A note on H-compact spaces ()
by

Francisco L. Marin (Apartado, Venezuela)

1. Introduction. This paper is divided into two parts. In part I we
give a semi-internal characterization of H-compact spaces whereas in
part 2 we study one-point E-completely regular extensions, with the
purpose of establishing necessary and sufficient conditions for an E-com-
pletely regular space X to have a one-point E-compactification. Let us
recall that X e C(H) is E-compact (written X ¢ K(EB)) if Xy CE™ (3.
8. Mréwka [9] has proved that X is B-compact iff, for every E-completely
regular proper extension X of X, the class C(X, E) is non-extendable
over &X.

2. E-compactness. In this section we study Z-compactness and some
related concepts. We show that for X ¢ C(E) the following conditions
are equivalent: :

THEOREM 2.1 (3).

1) X is E-compact.

2) For every met x, in X, x, converges if f(x,) converges for every
feC(X, B). :

Proof. 1)= 2) Let us index the family C(X,E) by a set £ .and
let m = card=. Since X ¢ K(F), the parametric mapping h (induced
by C(X, H)) where h: X->B™, is a closed homeomorphism. So let x, be
a net in X such that f.(z,)—>x, for every £e£. Since (1 (@) = fol®),
we obtain k(z)—z < E™, where m(®)= 2. Recall that h{X} is closed
in ™ and hence @ ¢ h{X}. Therefore, since % is a homeomorphism, &,
converges in X.

2) = 1) Let h: X —B™ be the evaluation mapping induced by ¢(X, B).
Choose # € L{X}®™ and let , be a net in h{X} such that x,~a. Select

(*) This paper is a part of a doctoral dissertation prepared at the Pennsylvania
State University under the supervision of professor Stanistaw Mrowka.

(*) Xo C E™ means that X is embeddable as a closed subset of E™

() In the remainder of this paper B is assumed to he Hausdorff unless otherwise
specified.
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a net #, in X with h(e,) = ,. Since m,(h(2,) = fi(z,) for every &g
and %(z,)—>2, we obtain fy(z,) > m{x) for & ¢ Z. Therefore by condition 2

z,—+2 for some # ¢ X, and since H™ is Hausdortf, we infer that h(s) =z

and thus that 2{X} is closed in E™. _

We discuss some applications of the above theorem to the Z-trans-
formation of a Hausdorff space X.

Let X be a Hausdorff space and (X*, ¢) its T-transformation .
We exhibit some of the influences of C(X,E) on the F-transforma-
tion X* of X.

CoroLLARY 2.1. The following conditions are equivalent.

1) X* ¢ K(X).

2) For every met x, in X and feC(X, H), f(z,) converges iff ¢(x,)
converges.

Proof. 1) = 2) Let (X* ¢) be the E-transformation of X, and %,
a net in X. Given any fe O(X, H), we can select an ¢ ((X* E) such
that f=h o .

Therefore by Theorem 2.1 h(go(ma)) converges iff ¢(z,) converges and
the latter happens iff f(z,) converges.

2)=1) Let 2} be a net in X* such that h(z)) converges for every
h € C(X", H). Let z, be a net in X such that ¢(z,) = «* for every a. Since
(X%, ¢) is the B-transformation of X and h(z¥) converges for every
heC(X*, B), we infer that f(z,) converges for every fe C(X,H) and
hence that ¢(z,) converges. Therefore, by Theorem 2.1, X* ¢« K (H).

We remark that the above corollary is not sharp enough since it
does not depend only upon C(X, H). However, the following corollary
does depend only upon 0(X, E).

COROLLARY 2.2. The following conditions are equivalent.

1) X has an E-compact modification X*,

2) For a net =z, in X, f(m,) converges for every fe O(X, B) iff there
ewists %€ X such that f(x,)->f(zm,) for every fe O(X, E).

Proof. Let (X*,¢) be the E-transformation of X. Then the resuls
is a direct consequence of Corollary 2.1. It remaing only to choose @, ¢ X
such that ¢(z,)->p(z,).

We next consider the following situation. Let X be a Hausdorff
space such that its F-modification X* ig E-compact, and seclect any
Hausdorff proper extension X of X. We proceed to give conditions in
terms of (X*, ¢) for the space X to be E-embedded in eX.

if XS) Let X ‘be a topological space; the pair (X*, ¢) is the F-transformation of X

i )( ’? sa;ifl'es the fo].lowmg conditions: (i) X* is B-completely regular (X* ¢ C(B)).
P: £->~X7 is continuous and onto. (iii) For eve oX t i

h ¢ O(X*, B) such that f=hog. WSSO fhers exis. en
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CoROLLARY 2.3. X is B -embedded in eX iff o is continuously extendable
over eX.

