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¢ = O(R’) and F is the field of quotiens of O.- Thg algebra R'® oF ,is ni},
whenee by assumption (R'®cF)[«] ig also. n11.. S}nce, hlowever, R[] is
contained in (R'®cF)[x], R'[«] is nil, Whmh.ls 1mpo§s1b1e. -

Finally, let us assume that P, F has a positive solution for any flelc-l I,
Then obviously P has a positive solution, Whence—_——zbs we hatv.e just
pro%ed above — P, has a positive solution. Now, applying Proposition 1,
we obtain a positive solution of P;.

The converse implications are obvious.
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On interpretability in theories containing arithmetic
by

Marie Hijkova and Petr Hijek (Prague)

0. Infrodaction. In [3], a ZF-formula ¢ was constructed such that

"(ZF,9) is relatively interpretable in ZF but (GB, ¢) is not relatively

interpretable in GB, provided ZF is w-consistent. (ZF denotes the
Zermelo-Fraenkel set theory, and GB the Godel-Bernays set theory.)
This result is generalized in the present paper in two ways: first, we
replace the assumption of «-consistency by the assumption of (usnal)
consistency and, secondly, we replace ZF and GB by an arbitrary couple
of theories related similarly as ZF and GB and containing arithmetic.
Similarly as in [3], our result is an immediate consequence of a general
theorem (Theorem 1) concerning reflexive theories containing arithmetic.
A technical lemma {Lemma 1) coneerning “nice” numerations of recursively
enumerable sets, which is the key device of removing the assumption
of w-consistency, is—in a certain sense— a generalization of the result
of [1] and might be useful also in other connections. Some other con-
sequences of Theorem 1 are listed at the end of the paper. The knowledge
of [3] is not necessary to understand this paper, but the reader is supposed
to be familiar with [2] and with some topics of the recursion theory.

We thank Professor A. Mostowski for his interest and valuable
discussions during the second autbor’s visit to Warsaw in December 1970,

1. Preliminaries. Theories are assumed to be formalized in the predicate
calculus with equality, denumerably many predicates and functions of
each finite arity, denumerably many constants and denumerably many
sorts of variables (there are denumerably many variables of each sort).
A theory is a pair consisting of a language and of a set of formulas of that
language (special axioms), a language being a list of predicates, functions,
constants and sorts of variables. A sort s is subordinated to a sort t in
a theo:y T if T F(Vx*)(Hy") (x* = y') (where x° is a variable of the sort s,
ete.). A sort s is universal in T if each sort of the language of T is sub-
ordinated to s in T. We restrict ourselves to theories having & universal
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sort. Definitions of new predicates, functions, constants and sorts in
" g theory T are additional axioms § of a particular form enriching the
language of T but extending T conservatively; i.e. if (T, 6) is an extension
of T by a definition and if ¢ is a T-formula provable in (T, 6), then ¢ is
provable in T. An interpretation of T in S is a mapping & which associates
with each predicate P, function F, constant ¢ and sort s of the language
of T a predicate P*, function F*, constant ¢* and sort s* of the language
of T such that the following holds true: (1) The arity of P* equals the
arity of P and the arity of F* equals the arity of ¥. (2) If, for any T-for-
mula ¢, ¢* is the formula resulting from ¢ by replacing each predicate P,
fupction F, constant ¢ and variable x° by P*, F¥ ¢, x** respectively,
then 8§ I ¢”* for each axiom ¢ of T. A theory T is inferpretable in S if there
is an extension § of S by definitions and an interpretation of T in 8.

We hope that the reader can imagine an appropriate detailed con-

struction of the formalism ontlined above; one can consult [10], Chapt. T,

Sect. 2 for more details. In particular, interpretations (called direct
syntactic models in [10]) are particular syntactic models and hence
gnarantee relative consistency. On the other hand, our notion of inter-
pretation and interpretability is very closely related to the notion of

relative interpretations and relative interpretability due to Tarski {9]; -

the present notions are obviously equivalent reformulations of the original
ones for the logic with various sorts of variables.

