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(4, B) ¢ (U, V). Suppose that (a, b) ¢ W(4) ~ W(B). Since (a, b) ¢ W(4)
there exists (z,y) e A such that ((a,D),(#,9))<W. Hence (a,s)ey
and (b,y) < K. Similarly there exists (2,y’)eB suc.h that (a,a") ey
and (b,9') e K. Now since (b, ), (b,y’) e K there exists e, &' < 1 sucp
that (4, Ya); (4's Yor) € K. Thus we have (y', ), (', ), (¥, 4.) €« K so0 (y', y)
eE-K-KCV. Since (z,9) ¢ A and (#',9) ¢ B we have (,y) e A° anq
(@',y) e B®. Now z¢ A" «' ¢B® and (a,2),(a,2) e U 80 a ¢ U(d(a, 1))
and a ¢ U(B(a,1)). But U C U, so we have ac U,{A(a, 1))~ U,{B(a, 1))
This contradicts the hypothesis that U,(4(a, 1))~ U B(a,1))= @ and
50 we obtain W(4)n W(B)=@. ’ :

TaEOREM 3.12, If &; 48 a family of m-proximities on X, respectively
(where i eI) such that at least two admit non- m-bounded - uniformities,
then the weak m-product prozimity 6™3) is not an m-total proximity.

Proof. Let §; and 6; be two proximities which admit non-m-bounded
uniformities. Let (Us: ¢ e I)™ = U, where Uy is the m-bounded m-uni-
formity compatible with é; for all 4 = § and Uy = U;. Let Uk be similarly
defined with j replaced by %. It easily follows from Theorems 3.9 and 3.11
that (W) = 6™3) = ¢U*). Suppose that U’ is compatible with §™(3),
Now U’ is the m-produet of {Usj: 4 € I} and it follows from 3.10 that Us;
must be m-bounded for all but at most one i e I.If 5 5 &, then U’ ks
if i = %, then U’ 3 U’. Thus U’ is not an m-total proximity. We conclude
that 6™(3) is not an m-total proximity.

If m =y, we have the following corollary.

COROLLARY 3.13. If 8 is a family of prozimities on X; respectively such
that af least two admit more than one compatible uwiformity, then the weal
product prozimily does not admit a strongest compatible uniformity.
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On the topology of curves IV
by
H. Cook and A. Lelek (Houston, Texas)

As iy well-known, each arc is an acyclie and atriodic curve, and these
two properties characterize arcs within some considerably large classes
of curves, for instance the class of locally connected curves. The second
author has proved that all acyclic Suslinian curves possess 'a qemmpo-
sition property (see [5], Theorem 2.2). An analogue for atriodie curves
is established in this paper (see § 1). Actually, we show the deeompOS}thn
property to be possessed by all Suslinian curves Whie.h.z*ure locally atriodic
in a weak sense, and we derive a stronger decomposition property for all
atriodic Suslinian curves (see § 3). The latter property, however, is not
necessarily possessed by all acyclic Suslinian curves (see § 4). A.ltvhough
the general question remains unsolved (see [6], Problem 1‘0),.1‘5 seems
now to be answered almost completely for the class of atriodic curves,
which comprises some interesting cases: a clagsical example of a p}ajne
curve constructed by G. T. Whyburn [10] as well as other curves obtained -
by means of the method of R. D. Anderson a:];ld Gustave Choquet [1].
The topological structure of atriodic hereditarily decomposable curves
is esgential in our approach (see § 2). Also, at the end of_ the paper, we
provide an example of a chainable Suslinian curve that is not rational.

§ 1. Hereditarily discontinuous subsets. A~ space is cglled hereditarily
discontinuous provided each continuum contained in it is degenerate ().
A curve X is called atriodic provided, for each three subcurves Cp, C,, Gy
of X such that

00: Olr‘\ ng 02003= Olﬁos?':g

is connected, O, coincides with at least one of the curves Cyy Oy, C’s._ We
follow [3] to mean by a clump any non-degeneratie colleci‘no,n C of continua
whose union is a continunum and for which there exists a non-empty
continuum 0y, called the core of C, such that C, is a proper subset of every

(*) Hereditarily discontinuous spaces were called “pf)netiform”’ i1.1 [5] but now we
adopt the terminology of [4] which seems to be more suitable for this paper.
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element of C and O, is the common part of each two elements of C. Thug
no clump having more than two elements can exist in an atriodic curve.;
We recall that a curve X is called Suslinian provided each collection of
pairwise disjoint subcurves of X is countable (see [5] and [6], for a dis-
cussion).