Proof. = Assume that ¢: X->X* can be continuously extended
to a function ¢*: eX— X*. Let fe C(X, ), and for 2 ¢ £X/X define f*(z)
= h(p*(x)), where h ¢ O(X*, E) is such that f = h o ¢. Then f* is continu-
ous and fCf*

<= Let X be E-embedded in «X. We seek a function ¢*: X - X*
such that ¢* is continuous and ¢ C ¢*. To this end let # ¢ £X/X and let «,
be a net in X such that z,—z. For every f ¢ C(X, B) let f* be its unique
extension to eX. Observe that f*(z,)>f*(x) and since f(z,) = f*(z.),
f(z,) converges for every fe C(X, E). Therefore, by Lemma 2.2, there
exists an %, ¢ X such that f(z,)>f(m) for every fe 0(X, B), and thus
¥@) = f(@). Let ¢*(2) = ¢(m,). Since (X*, ) is the E-transformation
of X, ¢* is well defined; hence it remains only to show that ¢* is continu-
ous. Let h e O(X*, B) be defined by f =15 o . It is clear from our defi-
nition of ¢* that h o ¢* = f*. Therefore, by Theorem 1.2 of [6], ¢* is
continuous. '

We consider next the case where the F-modification X* of X is
not assumed to be FE-compact. In this case we have the following

COROLLARY 2.4. Let (X*,¢) be the E-trasformation of X and X
a proper Hausdorff extension of X. Then the following conditions are
equivalent.

1) The mapping p: X—X" has a continuous emtension (1) ¢*: eX > fpX*.

2) X is E-embedded in eX. ’

Proof. 1)=2) Let f: X—F and choose % e ((X* E) such that
f="hogp Since h admits a continmous extension %*: gzX*—H, define
f* — h* ° ¢*' )

2)=1) Let x ¢ cX/X and choose a net z, in X such that z,—»x. For
every fe 0(X, E) and he C(X* B) let f* and 2* be the continuous ex-
tensions to ¢X and to fzX* respectively. Notice that f*(z,)->f*(z) for
every f*e((eX,F) and thus that h(p(w,)) = h*(p(s,)) converges for
every 1*e (C(fzX", E). Therefore, by Theorem 2:, there exists an
% e frX* such that @(z,)—# We show next that ¢* is well defined for
every ¢ eX/X. To see this, choose two nets #, and @, in X such that z,
and z, both converge to . Thus we obtain # and #' in fzX* such that
@(z) > and @lo,)>3'. X &+ 3, choose h*e(C(fsX", E) such that
B*(x) # K*(@'), and this implies that f= f*¢(s,) converges both to
h*(%) and to A*z’). This contradicts the fact that F is Hausdorff and

e Bz X* is an B-compact extension of X* satisfying i) Every continuous function
: X*>F admits a continuous extension f*: g, X*—>E. For more details on ppX* see
S. Mréwka [10]. :
14 — Fundamenta Mathematicae T, LXXVI
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thus ¢” is a functioh. To prove the continuity of ¢*, , where ¢ eX->fyg X,
observe that every fe C(X, B) is of the form h o ¢ and that f*= 1*. o
and thus, by Theorem 1.2 of [6], * iy continuous.

We conclude this section with a condition for & -compactness which
resembles the characterization of compactness in terms of nets.

COROLLARY 2

1) X e K(B).

2) For a net x, in-X, u, has a cluster point iff f(x,
for every fe C(X, E).

The proof of this corollary can be obtained by a slight modification

5. The following are equivalent:

has o cluster point

“of the proof of Theorem 2.1 and with the aid of universal nets.

3. One-point E-completely regular extemsions. In this part we study

one-point F-completely regular extensions. We recall that, for every
E-completely regular space X, there exists an F-compact extension fzX
which is characterized by the following conditions: (*)

a) fgX is E-compact.

D) Every continuous mapping ¢: XY where Y is F-compact can
be extended to fzX.

