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Logical connections between some open problems
concerning nil rings

by

Jan Krempa (Warszawa)

Introduction. As it is well known the question whether every nil ring
is locally nilpotent has been negatively solved by Golod and Safarevid [4],
[5]. There are still many open problems concerning nil rings and radical
rings (in Jacobson’s sense). We shall formulate some of them and we
shall investigate the interrelations among them.

Amitsur [2] has formulated the following problem.

P,. If B is a nil ring, is the polynomial ring R[] a radical ring?

The next problem is that of Koethe [8].

P,. If a ring R contains a one-sided nil ideal 4, iz A contained in
a two-sided nil ideal of R?

If R is a ring, then by R, we dencte the ring of n X n matrices over .
Let us formulate the following problem:

P,. If R is a nil ring, is R, also nil?

For algebraic algebras over a field this problem has been formulated
by Jacobson [T7]. .

Herstein [6] has asked the following question:

P,. If for every element 2 and y of a ring B we have (zy—yz)" = 0
for some 7, do the nilpotent elements of R form an ideal in R?

To formulate the next problem, suggested by Professor 8. A. Amitsur,
we shall introduce the following definition.

DrrIxiTioN. We shall call a ring R an absolutely nil ring if for every
n > 0 the ring R[#;, ..., Za] 0f polynomials in commutative indeterminates
Byy .eny £ is a nil ring.

If R is an algebra over an infinite field ¥, then R is absolutely nil
if and only if R is an LBI-algebra over F' (Amitsur [1]).

Any locally nilpotent ring is of course absolutely nil. One can verify
that the examples of non-locally nilpotent nil algebras constructed by
Golod [4] are absolutely nil algebras.
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P,. If R is a nil ring, is B an absolutely nil ring?

This problem could be weakened as follows.

P,. If R is a nil ring, is E[«] also a nil ring?

Finally, we formulate the two last problems.

P,. If R is a finitely generated ring, is the radical of B a nil ideal in R?

For algebras this problem has been mentioned in [7]. ‘

DreFINITION. We shall call a ring B a weakly nil ring if there is such
a multiplicatively closed subset 8 of nilpotent elements from R that each
element of R is a finite sum of elements from §.

One can verify that the semigrup algebra of the Morse semigrup [7]
over any field is a finitely generated weakly nil and not radical algebra,.

Pg. If B is a finitely generated radical weakly nil ring, is B a nil ring?

For algebras over a nop-denumerable field Amitsur [1] has positively
solved P,, Py, Py, whence also Py and Py, and P,, whence also Pg. It
will be shown that P, has also a positive solution for such algebras.
Therefore it seems reasonable to ask the questions Py, ..., Py for algebras
over & field F. Problems thus formulated, which we investigate later,
will be denoted by P.F, ..., PyF, where in the problems P,F and P,F,
instead of finitely generated rings, we consider finitely generated algebras
over the field F.

TaeorEM 1. Lt B be o ring. Then the polynominal ving R[#] is radical
if and only if the mairiz ving Ry is nil for every integer n > 1.

Proof. Let R{«] be a radical ring. Tt is well known [7] that the ring
(R[2])a 1s also radical for any n > 1. But it is not difficult to check that
(B{#])n = Ra[2], whence the ring R,[z] is radical. Now, applying Amitsur
result [2], we find that R, is nil.

Conversely, let us assume that the ring R, is nil for any »n = 1.
Let

= fczzmi e Rlx].

i=1

Let us take the formal power series

gl) = Y'biat ¢ R[[4]],
where -
bh=ua,

i-1
1) by=a;+ Zai—jbf for 2<igm,
j=1

bi = Zam+1~1bf—-m—1+7 for i>m.
j=1
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Then
(2) qlx) = p(x)+p(2)gle) -
Now we shall find such a matrix € = (¢y;) ¢ R that for any &> m

m
(3) bipr= D Cisbp iz, i=1,.,m.
i=1

The construction of C will proceed by induction on 7. For i = 1 we define

cU_aM_1 —js J=1,..,m
Then by (1)

m
bk—H Z ny1-j bk_m i= _S: et bk—m+1 -
=1

Let us assume that we have already defined the elements ey for i<l < m,
j=1,..,m We put

o= Za,_ie,-j for 1<j<l,

-1
Y .
€= Qpu_jiy+ 5 a_;e; for o mzjl.
i=1

Then

~
|
-
|

1 1

Mgz ubl m+1'T'

