CovX.

For ain D let ¥,= U, an ANR and hence a /-space. Also let
g.=3j: X->U and h,=for,: U-X, where r, is an o'-retraction and
o’ = f"'a. Then for, is compact since f is compact and fer, -j and f
are a-near since 7, oj and 1y are a’-near. Finally, it follows from (4.1)
and (4.2) that fi o roe o fu = fi and (4.3) applies. Q.B.D.

-+ 5. Proof of Theorem 2. The proof of Theorem 2 relies heavily on
Lemma, (5.1); the proof of the Lemma is postponed to the end of the section.
(5.1) IemmA. Let X be a WA-ANR satisfying condition X. Then
Je: H(X)~>H(U) is a monomorphism, where j is the inclusion.
The next Lemma corresponds to (4.2) of the previous section.
(5.2) LmmwmA. Let X be a WA-ANR and let j: X— U denote the inclusion.

Then given a compact subset K of X, there is a positive real number ex such
that for each positive & < ex and for each e-retraction r: U—>X

JeoTwofuols=Jsols: B(K)>R8(U),

where i: K—>X is the inclusion.
If, in addition, X satisfies condition X, then 7. o fy o tg = iy.
Proof. Since K is a compact subset of U, there is an ex > 0 such that
Be(K; ex) CU. Take a positive e < ex and an e-retraction r: U>X.
Then for ¢ X, d(jor,oji(2),] oi(w))= dr (s), z)< ¢ and hence the
segment P, is contained in U. Thus j o4 is homotopic 0 jor, o o4
and the induced homomorphisms are equal.
Fundamenta Mathematicae, T. LXXV B 5
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When X satisfies condition J, (5.1) implies that 7 o jy o 4, = 44, Q.E.D.

There is no generating theorem in [7] which applies directly to give
the proof of Theorem 2. However, the method of proof is analogous to
that used in [7].

THEOREM 2. Bach WA-ANR satisfying condition 3 is an MA-space

(rel. to Jn) and hence also a A-space.

Proof. Let X be a WA-ANR satisfying condition X and let F: X X ‘

be a compact admissible map (rel. to dyr). Pick a compact set K in X
containing #(X). Let Gy, ..., G, be an admissible sequence for F. We
have the commutative diagram, where the iz’s are inclusion maps and
each G iy defined by G%.

Gn—1 G

X Oy B Oy &y
N T 0 4
G,;\ )

Gy(X) in
\ -
N
G,y . Gy(X)
an
K "k

. Now ex is determined by (5.2) and for each e-retraction r: U=>X
With ¢ < égyjeioGo..0oGior,: U>U is a compact admissible map.
sme.e U is an ANR, it is an AMA-space (see (5.5) in [7]) and hence
]*Ioz* ° ;.'o .- o G o7, has finite type. Then by Lemma (2.5) of [7],
G oo 0 G 074 0y 0 iy also has finite type and their Lefschetz numbers
are equal. By (8.2) Gruo ..o @loruofyoiy= Gra o0 Gu o iy, Apply-
Ing (5.2), [7] again, 4x 0 Gpe o o= Guo .. o @y has finite type and
A(@ oo o) = A(Jucix o Grao o0 Gy o 7). .
Suppose that Gy, ..., &, is an admissible sequence for # and that
j/I(Gﬂ. °...o Gp) # 0. We show that F' must have a-fixed point. For each
mt?ger_ n fvith In<ex, let r,: U>X be a 1/n-retraction. Then
A(js oy o G oo G © Tye) # 0. Let 7, be a fixed point for jodo G o ...
e Gyor, and let =z, =7,(y). Then Yp€joio@o o &, o;’b(y )
=jolo r,?(y,.) = F(za) CE. Moreover, d(zy,,ys) = a(ra(yn) , Yu) <n1/17;.
Thus {y»} is a sequence in K and has a subsequence converging’to Yo in K
The corresponding subsequence of {zn} also conve \ce o

; rges to y,. Hence we
have a sequence of terms (24, ¥,) in the graph of F converging to (g, ¥o)-
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But since F is u.s.c. the graph of F is closed and hence contains (¥, ¥o);
thus ¥, € Fy,). Q.E.D. . .