¢) frX is uniquely determined by the above properties, i.e., if £X is
an arbitrary extension of X that satisfies a) and b), then ¢X = feX (%)

Let us choose an E-determining family F of ¢(X, #). If we parallel
the construetion of frX, we obtain an extension of X, which we wil
denote by e¢rX, characterized by the following conditions:

THEOREM 3.1. There is a unique (up to homeomorphism) extension epX
of X characterized by the following conditions:

a) ep X 48 I -compaci.

b) Bvery continuous mapping f: X—E, for f ¢ F can be continuously
extended to erX.

c) Bvery Hausdorff extension eX satisfying condition b) can be continu-
ously mapped into e X, leaving the points of X fimed.

Proof. Let h: X—»>F be the parametric map determined by the
family F. Let eX = 1(X)P". Then ¢rX satisfies conditions a) and b) by
definition.

To prove part ¢) let X he any Hausdorff extension of X which satis-
fies condition b). Then, by Corollary 1.1 of [6] and a slight modification

(*) For more information on BrX see 8. Mrowka [10].
) X ;e.X means that ¢ X is homeomorphic to X by a homeomorphism
which leaves the points of X fized.
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of Corollary 2.4, we obtain a continuous function f: ¢X X such that
flo) = = for every relkX.

To establish the uniqueness of the extension is now a simple matter. )
Let ¢X Dbe a Hausdortf extension of X satisfying conditions a), b) and e).
From part ¢) above we obtain a continuous function h: eX -+ X leaving X
invariant, and from our assumptions there exists a continmous function
g: ep X —~eX, which iz the identity on X. From this it follows that
X = erX.

We consider next the following situation. Let eX be an K- completely
regular extension of X ,and let F be the family of all restrictions of
0(eX, B) to X. Then it is clear that ¢X can be obtained in a natural
way in terms of the family F. If X ¢ K(¥), then X is the smallest ex-
tension (in the sense of property c) of Lemnia 2.1) determined by the
family 7. We point out that this is just a duplication of the Tihonov
method used in this solution to the problem of finding all the compactlfl—
cations of a completely regular space X.

In the remainder of this section we will be concerned with one-point
E-completely regular extensions.

We start by introducing some definitions:

Let X ¢ K (F) and let & be a class of subsets of X. Following P. Ale-
xandroff [1], & is a centred system if & is closed under finite irtersections
and the empty set @ is not a member of £ The centred system & is said
to be Hausdorff if, for every z « X such that x ¢ A for some 4 ¢ £, there
exists & B <& with #¢ B (B is the closure of B in X).

Let X ¢ C(E) and let & be a Hausdorff centred system of open sets
of X with empty intersection. We define a topology for X w {£} in the
following manner:

X is an open subset of X « {£}, and the neighbourhood system for {£}
consists of all 4 v {£} for A ¢ & It is easy to see that X v {£} is Haus-
dorff and that it contains X densely embedded. We should add that,
whenever we consider X u {£} as a topological space, we mean that it
has the topology defined above.

Consider the following eonditions on an F-completely regular space X.

(i) X is locally E-compact but not F-compact ().

(ii) There exists an FB-determining family ¥ C ¢ (X, F) such that 7,
restricted to any closed E-compact neighbourhood U of z, produces
& closed embedding of T.

Before we state our last condition, we consider the following pre-
liminaries.

() A space X ¢ C(E) is locally B-compact iff every z ¢ X has a base system of
closed neighbourhoods which are I-compact.
1% '
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Let 4 be the class of all E-compact closed subsets A of X, such
that the family & when restricted to A produces a closed embedding
of A. We have the following observations on 4.

1) 4 i4s closed under finite unions (this is a direct application of
Lemma 2.5). :

2) The class & = {X|A: A e 4} is a Hausdorff centred system of open
sets with vacuous intersection.

Proof of 2). From 1) and the fact that X is not E-compact we infer
that & is a centred system. Furthermore, ¢ is Hausdorff and has vacuoug
intersection because of conditions (i) and (ii) above.

Our last condition on X mnow reads:

(iii) The filter base f{f} converges for every fe 7.

Combining our three conditions on X, we obtain the following

Leywa 3.1. For every X e C(H), if conditions (1), (ii) and (iii) hold,
then X v {&} is a one-point B-compactification of X.