E'j

m
Z“zibk_mﬂ =
i=1 1

-1 m
Zaz—iciibk—m+i+ Zam—ﬁ'+lbk~m+7‘

1=1 j=1

-
-
[

w,

+

'Ms

e

1=
-1

- Zaz— Zcigbk—m+7+2am—-g+l bk—m—{-y

f=1
But by the inductlon assumption we get

-1 m -1 m
Za1~i2 Cijbrmys = 2 OG_ibpys= Z Cpn1-sVesz-m14s -
{=1 j=1 i=1 8=m—I1+2

Moreover,
m—i+1

m
Zam—-i-i—lbk—m-l—i: D) Grosbrstmorst
=1

j=1

Therefore, by (1),

Zol;l'bk—m—}-y y“mﬂ Drrimm—1rs = Vg1
j=1 s=1
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Now let us consider the matrix D = (dy) €R<m+; , where d; = ¢,
for i,j=1,0ym dyp= b, for i=1,..,m and dy.,;=0 for
j=1, .., m+1. We shall prove that for any 1> 1

4) Fiomtr = ba-nmas for i=1,..,m

and
frrtmer = 0,

where F = (fi;) = D.
We shall proceed by induection on I. For I=1 we have
fimer=Qimp=0; for i=1,..,m

and

fm-i-l,m—)—l = d1n+1,m+1 = 0 .

Let us put G = (gi) = D' Since F = D'= D-D'", we have

Mm+1 )
fz',m+1= Zdi'sgs,n;+1a 7'217 '“)m“l‘l'
§=1 .
But by the induction assumption we have
Go,mi1 = bgsmys  JOT  8=1,..,m
and
Im+imer = 0.

Therefore
m m
fv‘;m+1‘= 2 dz‘sb(l—-ﬂ)m—}-s = Z 6isb(l—1)m—m+s .
s§=1 s=1

Now, applying (3), we obtain

fomir=bg-nymes  TOr i=1,..,m.

Moreover,
m+1
Jnttmer = deﬂ,sgs,mﬂ =0,
s=1
since

Auirs =0 for s=1,..,m41.

Since R, is nil for any », we have F = (fi) = D' = 0 for some inte-
ger . Thus by (4) we obtain

(5) Sfimi1= bpgmes=10 for 4= 1,..,m.
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We shall prove that for any r > p, where p = (I—1)m, b, = 0. We shall
proceed by induction on r. Applying (3), we have b, = 0 for p < r < p+m.
Now let us assume that b, = 0 for r < s, where s > p+m. Applying (1),
we get . :

m

\
bs = a7n+1—jbs—m—1+i .

1

]

7

But for j =1, ..., m we have s >s—m—1-4j > p. Then by the induction
assumption b,_,, ,,;=0, j =1, .., m. Therefore b, = 0. Thus we have
proved that g(x) ¢ R[«], which means that the polynomial p(x) is quasi-
regular in R[z]. Therefore the ideal #E[«] is radical. Since R is nil, the
ring R[z] is also radical.

THEOREM 2. For any i =1,2,3 a positive solution of the problem P;
implies a positive solution of P;. ., where i-+1 is taken mod3.

Proof. Let us assume that P, has a positive solution and let 4 be
a one-sided nil ideal of a ring R. Then, by assumption, A[z] is a one-sided
radical ideal of R[x]. Therefore A{z]CJ(R[]), where J(R[z]) is the
radical of R[z]. Amitsur [2] has shown that J(R[«]) = B[z], where B
is a npil ideal of BE. Thus A[«]C Bfz], whence 4 C B.