) Peamo’s arithmetic (28 a theory with one sort of variables, no predicate
exeept =, functions ", +, + and the constant 0) is denoted by P (see
e.g. [2] for the axioms of P). A theory T is said to contain arithmetic
if P is interpretable in T. As far as interpretability in T and of T is con-
eerned, if T contains P one can assume without loss of generality that P
is simply a subtheory of T, i.e. that the identical mapping is an inter-
pretation of P in T. (One has only to replace T by a conservative extension
and repame some symbols in the language.) For example, both ZF and
GB contain arithmetie.

If P is a subtheory of T, then the universal sort of P ig & sort of T;
variables of this sort will be called number variables and denoted by x, v, 2
(with or without subscripts) throughout the paper. One hag also the
constant 0 and the terms n = 'G#évs in T and the notions of a rumer-
ation and bi-numeration of a set of natural numbers make sense. Similarly
dor other notions defined in [2]; for example, for every bi-numeration a(x)
of T in T one has the formula Con,, expressing consistency. T is called
reflecive if, for each natural number n, we have T F Oonyp - T is called
essentially reflexive if each extension of T with the same language is
reflexive. Evidently, T is essentially reflexive if and only if, for every

closed T-formula ¢,T Fg->COony,. Note that both P and ZF are

essentially reflexive. (See [2] for references.)
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2. “Nice” numerations of recursively enumerable sets. Lot W be are
a recursively enumerable set of natural numbers. There are (primitive)
recursive relations A such that W = {m; (#n) A4 (m,n)}. Let T be a re-
cursively axiomatized theory containing arithmetic, let 4 be as above
and let a(x, y) be a bi-numeration of 4 in T. Then the formula (Hy) a(x, ¥)
is & numeration of a recursively enumerable set W’ in T, but in general W
and W’ need not be the same; the only thing we can say is that W C W'.
If we assumed T to be w-consistent, we could conclude that W = W’
but we want to avoid this assumption. So let us ask if, given W, there
is @ relation A apd a bi-numeration a(x,y) of 4 in T such that W
= {m; (Hn)A(m,n)} and (Hy)a(x,y) numerates W in T.

LiemumA 1. Let T be a theory containing arithmetic and let T be consistent,
reflexive and recursively axiomatized. Then, for each recursively enumerable
set W of natural numbers, there is a recursive relation A and a bi-numer-
ation a(x,y) of A in T such that W = {m; (Hn)A (m, n)} and the formula
(Hy)a(x,y) numerates W in T.

Proof. Similarly as in [1], it suffices to find one recursively enumer-
able set which is creative and for which our assertion is true. For, let W,
be creative, let W, = {m; (Hn)Adym,n)}, let a, bi-numerate 4, in T
and let (Hy)ay(x, y) numerate W, in T. If W is an arbitrary recursively
enumerable set, then there is a (total) recursive function f such thait,
for all n,n e W iff f(n) e W,y. (See [6].) Since f is recursive, we have
a formula y such that .

(1) Ttk x(—n_z,z)=z=m for all m.
Now, .
W= {m; (E[n)(Hq)(f(m)) =n& Ayn, 0)}
= {m; (E[n)(f(m)) = (n)y & Ao{(R)o, (n)l)} .

A(m,n) = flm) = (n)y & Ay((n)o, (n),)
and
a(x, y) = z(x(y)3) & ao{(y)a: (¥)3) -

Evidently, a bi-numerates 4 in T and it is eagy to show (using (1) and
the properties of ay) that (Hy)a(x,y) numerates W in T.

Hence let us define an appropriate creative set. In fact, we take
for W, the set D’ defined in [1], p. 41. In more detail, if

A = {n; (@p)[To{(n)e; 7, 1) & (Vg < p) 1To((n)s, 7, g} 5

B = {n; (Eg)[Tof(n)s, 7, 4) & (VP < ) 1T4((m)o, 2, 2]}
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are effectively inseparable sets defined by Kleene [5] and if 7,(x,y,z)
is & PR-formuls pi-numerating Ty in P, we pub

Wix) = (@) ]e((®)5 % ¥) & (V2 <7) (¥, %, 2)]

and
W, = {m; TE® ()} = {m; (En)Prfn( TP(M), n)} .