: 1.1. T_HEOREM. If X is a Suslinian curve such that X % P U Q, where
P is hereditarily discontinuous and Q s countable, then there exists a point
p e X and two infinite sequences of continua On C X and Ky C X such that

peCpy € Clp, diam0,<<n™?,
piEn, EinEn=0, damE,<n™,
and On n Ky 7 @ # EN\C; for all positive integers n and m (m # n).
Proof. Let; {61, @,, ...} be a countable open basis in X and let C; de-

note the collection of all non-degenerate components of el@; (i =1, 2,..)

For € e G, let ¢(C) be a point belonging to . Since X i ini
. . s Suslinis g
C; is countable. Therefore the set © . s each

Q=Qmwxma}

is countable and its complement X\Q iy not hereditarily discontinuous
Lgt Y CX\Q be a non-degenerate continuum such that diz#m Y< 1
Since X is hereditarily decomposable (see [5], p. 131), wehave ¥ = O, u K. '
where C; and K, are proper subcontinua of ¥. Take any point ¢ elC \I\f1
fmd assume that continua Ci, ..., 0x and Xy, ..., K, are alréady cleflinedl
in such a way that they fulfill conditions of 1.1. We define continua O
and K, as follows. Let C,,, be any continuum such that .

peC,,CC,, diam 0, ,, < (n+1)71,

and let g€ G, be a point such that p ==
. S 8 hat p £ q¢ Ky for m=1, ..., 0
there exists a positive integer j such that " P dhen

g qEGjCC].GjCX\({I)}UKIU...UKn),
and diamG; < (n+-1)"%. Let K
containg 2. Tane b o nt1 b€ the component of cl @; which

T SN
1 ni1 a0d K, .. is non-degenerate >
K, Cj. Consequently, we also have ¢ r henee

Q(Kn-x-l) € Kn+1 ~nQC Kn+1\y c Kn+1\01 ’

and the proof of 1.1 is complete.

1.2. If X iz a Suslinian eurp ]
: . e eurve such that each poi : :
hood in which no infinite clump erists, L i o st

then X admi iti
e ch 7 _ clump : mits a decomposition
v @, where P is hereditarily discontinuous and Q is countal;;le.

* ©
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Proof. Suppose O, and K, are continua satisfying 1.1. Then the
collection .

Co=1{0, K, ;si=1,2,.}

is an infinite clump whose core is Oy (n=1,2, ...). Moreover, the ele-
ments of Cy lie in a (2/n)-neighborhood of the point p, and 1.2 follows
from. 1.1.

1.3. If X is an atriodic Suslinian curve, then X admils a decomposition
X = Py @, where P is hereditarily discontinuous and @ is countable.

Proof. Since no infinite clump exists in an atriodic curve, 1.2 im-
plies 1.3. '

Remark. A result stronger than 1.3 is obtained in 3.2 below; bub our
argument leading to 3.2 utilizes 1.3.

§ 2. Atriodic hereditarily decomposable curves. We denote by S8 the
standard 1-sphere, i.e. the unit circle composed of complex numbers with
module one and furnigshed with the natural topology.

2.1. TemorEM. If X is an atriodic hereditarily decomposable curve,
then there ewists @ monotone continuous mapping g: X -8 such that g =)
has woid interior for ze 8. ‘

Proof. We distinguish two cases.

Oase 1: X is an irveducible continunm. Then there exists a monotone
continuous mapping ¢: X->I of X onto the unit segment I of the real
line such that ¢~ (1) has void interior in X for? e T (see[4], pp. 200 and 216);
let f: I8 be an embedding and let us put 9= fo.