Proof of (5.1). Suppose that j«o) =0, ju: H{(X)—>H(U). Then
there are compact sets K, C X and K,C U with K,CEK, and x ¢ H(K))
such that

BEAN
1‘1? 1\5:

K, " > K,

ie(%2) = o and ji(x) == 0. (The construction of H as a direct limit assures
the existence of K,.)
Applying condition X, there are e-retractions r,: U-X for each

£>0 such that K=K, U Sl r(K,)) is a compact subset of X. The

remainder of the proof parallels (4.1). We show that » projects to 0 in H(EK)
under the homomorphism induced by the inclusion K, - K; then x projects
to o=10 in ﬁ(X). Take & >0 such that Be(K; &) C U. Take a positive
integer n, with 1/n,<< & and for each n = m, form the compact set Vi
as in the proof of (4.1). Then K = [\ V, and H(EK) = lIim{H (Va)}pon,
n>ma -

It suffices to show that i,.(x) = 0 for each n > n,, where i,: K,—Vy is
the inelusion.

We have the 1/n retraction 7, = U—>X and r(K,) CKCV,. Let
7.: K,—~V, be defined by r,,. Then for z in K, d(i,(2), ,, « '(2)) = d(a, r,(2))
< 1fn and P,, s CV,. This implies that 4, is homotopic to 7, 04" and
hence 7,.(x) = 7. o ju(z) = 0. Q.E.D.

(5.3) Remark. Several unanswered questions remain. A ecrucial
point is whether j,: J6(X)—3(U) is a monomorphism. To prove that j, is
a monomorphism in (5.1) it was necessary to add condition X; but in
doing so the results could be extended from the category of A-ANR’s
to that of WWA-ANR’s. Can (5.1) be proved if condition X is weakened
6r perhaps omitted entirely? Lemma (4.1) draws a weaker conclusion
than (5.1), but it is sufficient for our purposes. Can (4.1) be used to show
that in fact kerj, = {0}? Can (4.1) be extended to include multi-valued,
admissible, compact maps F: X--X? An affirmative answer to either
question will assure that A-ANR’s are MA-spaces.

Finally, we remark that if X is a compact A-ANR, then condition
X is automatic and Theorem 2 implies that X is an M -Lefschetz space
(Def. (8.3), [7]). J. Jaworowski proved this result in [3] when considering
only acyclic maps.
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Epireflections in the category of T,-spaces*

by
L. D. Nel and R. G. Wilson (Ottawa, Ont.)

A T,-space with the property that every non-empty irreducible
closed set is a point closure will be called a pe-space. It is shown
that the pe-spaces form an epireflective subeategory of the category
G, of all T,-spaces, generated in B, by any pec-space which contains
a copy of the Alexandroff dyad.

A larger simply generated, epireflective subcategory of B,—the
fe-spaces—is introduced and it is shown that an fc-space is an invariant
of its lattice of real-valued lower semi-continuous functions. As a
preliminary it is shown that equalizers in G, correspond to ‘“front-closed”
subspaces.

1. Preliminaries. The set of continuous maps from X to ¥ will be
denoted by (X,Y). The closure of 4 in X will be written clxA (or cl4
when no confusion is possible) and for z ¢ X, cla means cl{z}. B will
always denote the T,-space obtained by endowing the real line with its
lower topology (i.e. the topology having as non-trivial open sets those
of the form {reR: z >a} acR).

Let X be any T,-space. One can define a second topology on X —the
front topology — by specifying the front-closure operator fcl, as follows:
refcld means that for any neighbourhood N of #, N nclen A # @.
The name is motivated by the fact that for A C R, fel4 is obtained by
adjoining to 4 those points in cl4 which lie “in front” of some points
of A. Tt is easy to verify that fel is a Kuratowski closure operator. This
topology is the same as the b-topology "of [6].

‘We note in passing that the front topology on X is diserete iff X is
a T'p-space (see [7]) and that if X is a non-discrete T,-space then the
front topology is strictly larger than the original topology.

2. Equalizers and extremal subobjects in the category of 7'-spaces. The
category of all T-spaces with continuous maps will be denoted by G,.

* This work was supported in part by the National Research Council of Canada
(Grant A5297).
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