icm

A characterization of locally compact fields
of zero characteristic

by
W. Wiestaw (Wroclaw)

0. In this note we shall give a characterization of locally compach
fields of zero characteristic which seems to be new. Let us recall some
definitions. A field topology  is said to be locally bounded if there exists
a bounded neighbourhood A4 of zero, i.e. if for every neighbourhood U
of zero there exists another one, V, such that AV C U. For any topological
field F we write G(F) for the group of all its continuous automorphisms.
Moreover, B is called a full topology if the completion # of F in it is
a field. It is well known (see [8], [10]) that the only full, locally bounded,
non-trivial topologies on a field are topologies of type V, that is topologies
induced by Krull-valuations (i.e. valuations taking values in linearly
ordered groups instead of the reals).

I am indebted to W. Narkiewicz for valuable remarks concerning
this paper.

1. The aim of this paper is to prove the following

. THEOREM. Let K be a non-discrete topologwal field. Then the followng
conditions are equivalent:
(1) K is a locally bounded, complete field and for every closed subfield F'
of K, G(I') is finite.
(2) K is a locally compact field of characteristic zero.
(3) K is a finite extension of the reals R or of some p-adic number
field Qp with the usual locally compact topologies.

Proof of the theorem. The equivalence (2) <= (3) is the classical
theorem of Pontryagin—Kowalsky—van Dantzig (see [4], [7], [15]). (8) = (1).
Since every automorphism of R and @, is trivial, G(K) is finite as a sub-
group of the Galcis group G(K/R) or G(K/Q,). Moreover, K is complete
in the locally bounded field topology induced by an absolute value la|
or by a p-adic norm lal,.

It remains to show that (1) = (3).
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Case I. K is not algebraically closed.

A. Suppose K is connected. Every locally bounded, complete ang
connected topological field is topologically isomorphic to R or C (see 191,
[16]). This gives K ~ R topologically.

B. Suppose that K is disconnected and of characteristic zero. Then
K is totally disconnected (see[2], Theorem 1). Let L be a fixed field of G(K ).
From Lemma 2 of [16] it follows that L is closed and the topology & of K
is the product topology induced from L; moreover, L is complete. The
completeness of K implies that ¥ is a full topology and the local
boundedness of G implies that © is induced by a suitable Krull valuation
(see [8], [10]).

Suppose at first that the topology

() B, =BlQ is non-discrete .

Sinee K is totally disconnected, its topology is given by the open =

subgroups of @, i.e. by open Z-submodules in Q. But @ is the quotient
field of the principal ideal domain Z, and so we can apply the following.

LEwvwa 1 (see [3]). Let A be a principal ideal domain and K the quotient
field of A.If Bis a non-discrete field topology on K, then (K, '8) is a topological
field for which the open A-submodules form o fundamental system of

- neighbourhoods of zero if and only if G is the supremum of a family of p- adic
lopologies (p is an irreducible element in A).

Lemma 1 implies now that B, is the supremum of a family of p-adic
topologies. But the supremum of a family of locally bounded topologies
is locally bounded if and only if that family is finite [6]. Moreover, G is
a full topology, and so G, is also full. We claim that our family of topologies
consists of a single element which is a p-adic topology. Indeed, let B, be
the supremum of p;-adic topologies for ¢ — 1,2,..,m. The approxi-
mation theorem for valuations implies that the completion @ of @ in G,
is & direct sum of fields Dy ey Qo2

0~05®...0Q,,.
But G, is a ful‘l topology and so § is a field; thus-m = 1.

We are going to prove that L is an algebraic extension of @,. Suppose
thg cont?a,ry. Let ¢ be transcendental over Q5. Denote by I, the closure
of @(f) in L. We define an automorphism of Qy(t) by the formula:

(1) - die)

g/ g(st)’

where = is a fixed unit in Q,, and o lelp = 1. Let us remark that the

topology B is induced in I, by a non-Archimedean valuation. Indeed,

since Q? C L.topologic?,]ly and p"—>0 in G as n— oo, the get T of all
topological nilpotents in I is non-void, whence open (see [16], Lemma 5).
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Since T is induced by a Krull valuation v, (INT)™* is bounded. From the
Safarevié Theorem [15] it follows now that v is a valuation taking values
in an Archimedean ordered group, i.e. » can be assumed to be a real
valuation. Let us denote this valuation by |a|. We have

[tl = lelplt| = lellt] = let| and so g a)] = |a]

for every @ eQy(t). It follows that ¢, € G(Q,(1)) since g, is an isometry.
Let us extend g, to an automorphism g, ¢ G(L;) by putting, for every
sequence Xnp—>&y € Ly, Tn ¢ Q5(t)

7o) = lim g () .
00

It is not difficult to see (by using the completeness of I,) the independence
of this definition from the choice of {#,}. Moreover, one easily sees that
@, € G{L;). In this way we should have for every unit ¢ an automorphism
@, ¢ G(L,) and distinct ¢’s would generate distinct automorphisms, whence
G(L,) would be infinite, contrary to our assumptions.