Oase 2: X is not an irreducible continuum. Since X is atriodic, it
follows that X is not unicoherent (see [9], p. 456) Thus there exists
a decomposition X = X, v X, of X into subcurves X, and X, such that
the common part X; nX, is not connected. Let X, nX,=Av B,
where A and B are non-empty disjoint closed subsets. There exists a closed
set ¥; C X, which is jrreducibly connected between A and B (see [4],
p. 222). Consequently, we have

AnY, #0#Bn Y,

and, for each two points aed n Y, and b eB n ¥y, the set Y, is an
irreducible continuum -between a and b (ibidem). As in Case 1, there
exists a monotone continuous mapping yu: Y11 of ¥, onto I such that
»7i(t) has void interior in ¥, for t eI Therefore the sets v;(t) also have

void interiors in X and we can assume that

1) AAY,CyY0), BoHCyi().
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Similarly, there exists a closed set ¥,C X, which is itreducibly con-
nected between 4 ~ ¥, and B ~ Y;, whence

AnY nY,#0#Bn¥Y Y,

and ¥, is an irreducible continuum. Moreover, there exists a monotone
continuous mapping we: Ya->I such that 7(t) has void interior for
tel, and

@) AnY, A T,Cp}(0), BAYnTCyi).

We shall prove that X = ¥; v Y,. Indeed, suppose on the contrary
that X\(Y, v ¥,) # @ for i =1 or 2. Assume ¢ = 1 and observe that ¥,
is & continunm which meets two disjoint closed sets 4 and B. Thus ¥,
is not contained in 4 v B and, consequently, the continuum Y, meets
the open set X\X,. But since all the sets p;(f) have void interiors in ¥,,
we conclude that there exist numbers #,, % € I- such that )

v (0 NKL # O # v (0O\X
and 0 < {y<t, <1. Then the sets
0, =1X,,
Co=Tiw{y ey 0<pu(y) <t}
Oy=TYv{y ey t, <ply) <1}

are continuz, by (2), which have a point in common and no one of them

is a subset of the union of the other two. The latter statement follows
from the inclusions

g # Xl\( Y, v X,)C 01\( Oy Gy) ’
9+ 'P;](to)\XfC C\(C v C) )
9+ "/’:'_I(tl)\\Xl CONG v Gy,

:;1(1 it contradif;ts the e'onditio.n that X i3 atriodic (see [9], p. 443). The
mﬁ:;lgxgﬁﬁfﬁ; 1= 2 Deing quite analogous, we conclude X = ¥, u ¥,
Now, since we also have .
Y nL=XnXn Y, n =AY, ~nY)u (B~ Y. nY,)
CIr0) (0] v [y (1) Np3*)]

according to (1) and (2)

a continnous mappi : i
b the s s : pping ¢: X —8 can be defined

6n(w1(x) fOI' Te Y]_ ,

g(z) =

. lg"’fﬁﬁg(:c) for Te Ya;

©
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and then z e S\{—1,1} implies that g~ Y(#) is either one of the sets y; (1)
or one of the sets v;(?). But the equalities

g7 L) = v 0) vy (0), g7 =97 v yr(d)

imply that the sets g~*(1) and g—*(—1) are continua too, by (1) and (2).
Moreover, all these sets have void interiors which completes the proof
of 2.1.

2.2. If X is an atriodic curve and f, g: X8 are monotone continuous
mappings such that f(2) end g} (2) have wvoid interiors for ze 8, then
(@) = g7'g(a) for v e X.

Proof. Suppose there exist two points @, €X such that f(a)
= f(my) and g(@) # g(x,). Then Cp=f7f(x) is a continuum and there
is an arve J C g(C,) with end points g(z) and g(z,). Consequently, the
interior @ of g~Y(J) is a non-empty open subset of X, and so A, #= 9
because O, has void interior. But since all the sets g~(z) have void in-
teriors, we conclude that there exist three points 2,2, 2 €J such that

g7 )  (N\C) = B
for ¢ = 1,2, 3. Then the sets
Ci= Cov g7 (1)

are continua which differ from C, and Cy,= 0, N Cy = C; N Cy=Cin Gy,
contrary to the assumption that X is atriodic. We have thus proved that
f(&,) = f(x,) implies g(2) = g(2a), and a symmetric argument yields the
reverse implication completing the proof of 2.2.

2.3. If X is an atriodic hereditarily decomposable curve, then there
exwisis ewactly one upper semi-continuous decomposition of X into frontier
continua such that the decomposition space is either an arc or & simple
closed curve. '

Proof. The existence of such an upper semi-continuous decomposition
follows from 2.1 and its uniqueness is a consequence of 2.2; 50 2.3 is proved.