Proof. We show that X u {£} is E-completely regular. We need
only worry about {£}. So let #, be a net in X u {&} such that f*(z,)-1*¢)
for every f*e F*(f* and 5 as defined above). Suppose that w,-{&}:
then there exists a subnet @, of x, and an F-compact closed subset H C X
such that the net «; is in H and 7 H produces a closed embedding of H.
This shows that f*(z;)->f*(&) for all f* e F*, which is a contradiction.
This demonstrates that X v {£} is E-completely regular, and therefore
that the family #* is an H-determining family for X U {£}. We show
that the family F* produces a closed embedding. Let z, be a net in
X v {£} such that f*(z,) converges for every f* e 7*: we will prove that
this implies that «, has a cluster point in X u {£} and hence, by Lemma 2.5,

X v {£} is E-compact. Let us suppose that {£} is not a cluster point

of z,. Then the net », is eventually in some A e A (4 as defined above)
and thus, by condition ii) and Theorem 2.1, #, converges in 4 and hence
in X v {£. If, on the other hand, {¢} is already a cluster point, we have
nothing to prove. )

- THEOREM 3.2. Let X be an H-completely regular space which is not
B -compact. Then the following conditions are equivalent:

1) X admits a one-point B -compactification.

_ 2) X is locally E-compact and there emisi am E-determining family
FCO(X, E) and a centred system & satisfying conditions (i), (ii) and (iil)
of Lemma 3.1.

Proof. 2)=1) This is Lemma 3.1.

1)=2) E‘ef’ X v {p} be a one-point E-compactification of X. Define
the family 5 C (X, B) as the restriction of C(X u {p}, B) to X, and
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let & be any neighbourhood system of open sets of the point p in X L {p}.
It is easy to see that conditions (i), (ii) and (iii) of Lemma 3.1 hold.

We now wish to give an application of Theorem 2.2 to a special
kind of topological space . The space F is Hausdorif and has the following
property:

ProPERTY PCR. There exists a fixed pair of distinct points e, and e,
in B such that for every closed set 4 and point z in E" (n ¢ N), with
w¢ A, there exists a continuous function g: E"—+F such that g{d} = ¢,
and g(w) = é.

Let B have property (PCR) and let X be an E-completely regular
space which is locally compact but not compact. We want to show that
the one-point compactification X u {co} of X is E-completely regular
and thus Z-compact.

CorOLLARY 3.1. Let B have property (POR) and let X € C(B) be locally
compact but not compact. Then the one-point compactification of X is
E-compact.

Furthermore, this can be obtained in terms of all the functions
f: X—E which are constant outside compact subsets of X.

Proof. Let F be the family of all those continuous functions from X
into E which have the constant value e, outside compact subsets of X.
We claim that the family F so defined is an F-determining family for X.
Namely let A and » be a closed set and a point of such that x ¢ A. Since X
is locally compact, there exists a compact neighbourhood U of z such
that U n A = @. Let f be a continuous function defined as follows:

fi X>E, [flX/intUl=¢ and f(z)=e,.

The existence of such an f is guaranteed because E has property (PCR)
and, furthermore, f ¢ 7.

Let & be the class of complements of all compact subsets of X. It is
easy to see that & is a Hausdorff centred system of open sets with
vacuous intersection. It remains to show that the filter base f[£] converges
for every f e F. Let G ¢ £ and let f be an arbitrary function in F. Let H be
a compact subset of X such that f[X/H]= ¢. Then ¢' =G n(X/H) e§
and f[G'] = ¢,, showing that the filter base f[£] converges to . There-
fore by Lemma 3.1 X u {£} is E-completely regular.

COROLLARY 38.2. Let B = R (R being the reals with the usual topology)
and let X be locally compact but not compact. Then the one-point compactifi-
cation of X can be obtained in terms of all the real-valued continuous funciions
which vanish outside compact subsets of X.

() intU denotes the interior of U in X.
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We next present certain special cases of one-point E-completely
regular extensions. Let B De a regular space and X ¢ C(H) which hag
the following property.

(EN) For every closed subset H# C X, H is E-embedded. Let P 1
-a topological property (*) of E-completely regular spaces which satisty

condition (EN). We assume further that property P satisfies the following

conditions:

1) If A is a closed subset of X and A hag property P, then any cloged
subset H C A also has property P.

2) If 4, and 4, are closed subsets of X and 4,, 4, have property P,
then 4;v 4, has property P.

We say that a space X has property P locally iff every point x e X
has a system of closed neighbourhoods possessing property P. Let ug
denote by (Wp) the following statement about JZ-completely regular
spaces (2): .