Finally we will need the following -

Levma 2. Let E be a separable algebraic extension of F. Moreover,
if B and F are both complete and real-valued fields and the valuations agree
on B, then B is a funite extension of F, i.e. [E: F]<C co.

Proof of the lemma. If [E:F]= oo, then there would exist
a sequence @, ds, ... € B with

Qg § F (A, 85 e5ay)  for  §=1,2,..

The separability assumption implies that with a suitable b; ¢ B we have

F(bj) = F(ay, 0, ..., a;) and, in view of the obvious inequalities

[F(by): F]< [F(by): F1< .. s

we infer that B contains elements of an arbitrary large degree over E,
against a theorem of Ostrowski (see [12], Theorem 3). (If B[F is algebraic,
E and F being valued complete fields, then the degrees over F of elements
of B are hounded.) ’

From Lemma 2 we have [L: @] < oo, whence K is & finite extension
of the p-adic number field Q.

Now we consider the case

(b) B, =B|Q is discrete.

Then there exists an « eI, transcendental over @, since otherwise the
extension L/Q would be algebraic and, as the topology G is discrete on @,
it would remain discrete on every finite (algebraic) extension of @, and
50 on I, which gives a contradiction. If G were discrete on @ (), then the
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closed subfield @(z) of L would have iIfﬁnitely many (continuous)
automorphisms of the form
az+b
= cxtd’

where a, b, ¢, d @, ad # be, which is a contradiction. Hence T is non-
discrete on @ (). But the local boundédness of G implies that G is induced
on @(2) by a real valuation. This results from the following lemma;:

Lemua 3. Let F(x) be a transcendental extension of a field F and G
a non-diserete; locally bounded, full topology on F(w), discrete on F. Then
G is induced by one of the following valuations: ||y, where p(x) e F[x] is
an irreducible polynomial, or |a@l..

(We Tecall the definitions of thege valuations. Let % ¢ F () be any

non-zero element. We put

| 1)
19(@) je

fley _ . wfile)

g~ PO G amd (0 f) =, = 1)

. ?roof of the lemma. As the topology G is full and locally bounded,

it is induced on F(z) by a Krull valuation v: F(2)->TI", where I"is a multi-

plicative linearly ordered group with added 0. Denote by e the unit ele-
ment of I If v(x) >e, then

f(=)

= eleso—dee/  ang
g(@)

=e
() ’

where

o{er*) = v(@)* >v(a) =o(dh) for all k>1

‘Lzld. ¢,d ek, ed#0, since v(x) > ¢ implies v(z)N = v(wN) > ¢ for every
N e N. This Valua,tmn © is non-Archimedean since it extends a trivial
valuation. As for v(a) s v(8), we have

v(a+p) = max (v(a), v(8)),
it follows that
o(f(@)) = vlaye™ + ...+ ap) = v(@™) = o(2)'87  for every f(z)e Fla].
Thus
fl)
”( ()

) — ,D(x)degf—degg

However, if 0<n(r)<<e
<y for ever r
o(h(z)) < e for every h(z) eF[J:] Let v yel by defmltlon), then

Ry={f(@) e Fla]: of(@))<'e}.
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Observe that we must have

Jlw )) N fx) filz)
= 2(p(x where =~ = IV ST

o(5) = @l @~ P9 @

and fi, §; are prime to p (2); p(z) e F'{a] is a suitable irreducible polynomial.

Indeed, since R, is & prime ideal in F[z], it is generated by an irreducible

polynomial p (). So v(p(#)) = e if and only if (%, p)=1 and

o L) o (p(or L) = ol ) =

In both cases the value group consists of powers of a fixed ele-
ment of I

Sinee I is cyclie, its ordering must be Archimedean and so I' can be
regarded as a subgroup of the reals with the usual ordering; hence we
may assume. that v is a real valuation. This proves Lemma 3.