Given an atriodic hereditarily decomposable curve X, we call iranches
of X' the frontier continua which appear in 2.3. The curve X is the union
of its tranches and each tranche is a proper subcontinuum of X. However,
some tranches may be degenerate and let us slightly extend our definition
to mean by a tranche of a degenerate set the set itself. For an atriodic
hereditarily decomposable curve X (or X degenerate) and a point « e X,
we denote by T(X, ) the tranche of X that contains . We write
T™X,s) = X, and we use a transfinite induction to define T%(X, x) for
each ordinal o, namely ’

T X, 1) = T(T%X, «), @)
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and
TZ(X7 z) =) 1"X, )
a<l

for limit A. The set T%X, #) is said to be the tranche of order o of the
atriodic hereditarily decomposable curve X ati the point 2. Observe that
T%(X, ») is'a subcontinuum of X, and therefore the decreasing transfinite
sequence

"X, 2) DX, )D..0TX,x)D....

must have a term I°(X, z) which is equal to the next term T°+(X, ).
This means 7%X, z) is degenerate, and T%X, ) = {s} = THX, ) for
all ordinals §# > a. Moreover, the ordinal

nd(X, ) = Min{a: T4X, 2) = T°"(X, 2)}

is countable for x ¢ X, the space X being separable metric. Thus the
countable ordinal nd(X, ) indicates the level on which the tranches
of higher orders of X at 2 become no longer non-degenerate. Let us point
out that the collection of all tranches of a fixed order ¢ < Q of X consti-
tutes 8 decomposition of X into pairwise digjoint continua (2). In general,
‘however, this decomposition is not upper semi-continuous for a > 1.

2.4, If X is an’ atriodic hereditarily decomposable curve and A C X
is a hereditarily discontinuous set, then

Sup {nd (X, ): ©eX} = Sup{nd(X, 2): e X\A}.

Proof. Denote by o, and o, the suprema which stay on the left and
the right sides, respectively. Clearly, we have 612 0. If o< 0y, then
there exists a point x, X such that nd(X s @) > a which means: that

T4X, @) # T°F(X, ),

whence I*(X, #,) is non-degenerate. The set 4 being hereditarily dis-
continuous, there exists a point z, e XIN\A wuch that g, e IX ) Bg)s
Consequently, we have :
X, @) = I™X,y,),
whence T%(X, y,) is non-degenerate. It follows that
a<nd(X,y,) <o,

and we see a< o implies a<C ox. Thus o

f o ot < 0p which completes the
proof of 2.4,

§ 3. Hereditarily disconnected subsets.
disconnected provided each connected seb
each hereditarily

A space is called hereditarily
e contained in it is degenerate;
disconnected space is hereditarily discontinuous.

(*) We denote by 2 the minimum uncountable ordinal.

icm
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3.1. If X is an atriodir Suslinian curve, then
Sup {pd(X, z): veX}< Q.

Proof. By 1.3, there exists & subset P C X such that P is hereditarily
discontinuous and X\P is countable. By 2.4, we obtain

Sup{nd (X, #): e X} = Sup{nd(X,z): z« \P}< Q.

3.2. TumorsM. If X is an atriodic Suslinion curve, then X odmits
o decomposition X = P v @, where P is hereditarily disconnected and Q is
countable.

Proof. According to 3.1, the ordinal

o= Sup{nd(X,s): veX}

is countable, and all tranches of orders a > o of X are degenerate. Since
X is a Suslinian curve and, for a << o, the collection C, of all non-degenerate
tranches of order o of X consists of pairwise disjoint subcurves of X,
we conclude C, is countable. For CeC,, let go: C—~8 be a mono?one
continuous mapping such that the sets g5'(2) are tranches of C as given
by 2.1 and 2.3. The latter sets are frontier continua and. those of thenf
which are non-degenerate belong to C,.,. Thus the mapping o has only
countably many non-degenerate point-inverses, and the_r}e eglsts a eount-
able set Do C 8 such that D¢ is dense in go(0) and gg'(2) is degener_ate
for 2 e Dc. Consequently, the sets gg'(Dc) are countable for CeC, and
a< 0. We define ‘
Q=U Uy (Do)

a<o CeCu
so that Q is countable and it pemains to show the set P = X\@ is heredi-
tarily disconnected. ‘ »

Let us suppose on the contrary that there exists a non—dfagene? e
connected set A C P. Take a point a € 4. First, let us prove by induction
on a that

(3) ' ACTHX,a)

for & < o. Inclusion (3) is trivially true for « = 0. We assunzﬁ Eha; i jdz
and that (3) holds for each ordinal ¢ << §. It Wﬂl be pr:ove(fi ’ a (directly
for o= g. Indeed, if # is a limit ordinal, t.he inclusion fo! OWi oot
from the definition of the tranche of a limit order. Onlx the ot Bv'art nd é
if f= a1, we have a< o and A C C € C,, where 0= T*(X, a). But |

ACOnP=NQCANg'De),

the sets D¢ and geo(A) arve disjoint. Thus the c‘onnected set g(I;(A) t}lnlf;:
void interior in g¢(C)C 8 which means ge(A) is degenerate. In O
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words, the set 4 is contained in a tranche of C, i.e. we have
ACT(C,a)= T(TX,a),a) = TX, a).