Now let us assume that P, has a positive solution and let R be a nil
ring. Let A’ be the set of all such matrices (ry) € B, that ry=0,j=1,2
and let 4" be the set of such (ry) e R, that rj=0, j =1, 2. I{ 0" is the
set of such (ry) e A" that r; = 0 and €' the set of such (ry) e A’ that

73, =0, then (= ("2 =0. Since the rings A'j(}” and A”/G”' are iso-
morphie to R, A’ and A" are right nil ideals of R,. By assumption there
are such two-sided nil ideals B’ and B' of R, that A’CB’, A”CB".
Sinee B’+-B" is a nil ideal of R, and 4’4+ A" = R,, R, is a nil ring.
Finally, let us assume that P has a positive solution and let R be
a nil ring. At first we shall prove by induction on n that the ring Ry, is nil.
This is true for n = 1. Since Ryniz = (Bon)y, Byns i8 nil if Ry, is. Since any
matrix ring R, is isomorphic to a subring of the ring Ry, B; is nil for
any k. Now, applying Theorem 1, we find that R[«] is radieal.
TaeoREM 3. A positive solution of P, implies a positive solution of P,.
Proof. Let us assume that for any elements # and y of a ring R
there is such an integer »n that (zy—y2)® = 0. We shall adopt Herstein’s
idea [6] to prove that there are no nilpotent elements outside K (R),
where K (R) is the maximal nil ideal (Koethe radical [3]) of R. Without
loss of generality we can assume that R is K -semisimple. Let 2 be a nil
element of R, and let m be the smallest positive integer such that 2™ = 0.
Let us suppose that m 52 1. Then a = 2™ * 52 0 and a®* = 0. For any r ¢ B
there is such an # that (ra— ar)® = 0. Multiplying this on the left by ra,
we get (ra)*™! = 0, whence Ra is a left nil ideal of R. If 4 is a left ideal
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of R generated by the element a, then 4%C Ra. Thus 4 is a non-zero left
nil ideal of R. Now, by assumption, 4 is contained in a two-sided nil
ideal B of R, which is impossible since B is K -semisimple. Therefore
m=1, ie. z=a'=0.

ProposrrionN 1. Problem Py has a positive solution if and only if P,
has a positive solution.

Proof. Let us assume that Pg has a positive solution and let B be
a nil ring. We shall prove by induction on » that Bl#, ..., #4] i3 also nil. By
agsumption K[z,] is nil. Since therings B[z, ..., @,] and (Elw,, ..., 2, ,1)[z,]
are isomorphic and since by the induction assumption B[z, ..., x,_,] is
nil, Blz,, ..., 2x] is also nil.

The converse implication is obvious.

THEOREM 4. 4 positive solution of Py implies a positive solution of P,.

Proof. Let R be a nil ring. At first we shall prove that the polynomial
ring R[] is radical. Let a = (ay) € Bx. By A we denote the subring of R
generated by the elemients ay, 4, =1, ..., n. Since 4 ig nil, 4, is radical,
a5 is well known [7]. Let S be the set of all matrices from A, which have
at most one non-zero entry. The set S defined in this way is of course
& multiplicatively closed set of nilpotent elements. Therefore A, is
& weakly nil ring.'But, on the other hand, 4, is finitely generated since
4 is finitely generated. Hence by assumption 4, is & nil ring. Since a ¢ 4, ,
a is nilpotent, which means that R, is a nil ring. Now, applying Theorem 1,
we find that the ring R[z] is radical. .

Now we shall show that every polynomial

f@)=e+eazt .. +ena” < Rlz], n>1
is nilpotent. A
For any integer i > 1 we have

i—l=ngli)+r, 0<r<n.
Besides, we put

g(0)=0.
It i3 easy to see that for any non-negative integers ¢ and j we have
1 9(i+7) < q(&) +q(j)+1.