(S0 Ag(m,n) = Prfg(T1¥(M), n).) Obviously W, is creative (cf. [1]).
By [2] 8.6, there is a bi-numeration f*(x) of T in T such that T F Cong.
Put o, y) = P;fﬁ*(S})Ez(-:@), y) and observe that TF afm,y)
=P, [ P(m), 7). (Note that ay(x,y) = Prin(T1¥(x),y) in’the no-
tation of {4], 1.4.) Evidently, a, bi-numerates Ay in T. (See [2], 4.4 and
p. 57.) It remains to show that (Hy) ay(X, y) numerates W, in T. If m e W,
then obviously T F (&y)ay(#,y). To prove the converse it sufficeg to
show T b Pr,{ 1¥(m))~ 1% () for each m. ¥(m) is equivalent to an
RE-formula in T, whence T F ¥(7)->Pr(¥(m)) by [2], 5.4. (Cf. also
[4], 1.7 if necessary.) Consequently :

T +{Pro{ TP (M) & ¥ () > 7 Oonge,

which implies
T F Pre{ 1% (M) > 1% (W) ,
qe.d. '

3. Interpretability in essentially reflexive theories.

Levwa 2. Let T be a theory containing arithmetic and suppose T to
be recursively axiomatized and reflevive. Then, for any T-formula ¢, (T, ¢) is
interpretable in T if and only if T F Conyy gy, for each n.

Proof. The implication < follows by [2], 6.2 and 6.9. Conversely,
if {T, ¢) is interpretable in T, then for each = there is an m such that
(T,¢) } » is interpretable in T } m; hence the implication =- follows
by [2], 6.4 and by reflexivity.

THEOREM 1. Let T be a theory containing arithmetic and suppose T to
be recursively amiomatized and essentially reflemive. Let W be a recursively
enumerable sel of T-formulas such that ¢ ¢ W implies Con(T, ¢). Then
there is a T-formula ¢ such that (T, ) is interpretable in T and ¢ ¢ W.
(Equivalently, denote by 3p the set of all T-formulas such that (T, ) is
interpretable in T and by Ty, the set of all 'T-formulas refutable in T. If
Con (T), then there is mo r.e. set ‘W containing 3, and disjoint from Fy.)

Proof. The theorem is trivial if T is inconsistent, so suppose that
T is consistent. Let W be given and let 4, « be as in Lemma 1. Let § be
an arbitrary bi-numeration of T in T. Using the diagonal Lemma 5.1
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of [2], we can construct a formula ¢ (containing only number variables)
such that

T kg = (V3)(a(@,5)> T1Cons gpy)

(where f(x) v {z} } v is the formula (f(x)vx =1z)&x < 7).

(a) Con(T,p). Otherwise we have TF (Hy)e(p,y) and therefore
@ ¢ W, which implies Con(T, ¢).

(b) @ ¢ W. Otherwise we have A(p,n) for some n; then Tt a(p, n)
and (T, ¢)F 71C0ong ;5 But since (T, ¢) is consistent and reflexive
(by the essential reflexivity of T), we have (T, ¢)F Cong,iny, which
implies that (T, ¢) is inconsistent, contradicting (a).

(¢) (T, q) is interpretable in T. By Lemma 2 it suffices to show
T+ Cong gy for each z. Since (T, )t Cong,;yyy; by the essential
reflexivity of T, it suffices to show (T, Tl¢) F Cong grz- But Tlp is
equivalent in T to (Hy)(a(p,y) & Cong zny)- Sinee ¢ ¢ W by (b) and
since a bi-numerates 4 in T, we have T} TJa(p, n) for each n. Hence
we have (T, “1¢) F (Hy)(y > 7 & Cong gy) for each n, which implies
(T, ¢} F Cong_gzyp5- This completes the proof. . :

(An infinitistic remark.) If all the T-provable P-formulas are true
(in the natural model of P) — e.g. if T is P — then the formula ¢ constructed
above is evidently true since ¢ ¢ W and therefore ~1(Hy)alp,y) is true.

4. Interpretability and finitely axiomatized extensions of theories containing
arithmetic.

LemmA 3. If T is finitely axiomatized, then the set of all T-formulas ¢
such that (T, @) is interpretable in T is recursively enumerable.