Applying inclusion (3) for « = o, we see that the tranche T°(X,q)
contains a non-degenerate set 4, so it is itself non-degenerate. Thig
contradiets the definition of ¢ and 3.2 is proved.

Remark. There exists an example of a locally connected Suslinian
curve due to S. Mazurkiewicz [7] which shows that the condition of being
atriodic capnot be removed from 3.2. In the next section we describe
another example to the same effect. Our curve, as constructed in 4.1,
is not locally connected but it has an advantage over the Mazurkiewicz
curve by being acyclic. Both curves lie on the plane. We also show in 4.2
that 3.2 cannot be strengthened by requiring that P is totally disconnected
rather than hereditarily disconnected.

§ 4. Some examples of Suslinian curves. A curve X is said to be a A- den-
droid provided X is hereditarily unicoherent and hereditarily decomposable.
A curve X is called acyclic provided each confinuous mapping of X into
8 is homotopic to a constant mapping. It is known that a hereditarity
decomposable curve is acyclic if and only if it is hereditarily unicoherent.
Since all Suslinian curves are hereditarily decomposable (see [5], p. 131),
we note that the Suslinian A-dendroids are acyclic curves.

4.1. BxAwPLE. There emists a Suslinian 1-dendroid X such that X lies
on the plane and, for each countable subset Q C X, the set X\@ s connected.

Proof. Let w= (D, A) be an ordered pair composed of a disk D
and an are 4 which is contained in the boundary bdD of D. We take
points p¢ = (i, (—1)) on the plane and triangles T'; with vertexes p:,
Dig1y Pipe for i=1,2, ... Then the union of the straight segments p,p;,,
and Py, P;;. IS an arc contained in bd T;. Let us denote

. .
K=T,

) L= U PiPis1
i=1 li=1

and, for a given positive integer n, let us take an embedding 7: K—D
such that

ME)nbdD =0, A= ch(EN(E) = clh(LN\W(I),

al}d diamh(Tq)<n™ for i=1,2, .. Moreover, we assume that the
diameters of the disks 4(T;) converge to zero when ¢ tends to the infinity.
It .fQHOWS that, for any selection of points Geh(Ty) (i=1,2,..) each
point of the arc A is the limit point of a subsequence of t;he’ seq’uence
15 Gz - We pub '

Ty n) = {(R(Te), (P 0y v PinPi)): i=1, 2, } .
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Given a pair s as above, we define collections T, of pairs inductively

by setting
{ro:{”}, a‘n+1= L&JiT(JE, %—I—l),
for n =0, 1, ... Finally, we denote by X, the union of all disks in pairs
from ¥, and define
X ={eclX,.
n=0 »

The sets X, form a decreasing sequence and so do their closures.
Moreover, each of these closures is a subcontinuum of the disk, and so
is X. For n=0,1,..., let us select a countable dense subset in the
boundary of each disk which appears in & pair belonging to F,. Let @, be
the union of all these countable sets. Since {5, clearly are countable col-
lections, the sets @, are countable, and we are going to show that the set

P= X\an

is hereditarily discontinuous. Suppose on the contrary that there exists
a non-degenerate contintum C CP. Since C is disjoint with @, the
common part of ¢ and the boundary of each disk from ¢, is a compact
0-dimensional set (n=0,1,...). Observe that the diameters of disks
from 9, converge to zero when n tends to the infinity. Thus there exists
a non-negative integer j such that no disk from ¢; contains C. If 0 n X},
= @, then € would De contained in the set ¢l X;; \X,,, which is contained
in the union of the boundaries of disks from &;, where i< j. Consequently,
the continnum € would be the union of all intersections of ¢ with these
boundaries, i.e. the union of countably many compact 0-dimensional sets.
Therefore ¢ would be 0-dimensicnal, i.e. degenerate, which is not the
case. We infer that ¢ nX,,, # @ and let D' be a disk from F; which
contains a disk D'’ from §;,, such that C ~ D" # @. Then D" is the image
of a triangle T, under an embedding A": K—D’ and the interior