Let ¢ be the subring of B generated by the elements ¢, ¢, ..., Cs.
Now we define the set T of such polynomials 7 (z) = d(,'—]- Gz dyat
e C[#] that for any i, 0 <i <k, d; ¢ QU941 Using (1), it is not difficult
to check that T is a subring of ¢ [#] and f(=) e T.

Now we shall show that the ring 7, — T ~ zR[x] is radical. Let
9(2) = a,2+ ...+ ax 2" be a polynomial from T;. Since, as we have already
shown, R[] is radical, 2R[z] iy also radical. Therefore there is such an
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h(z) = bz+...+ba' e 2 R[x] that h(z)= g(x)+g(z)h(z). Then, as we
have already mentioned in the proof of Theorem 1,

i~1
@) i=at+ e b, for 1<i<k,
i=1
k
3) b, = Za;kﬂ_jb,.-k_l” for i>k.
i=1

We shall show by induction on ¢ that b; e 0%9+1, =1, ...,L For i=1
by=a, € (L Tf 1 <i < k,thena, ;e Ol for j=0,1,...,i—1 and,
by the induction assumption, b; e %71 for j =1, ...,i—1. Thus a,_;b,
€ CU4 for j=1,..,4—1 since by (1) we have ¢(i)-+1 < q(i—j)+
~+¢(j)+2. Therefore, by (2), b; e C%9¥%. If, however, i > k, then by the
induction assumption b;_;_,, ;e CFFIENEL for 1, ..,k Thus
Byr—jbipapj€ O j=1, ..k, since, using (1) again, we have g(i)+1
< g(k+1—3j)+q(i—k—1+5)+2. Therefore, by (3), bs e C%¥, Thus we
have proved that h(x)e T,, which means that the ring 7T is radical.

By the isomorphism theorem the ring T/7; is isomorphic to a subring
of the nil ring R. Since T, is radical, T is also radical.

Let 8 be the set of all monomials ax’e T, 1= 0,1,.. The set §
defined in this way is of course a multiplicatively closed set of nilpotent
elements from T. Moreover, every polynomial from T is a finite sum of
monomials from §. Therefore 7' is a weakly nil ring. )

Now we shall show that T is a finitely generated ring. Let 7' be the
subring of C[z] generated by the elements o', i,j=0,1,...,n. It is
obvious that 7" C T. To prove the converse inclusion it is enough to show
that 8 C7". Let az®e8. We shall proceed by induection on g(i). If
q(i) =0, then a e C since i < n. Hence a is a finite sum of elements of
the form mey, ... ¢;,, where m is an integer and 0 < by <nforj=1, ..,p,
p>1. Then as’ is also a finite sum of elements ey, ... ¢, Since
Ctyy e3 Cppy € T and mey @' € T', we have az’ < T. Now let us assume
that g(i) > 0. Then a « (%7, whence 6 = ¢,y ... +€a @y, Where a; ¢ (29,

n
j=10,1,..,n. We have az’= } ¢;a"a;z" ™ Then c¢;2" ¢ T' and by the
=0
induction assumption a;z* " ei T' sinee g(i—n)= g(i)—1. Therefore,
ax' e 7', which means that §C T".

Thus we have proved that T is a finitely generated, radical, weakly
nil ring. By assumption T is a nil ring. Since f(x) ¢ 7, the polynomial
f(#) is nilpotent, which means that R[z] is a nil ring.

Using all the theorems proved above, we obtain the following

result. ) '
. TEEOREM 5. A positive solution of Py implies a positive solution of Pi,

i=1,..,6.

9 — Fundamenta Mathematicae T, LXXVI
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Proof. By Theorem 4 we get a positiv.e solution of P, Wh%ch
obvioﬁsly implies a positive solution of P;. Using Theqrer{a 2, we zmque
at a positive solution of P, and P,. Then Theorem 3 pr‘owdes a positive
solution of P,. Finally, by Propesition 1, we get a positive solution of P,
from a positive solution of Py.