If B is discrete on @ but non-discrete on @(z), then Lemma 3 shows
that B is induced on Q(x) by a real valuation. Then the closure of @ (x)
in I in the topology G has infinitely many continuous automorphisms.
Tn fact, let us extend the mapping x->ax, @ 3 0, a €@, to a continuous
automorphism of @(x) and then to a continuous automorphism of the
closure of Q(z) in L (compare with (a)). )

Hence (b) is impossible and G; =B|@) is non-discrete.

It remains to consider the case

0. X is a disconnected field of a finite characteristic p # 0.

We will show that this case never arises. As before, let L be a fixed
field of G(XK). Obviously L is complete in our topology. There exists an
element ¢ L which is transcendental over the field Zp = Z[pZ since
otherwise no locally bounded non-discrete field topology would exist
in I (see [5], Theorem 6.1). An element e I, transcendental over Zy, can be
choosen in such a way that the topology G, = 6|Z,(x) be non-discrete.
In fach, let L = Zp(B) (#) be the Steinitz decomposition of L, where 5 # (4]
is the transcendental base of I and - is the set of all algebraic elements
of L over Z,($). Suppose at first that B= {b;, by, ..., bn} Is finite and
that the topology G is discrete on every Zy(bs) (j = 1,2, .., m). A discrete
topology is indueed by a trivial valuation vy: )

vo{a) =1 for all a0, v(0) =0.

7B, by ...y bm)
s(bly bz; cery bm)

y=1(pa)<e, yel.

Let ¢ e Zp(B). Clearly, ¢ =
over Z,. Since

o(dbr ... BYm) = oy(d) v (b)

, where r,s are polynomials

v(b) " = 2y(D )™ ... Vg(b )™ =

“for deZpd#0,
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we have o(r(by, gy s b)) = 1 for all non-zero 7, and finally v(e) =1 for
all non-zero ¢ e Zy($H). This implies that B is discrete also on I, which
is impossible.

If % is infinite, then the discreteness of G on every Zp(b), b ¢ B, implies
the discreteness on Zp(®%). This is again impossible since the closed sub-
field Zp(B) of L would then have infinitely many (continuous) auto-
morphisms induced by any permutation of elements b e 3.

Hence let 2 ¢ L be transcendental over Zp and such that G, = B|Z,(z)
is a non-discrete topology. Lemma 3 implies that the topology G, is induced
by a real valuation on Zy(z). By the same lemma L must contain either
the (closed) field Z,(z) of formal power series over Z, or the closure

Z{z} of Zp(x) in L with respect to the valuation |a|,. Let us note, however,

that for every unit ¢ from the valuation ring of our valuation the mapping

x->£2 can be extended to a continuous automorphism of Z,{(a) (or Zy{z}),

" which is impossible since G(Zy<z}) or G(Zp{z}) has to be finite by the
assumption. '

Case II. K is algebraically closed.

In [16] it was shown that if K is a locally bounded, complete
topological field with torsion and a non“trivial G¢(X), then K is topologic-
ally isomorphic to the complex number field. :

We will show that G(K) is always non-trivial. The topology G is
induced in K by a non-trivial Krull valuation since otherwise G(K) would
beinfinite (see[16], Theorem 3). If K is of characteristic p, then the previous
remark implies the existence of an element # ¢ K which is transcendental
over Z, and such that our valuation » is non-trivial on Zy(»). As in C,
case I, it can be shown that this is impossible. Hence K is of charac-
teristic zero.

But then there is an involution in a group Aut(K) of all auto-
morphisms of K (see [1], Theorem 1), i.e. anelement g == 1, g2 = 1. Let L be
the fixed field of the group gemerated by g. Obviously K =’L(i). If L is
complete in our topology, then the topology G is the product topology
induced from L and g is continuous in it since g(a-- 1b) = a-4-ib; a, b e L.
Indeed, if 2, = ,4-iy,~x4iy = 2, then z,~z and y,—y and so g(2,)
->g(z). It follows from a theorem of Miutylin ([11], Theorem 3) that K must
contain topologically either R or @, (for some prime p) because @ is a non-
diserete subfield of K. In the first case K ~ C since R and C are the only
locally bounded extensions of R (see [11], Theorem 5). In the second case the
deg'rfae [K: Q»] must be finite since otherwise there would be a closed
&ubﬁelfi M of K with infinite QM) (compare B, case I). But no finite
extension of @, is algebraically closed. Xf v is discrete on @, we obtain

@ contradiction, just as in (b). Hence G(X) is always non-trivial. So the
proof is achieved. :
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