int D’ = D'\bd D’
does not meet any disk from T; but D’. It follows that
clX;,, nintD’ CH'(K),

whence € ~intD’ C1/(K). By the definition of j, the continuum C is
not contained in D’. Thus if we had € ~ 1'(T;) = O for an integer 4, > 1,
the seb
-1
OnUWT)D0AD" 0
i=1
12 -~ Fundamenta Mathematicae T, LXXVI
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would be a proper closed-open subset of ¢, which is impossible. Conge-
quently, for each integer i > iy, there exists a point 9; € C ~W(Ty), and
each point of an arc A’ C bdD’ is the limit point of a subsequence of the
sequence iy, fiyes - We obtain A’ C(, which contradicts the fact
that € ~ bdD’ is 0-dimensional. This proves that P is indeed hereditarily
discontinuous. But X\ P being countable, we conclude that X is a Suslinian
curve (see [5], p. 131).

The continua ¢l X, do not cut the plane (n = 0,1, ...) what one can
readily check by using their definition. Hence the curve X does not cut
the plane too, and it follows that X is acyclic (see [4], p. 470). Since X ig
also Suslinian, X is hereditarily decomposable. Thus X is a Suglinian
A-dendroid.

It will be proved that X\@ is-connected for each countable subset
QCX, if we show that each compact 0-dimensional set Z C X with
non-connected complement X\Z contains a Cantor set. Let us consider
such a set Z. Then X\Z = @ v H, where ¢, H are disjoint non-empty
open subsets of X. Given any pair == (D, 4) belonging to F,, we have
an embedding h: K - D such that 4 = el2(L)\k (L) and k(L) is a topological
copy of the closed half-line. Let L, denote the collection of all these half-
lines 1(L), where mweT, (n=0,1,..). Observe that each point of &(L)

belongs to at least one arc h(p;p,.,) C 4’, where
' # (T, 4) €8 (m, n41) C T,y

and A’ = clB(LN\V(L), where h'(L)eL,,.,. As a result we get |L,
CellL, 4] (%) Bub clearly |L,|C X, whence |Ls|CelXy for m >, and
Lo CX for n=10,1,.. Since the disks from 7, meet |L,| and their
diameters converge to zero, the union |Lj| w |L,|u ... is a dense subset
of X. We have only one half-line in L, and the closure of each half-line
belonging to L,,, intersects a half-line from L,. Thus, if all the half-lines
from L, (n=10,1,...) were contained in one of the sets @, H, say in @,
the set G would be dense in X whence H = 0 which is impossible. Conse-
quently, there exists a positive integer & and a half-line L_,eL;_, such
that L, nG %@ £ L_, ~ H. But the set

LNGUH) =L_,nZ

being 0-dimensional, there exists a point 9, € L_y ~ Z such that ¢ . belongs
to the closures of both sets L_, ~ @, L_,~H. Moreover, we have I_,

=h_,(L), where h_, is a homeomorphism, and there exists a positive
integer j, such that the are

4,= ho(P5,D542 Dier1Pio42)

() By |La] we denote the union of all half-lines belonging to L,.
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contains g, as an interior point. Hence 4, ~G 0 = A, ~H and =,
= (D,, 4,) €T, where D, = h_,(T;). The collection 7, +1 contains the
collection ¥(=,, k--1) which is obtained by taking images of triangles 7
under an embedding k,: K—D,_. The half-line L, = h (L) is an element
of the collection Ly and A, ,=-clL\L,. It follows that L G0
# L, ~ H and there exists a point GeL ~Z such that g, belongs to
the closures of both sets L _~@, I, ~H. Accordingly, there exists
a positive integer j, such that the are

Ao = R (PsePipr1V Diyr1Pipse)

contains ¢, as an interior point. Hence A, n @ =0 = 4,~H and =,
= (Dy, 4;) € Tpp1, Where Dy = h(T;). What is more, in the last three
sentences we can, in lieu of L, take as well the half-line

L, = 7"*(_ U pipini)
i=Jp+3

and then we obtain a point ¢, € L, ~ Z belonging to the closures of hoth
sets I, ~ @, L, ~ H and being an interior point of an are