Let F be a field. As we have already agreed, by P;:F we understand
the problems P;, i=1, ..., 8, formulated for algebras over ‘F. The
Theorems 2, 3, 4 and 5 could therefore be interpreted as theorems on
connections between the problems P:;F, i=1,...,8. The connections
between the problems P;F and P;, ¢=1,...,6, will be studied in
Theorem 6. ‘

As we have already mentioned for a non-denumerable field F
Amitsur [1] has positively solved P,F, which obviously implies a positive
solution of PyF. Now, applying Theorem 5, we obtain positive solutions
of P,F, ..., PeF, which has also been known to Amitsur [1].

THEOREM 6. For any 1= 1, ..., 6 the problem P; has a positive solution
if and only if the problem P;F has a positive solution for every field F.

At first we shall prove two lemmag. For convenience, by K(R) we
ghall denote the maximal nil ideal (Koethe radical [3]) of a ring R.

LemwA 1. If K(R[x]) % R[z], then there is such a prime ideal P of R
that the ring (B]P)[a] is K -semisimple. :

Proof. Let f(z) be a non-nilpotent element of R[«]. By- Zorn Lemma
there is such a maximal ideal P of R that f™¢ Plx] for n=1,2,..
We shall prove that P is prime. Let 4 and B be ideals of R properly con-
taing P. Then f? « A{x], f? ¢ B[#] for some p and ¢. Thus f*+9 ¢ A[z]- B[x]
= {4-B)[#], which means that A-B is not contained in P. Therefore

P ig prime.

Amitsur [2] has proved that E((B/P)(a])= (O/P)[4] for some ideal
C1p of BIP. 1t 0 P, then f*< O[s] for some k. Therefore (f¥)-c P[s]
for some I, ie. f*eP[a], which is impossible. Therefore ¢ = P, ie.
(BIP)[2] is K-semisimple. ,

TmawA 2. Let a be such an element of o ring R that o ¢ K(R). Then
there is such a prime ideal P of R that a ¢ P and E[P is K -semisimple.

Proof. The ideal 4 generated by a is not nil, therefore 4 contains
2 pon-nilpotent element b. By the Zorn Lemma there is a maximal
ideal P of E excluding b", n=1,2, ..., and containing K (R). It is not

difficult to check that P is prime and R/P is K - semisimple.

Proof of the theorem. We start with some general remarks.
By O(R) we denote the centroid of a ring R, i.e. the ring of such endo-
morphisms a of the additive group B* of R that a(zy)— (az)y = @(ay)
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for every #,y ¢ B. For any o€ O(R) R as well as kera are ideals of R.
Now let us assume that R is prime. Since for a e O(R) kera-ak = 0,
then either kera = 0 or a = 0. The ring C(R) has no zero divisors since
aR-BR = ofiR?, a, e C(R). Since ker(af— Ba) DER*s£0, we have af—
—pfa=0, i.e. O(R) is commutative. Now let F be the field of quotients
of C(R). Then E®cF, where (= C(R), is an algebra over F. Since
ar =0, ael, xR implies a= 0 or =0, the ring R is isomorphic to
the subring of E®c F consisting of the elements which ean be written
in the form 2®c1, # ¢ B. Since F'is the field of quotiens of €, each element
of E@cF can be written in the form #®7, feF. If R is 3 nil ring, then
R®cF is a nil algebra over F. )

Let us assume that the problem P,¥ has a positive solution for any
field F' and let A be a one-sided nil ideal of a ring R. Let us suppose
that 4 is not contained in K (R). Then by Lemms 2 there is such 2 prime

ideal P of R that 4 is not contained in P and the ring B’ = R]P is
K -semisimple. The ring R’ coptains a non-zero one-sided nil ideal
A+P/P= A’. Now let F be the field of quotiens of C(R’). Then the
algebra B'®¢F over F contains a non-zero one-sided nil ideal A'®cH.
By assumption A'®cF is contained in a two-sided nil ideal B of R QcF.
Then A’ C B ~ R'. Therefore B~ R’ is a non-zero nil ideal of K -semi-

" simple ring R’, which is impossible.