(Wp) For every E-completely regular space X, if @, ¢ X is such that
for every closed subset H C X, with «, ¢ H, H has property P, then X has
property P. -

TeroreM 3.3. Let X be an E-completely regular space satisfying con-
dition (EN). Furthermore, assume that the following conditions are satisfied:

(1) X is locally E-compact but not E-compact and has property P
locally but not globally.

(ii) Property P satisfies conditions 1) and 2).
(iil) Property P has feature (Wp).

Then there exists o one point H-compactification of X which has
property P.

Proof. Let us consider the followiné objects: :
={H: HH'C ,X such that H and H' are closed -compact sﬁbsets
k satisfying property P and H CintH'}.
Let the family F be defined as follows:
F={feC(X,B): fIX\H]= ¢, Hed and ¢, being a fixed point of E}.

We show that I'is an F-determining family and that F restricted
to any H ¢ A produces a close embedding..

FisE -dc.etermining, namely let A and « be a closed subset and a point
of X, respectively, such that z ¢ 4. Choose -compaet closed neighbour-

(*) Property P will only be considered for & co i
will. -completely regular spaces and will
be assumed to be invariant under homeomorphisms. v ?

(*) Our approach parallels that of §. Mréwka 8].
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hoods Uy, U, of & which have property P and are such that U, Cint U,
and U, ~ A= 0. Let the continuous function f be defined as follows:
F: X8, and f[X\intU;]=¢, and f(z)='e, where e, == ¢,. Observe
that U, ed and thus feF.

Next let H e 4: then there exists an H', which is a closed H-compact
subset of X satisfying property P and such that H CintH’. Since X is
normal and every closed set is F-embedded we can find H, ¢ 4 such
that H CintH; C H, C intH'. Now let g: H—-F and let the continuous
function be defined as follows: f: X—+F, and f[X\intH;]= ¢,. That
such a function exists is guaranteed since X satisfies conditions (EN).
Observe that H; e 4 and thus that fe F. This shows that the family #

restricted to any H e 4 produces a closed embedding.

Let &= {X\H: H e 4}. It remains to observe that & is a Hausdortf
centred system with vacuous intersection and that f(£) converges for
every f e F. Thus, by Theorem 3.2, X w {¢} is E-compact. Furthermore,
gince property P has feature (Wyp), we find that X o {¢} has property P.

We next examine a few specific topological properties.

PrOPERTY P;. [m,n] compactness (1).

This property P; is easily seen to satisfy conditions 1) and 2),
Furthermore it is clear that property P, has feature (Wp,). Hence we
have the following result.

CoROLLARY 3.3. Let X e O(E) satisfy condition (EN). Then if X has
properties Py and B -compaciness locally but neither property globally, there
always exists a one-point B -compact extension of X which has property P;.

PrOPERTY P,. For our next case we consider the space R of real
numbers as the space K and the property P, is that of.R-compactness.
Then our gituation is as follows. Let X be a normal space which is locally
R-compact but not E-compact. We want to show that. there exists
a one-point extension of X which is normal and R-compact. We start
by proving that R-compactness for normal spaces satisfies conditions 1)
and 2).

Condition 1). Let H be a closed R-compact subset of X: then it
is clear that if H, C H and H, is close, then H, is E-compact.

Condition 2). Let H, and H, be closed -E-compact subsets of X:
then H, v H, is R-embedded in X and thus by Corollary 2.5, H; v H;
is Rk-compact.

Before we establish our assertion concerning property P,, we want
to consider the following preliminaries.

(1) A space X is said to be [m, n]-compact (m, n being infinite cardinals) if every
open covering U of X with n < T < m admits a subcovering ¥V, with V, < n.
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Let X be an E-completely regular space such that there exists g Point
7, ¢ X with the property that every closed subset H C X, with % ¢ H,
implies that H is & normal subset of X. It was shown by 8. Mréwks, [g]
that this implies that X is normal.

COROLLARY 3.4. Let X be a mormal space which is locally R-compact
but not R-compact. Then X admits a one-point extension which is normal
and R-compact.

Proof. By an argument similar to that of the proof of Theoremls.z,
we can show that there exists a completely regular extension X o {&
of X such that if H is closed in X w {£} and H ~ {£} = @, then H is normal,
Therefore by our preliminary remarks we find that X u {£} is norma),

“PROPERTY Pj. Let B De a Hausdorff space satisfying condition (PCR).
Let P, be an arbitrary topological property of B -compact spaces (F ag
described above) having feature (Wp,).