Ay =1 (P5, Piysr Y PigaPiss) s

where j; >j,+2. Hence also 4, ~nG <0 2 4, ~nH and =, =(D,, 4,)
€444, Where Dy= I (T,). Sinee j; >jo+2, the triangles T, T; are
disjoint, and so are the disks D, D;. Let us notice that D,, D; contain
the points gy, ¢1 of Z, respectively. Repeating the same procedure, we
find pairwise disjoint disks Dy, Dy, Dyp, Dy such that each of them
meets Z. The disks Dy, Dy, and the disks Dy,, Dy, appear in some pairs
belonging to §(m,, &+ 2) and §(=,, k+2), respectively. Thus Dy, Dy C D,
and Dy, Dy C D;. Continuing this procedure, one gets 2™ pairwise disjoint
disks from T, ,, such that each of them meets Z (m =1, 2, ...). Let Uy, de-
note the union of all these 2™ disks. We have U, D U,D ... Since Z is
compact and the diameters of digks from &, converge to zero when m
tends to the infinity, it follows that the intersection U, U, ~... is
a Cantor set contained in Z. The combination of properties of the curve
X as stated in 4.1 is now verified.

Remark. The curve described in 4.1 resembles to some extent
a curve constructed by J. J. Charatonik [2] which, however, has admitted
countable cuttings. An example of a curve given in 4.2 below is a modifi-
cation of a Suslinian curve whose construction has also been published
earlier (see {5], p. 135), and the key role in both these examples is played
by an idea essentially due to W. Sierpiniski [8].°

A space is called fotally disconnected provided each of its quasi-coim
ponents is degenerate. Each totally disconnected space is hereditarly-
12%
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curve X is rational if and onmly if X
where P is totally disconnected and

disconnected. It is known that a
admits a decomposition X = PuQ,
Q is countable (see [6], p. 95).

4.2. BxayeLe., There exists chainable Suslinion curve X such that
X # Py, where P is totally disconnected and Q s countable.

Proof. Let ¢ = (R, v) be a pair composed of a right triangle E and

a vertex v of an acute angle in E. We denote by 8 the side of E opposite -

to v, and let us write § = 7', where 7 is the vertex of the right angle in K.
Take points py, P2 €S and g1, 2 € or’ guch that

dist(py, r) = hdis(r,"),  dist(ps, ) = Fdist(r, 1),
dist (g, v) = ¥ dist(v, 7"), dist (ge, ) = $dist(v, 7'),
and points @i er, ys v such that
o disb(as, r) = i dist(o, ),  dist(y, ') = i~'dist (v, 7')

for i=1,2,.. Let #; be the intersection point of the segment gy
with the segment p,g; for i=1,2, ... and § =1,2. We can fit_n_i points
r; € 2,25 such that r, =z, and each point of the segment p,p, iy the
limit point of a subsequence of the sequence i, 7y, ... Let v; € Bgy_1Ys; 1,
v} € Tar3qUsirs Do points such that 74 € v0; and the segment vy} is parallel
to the side or. Denote by R the right triangle with vertexes vi, 71, @y,
by R} the right triangle with vertexes vy, 7;, ¥s;, and pub

R(0)= (Bl i=1,2, .3 v {(BY,0): i=1,2,..3,

Moreover, let S(g) denote the collection consisting of the segment 7o,
and of all the segments v, for i=1,2, ... Observe that the segments
Dbelonging to S(p) join the triangles oceurring in pairs from R (¢) so that
their union is a connected set.

Given a pair p as above, we define collections R of pairs inductively
by setting '

Ry= {9}7 “R'n-l-1= E.}{‘K(Q)

for n=0,1,... Finally, we denote by X, the union of all triangles in
pairs from R, and of all segments belonging to S(g), where g e Ryv ... v Ry

and define X to be the intersection of the decreasing sequence of the
continua clX, (n=10,1,..).

One has to use only a standard technique in showing that X is
a chainable curve. The argument for the decomposition property of X is
a replica of an argument for same property of a dendroid (see [5], p. 136).
Actually, one shows that each compact 0-dimensional set cutting X
between some points of the segment S is uncountable (ibidem, Lemma 3.2).
The short proof of the fact that same dendroid is Suslinian can also be
applied here almost without change to show that X is Suslinian.

{7

8],

(91

[10]
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