Now let us assume that P,F has a positive solution for any field F.
By Theorem 2 the problem P,F has a positive solution for any F, there-
fore — as we have just proved — P, has a positive solution. N ow, applying
Theorem 2 again, we get a positive solution of P;. Applying verbatim the
same arguments, we conclude that a positive solution of P,F for any
field F' implies a positive solution of P,.

Let us assume that P,F has a positive solution for any field F, and
let B be a ring in which for any ,y ¢ R (zy—yx)* = 0 for some n and
the set ¥ of nilpotent elements of R is not an ideal in R. Then there is
a nilpotent element a ¢ K(R). Applying Lemma 2, we have such a prime

ideal P of B that a ¢ P and the ring B’ = F/P is K-semisimple. Now we
shall consider the algebra R'®¢F over F, where 0 = C(R') and F is the
field of quotiens of €. One can easily verify that the commutator of any
two elements from R'®cF is nilpotent. Therefore by assumption the
set B of all nilpotent elements from R'®cF is an ideal. Then B ~ R
is the set of all nilpotent elements from R’. Since 0 == a+PeR',BnRis
a nop-zero nil ideal of the K -semisimple ring R’, which is impossible.

Now let us assume that P,F has a positive solution for any field F
and let R be a nil ring. Suppose that R{x] is not nil. Then by Lemma 1
there is such a prime ideal P of R that the ring RTa] is K-semisimple

where R’ = R/P. Now we can consider again the algebra E' ®c¢F, where
9%
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¢ = O(R’) and F is the field of quotiens of O.- Thg algebra R'® oF ,is ni},
whenee by assumption (R'®cF)[«] ig also. n11.. S}nce, hlowever, R[] is
contained in (R'®cF)[x], R'[«] is nil, Whmh.ls 1mpo§s1b1e. -

Finally, let us assume that P, F has a positive solution for any flelc-l I,
Then obviously P has a positive solution, Whence—_——zbs we hatv.e just
pro%ed above — P, has a positive solution. Now, applying Proposition 1,
we obtain a positive solution of P;.

The converse implications are obvious.
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On interpretability in theories containing arithmetic
by

Marie Hijkova and Petr Hijek (Prague)

0. Infrodaction. In [3], a ZF-formula ¢ was constructed such that

"(ZF,9) is relatively interpretable in ZF but (GB, ¢) is not relatively

interpretable in GB, provided ZF is w-consistent. (ZF denotes the
Zermelo-Fraenkel set theory, and GB the Godel-Bernays set theory.)
This result is generalized in the present paper in two ways: first, we
replace the assumption of «-consistency by the assumption of (usnal)
consistency and, secondly, we replace ZF and GB by an arbitrary couple
of theories related similarly as ZF and GB and containing arithmetic.
Similarly as in [3], our result is an immediate consequence of a general
theorem (Theorem 1) concerning reflexive theories containing arithmetic.
A technical lemma {Lemma 1) coneerning “nice” numerations of recursively
enumerable sets, which is the key device of removing the assumption
of w-consistency, is—in a certain sense— a generalization of the result
of [1] and might be useful also in other connections. Some other con-
sequences of Theorem 1 are listed at the end of the paper. The knowledge
of [3] is not necessary to understand this paper, but the reader is supposed
to be familiar with [2] and with some topics of the recursion theory.

We thank Professor A. Mostowski for his interest and valuable
discussions during the second autbor’s visit to Warsaw in December 1970,

1. Preliminaries. Theories are assumed to be formalized in the predicate
calculus with equality, denumerably many predicates and functions of
each finite arity, denumerably many constants and denumerably many
sorts of variables (there are denumerably many variables of each sort).
A theory is a pair consisting of a language and of a set of formulas of that
language (special axioms), a language being a list of predicates, functions,
constants and sorts of variables. A sort s is subordinated to a sort t in
a theo:y T if T F(Vx*)(Hy") (x* = y') (where x° is a variable of the sort s,
ete.). A sort s is universal in T if each sort of the language of T is sub-
ordinated to s in T. We restrict ourselves to theories having & universal
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