COROLLARY 3.5. If X « C(H) has the properties (EN) and Py locally
but meither “globally, then there emists a one-point H-completely regular
extension of X which has property P,.

Proof. Let A De the class of all the closed subsets H of X such
that H e 4 iff there exists a closed subset H' of X , With H C int H' where H”
has properties (EN) and P;.

We have the following observations on A:

1) 4 is non-empty.

This follows because X hag properties (EN) and P, locally.

2) 4 is closed under finite unions.

To see this take H,, H, ¢ A. Then H, and H, are both E-embedded
in H, v H,. Thus H, v H, has property (EN) and hence is E-compact.
Mermore, since property P, is finitely additive on cloged sets, we
find that H, v H, has property P,. Finally, it is easy to see that H; u
UH,ed. L .

3) If Hed and H' is a closed subset of H, then H' e 4.

This follows directly from the definition of 4. Let us now consider
the following objects:

F={f: /¢ 0X,B),f[X\H] = ¢,, He 4 and & is a fixed point of K},
and
§={X\H: Hed}.

By an argument similar to the one given in the proof of Corollary 3.2,
we can show that X o {&} is B-compact; turthermore, since property P,
has feature (Wp,), we find that X o {€} has property P,.

We conclude with the following special cage.

©
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COROLLARY 3.6. If X is completely regular, and X is locally normal
and locally R-compact but neither globally, then X admits a one-point ex-
tension which s normal and R-compact.

The proof of this corollary follows from a direet application of Corol-
laries 3.4 and 3.5.

We want to point out that the same conclusions hold for N-com-
pactness (*) under similar conditions. Furthermore, we have a stronger
result for B = N. Let X ¢ C(¥) be locally N - compact, but not N - compact.
Then there exists a one-point N -compactification of X.

To see this let

4= {H: H is an open closed ¥ -compact subset of X}

and
F={f fe O(X,N) and fIX\H] = 0 for H ¢ 4}.

We observe that F is E-determining for X and, furthermore, that F,
when restricted to any H ¢4, produces a closed embedding. Therefore,
it we consider the Hausdorff centred system &= {X\H: H ¢ 4}, we can
show by an argument similar to that of Theorem 3.2 that X u {&} is
a one-point N -compactification of X.

We wish to add that the development of part 2) of this chapter has
been motivated by the following question. Is every locally R-compact
space an open subset of an R-compact space? The farthest that we have
gone in this direction is the result of Corollary 3.6. On the other hand,
for N -compact space the answer, as shown above, is affirmative.
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The paper contains a proof of the existence of maps f: XY with
connected and dense graphs in X x Y, where X and Y are connected
spaces satisfying some additional conditions. Ve also state Theorems 2
and 3, which are generalizations of Theorems 3 and 4 proved by D. Phillips
in [2]. The proofs of these theorems are reproduced from [2].

Let us fix some notation and symbols; m: XX ¥Y->X means the
projection, ¥Fr4 and Int, means boundary and interior operations in the
space A, and w(4), card.4 means respectively the weight of A and the
cardinality of A.

LeMMA 1, Let X, ¥ be connected spaces. If 0 # G C X X ¥ is open, then

(@) Intxm(Frx XrG) = @, or
(b) there exists an z e X such that a~"(z) C Frx, y&F, or
(¢) G is dense in X x Y.

Proof. (I) Let us assume that there exists a point (z,y)e XX ¥
such that (z, y) ¢ @ and # e #(G). Then there exists an open set U, C w(G)
such that @ e Uz and (a) Uy C w(Fry,»&). Indeed, there are open sets
U,Cn(@) and UyCY such that (z,9)e Usx Uy C(XxT)— & We
show that U,C z(Fry,p@). Suppose that there exists an 2" e Uy,—
—a(Frg,y@). A subspace {#}x¥Y CXx Y is homeomorphic with Y.
We have

O#6Gn({@xY) #{@}xY

and
Fl’{:c’,\x I’(G m ({w,} X Y)) C (FrXxYG) n ({ml} X Y) =4 9

and this contradicts the fact that {#'}x X is connected.

(II) Let us assume that the condition (I) is not satisfied. We have
Frx=(G) £ O or Fry=n(G) = .

(b) If z eFrzm(@) then =z *#)CFry,pG Indeed, suppose that
there exist an 4 ¢ ¥ and such an open neighbourhood UzX Uy of point
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