The lemma is more or less evident; to prove it in detail one must
gshow the recursive enumerability of the following predicates: (1) The
predicate Def(s, T), saying that the formula & is a definition of & new
symbol (a predicate, funetion, constant, sort respectively) in T. (Def(é, T)
says that & has a certain syntactic structure and that something is
provable in T). (2) The predicate Ext(T’, T), saying that T’ is an extension
of T by definitions such that the sequence of defined symbols forms
a language L’ of the same type as the language L of T. (3) The predicate
Intp(T', T, ¢), saying that Ext(T’, T), ¢ is a T-formula and all the axioms
of (T, ) understood in the sense of the language L’ are provable in T.:
Then our set is {p; (A1) Intp(T', T, )}, T being fixed; this set is obviously
recursively enumerable.

THEOREM 2. If T is a consistent recursively axiomatized essentially
reflexive theory containing arithmetic and S is a consistent finitely aviomatiz-
able extension of T, then there is a T-formula @ such that (T, @) is inter-
pretable in T but (S,q) is not interpretable in S.
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Proof. Put W= {p;p T-formula & (S, ¢) interpretable in 8}. By
Lemma 3, W is recursively enumerable (W is the intersection of a primi-
tive recursive set and a recursively enumerable set). Since S is an extension
of T, Con(S, ¢) implies Con(T, ¢) for each T-formula @; and since S is
consistent, the interpretability of (S,¢) in S implies the consistency of
(8, ¢). Hence, by Theorem 1, there is a T-formula ¢ such that (T, ¢) is
interpretable in T Dbut ¢ ¢ W, i.e. (S, ¢) is not interpretable in 8.

Remarks. (1) Let T be as above and let 8 be & conservative finitely
axiomatizable extension of T. Then, for each T-formula ¢, (i) Tt
ift 8 by ; consequently, (ii) Con(T, @) iff Con (S, ). But, by the preceding
theorem, the demonstrability of Jon(T, ¢) by means of an interpretation
of (T, ¢) in T is not the same as the demonstrability of Con (S, ¢) by means
of an interpretation of (8, ¢) in 8. In particular, one can take ZF for T
and GB for 8 (assuming that ZF is consistent); see [8] for a finitary proof
of the fact that GB is a conservative extension of ZF. Following the
remark in [7], p. 90 and using [8], one can construct for various “well
axiomatized” theories their conservative finitely axiomatized extensions;
one can describe the situation generally, but one must replace the rough
description of what & permissible schema is by an inductive definition
of a certain class of primitive recursive functions mapping formulas into
formulas, such that each of these functions defines a permissible schema.
Then “well axiomatized” means “axiomatized by a finite number of
single axioms and finitely many permissible schemas”. On the other
hand, it is not necessary to restrict ourselves to theories with one sort
of variables. -

(2) Let T, S be as in the preceding remark and denote by Jp the
set of all T-formulas ¢ such that (T, ¢) is interpretable in T and by Iq
the set of all T -formulas such that (S, ¢) is interpretable in 8, By Lemmas 2
and 3, 3 is & X]-set, Iy is a I73-set and, by Theorem 1, Iy is not a ?-get.
We do not know whether Iy is a 22-set or even a II?-set. By Theorem 2,
Jp—3g # G5 is Ig— Ty # OF

(3) The formula ¢ constructed in [8] has the form (Vx)(Hy)y, where
v is a PR-formula, as one can easily see. Fven if our present ¢ is more
, complicated, one can verify that it still has the same form. What is the

simplest form of formulas such that there is a @ of that form such that
P € Igp—Igp? )

(4) Bome particular consequences of Theorem 1. (i) Let Jp be the
seb of all P-formulas ¢ such that (P, ¢) is interpretable in P and let
W={p; P+ g}; then Jp—W + 0 (cf. [2], 6.6). (ii) Let (ax) be a ZP-for-
mula and suppose that (ZF, ax) is consistent (e.g. (ax) is an axiom of
large cardinals). Let W = {p; P-formula & (ZF, ax) F ¢}. Then Jp—

-W ;&.Qf. In other words, there is a formula ¢ such that the consistency
of' ¢ with P can be prov

ed via interpretations, ¢ is true in the natural -
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model, but ¢ cannot be proved in (ZF, ax). (iii) Let (ax) be as above,
and let W = {p; ¢ P-formula & (GB, ¢) interpretable in (GB, ax)}. Then
Ip—W # 0. )
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