206

F. L. Marin

[9] — Doctoral dissertation, Warszawa 1959.

[10] - Further Results on E-compact Spaces (to appear).

[11] A. Tihonov, Über die topologische Erweiterung von Raumen, Math. Annalen 102 (1929), pp. 544-561.

UNIVERSIDAD DE ORIENTE, Cumaná and UNIVERSIDAD SIMÓN BOLÍVAR Sartenejas, Baruta-Venezuela

Reçu par la Rédaction le 29. 3. 1971

On the existence of maps having graphs connected and dense

by

W. Kulpa (Katowice)

The paper contains a proof of the existence of maps $f: X \to Y$ with connected and dense graphs in $X \times Y$, where X and Y are connected spaces satisfying some additional conditions. We also state Theorems 2 and 3, which are generalizations of Theorems 3 and 4 proved by D. Phillips in [2]. The proofs of these theorems are reproduced from [2].

Let us fix some notation and symbols; $\pi: X \times Y \to X$ means the projection, Fr_A and Int_A means boundary and interior operations in the space A, and w(A), card A means respectively the weight of A and the cardinality of A.

LEMMA 1. Let X, Y be connected spaces. If $0 \neq G \subset X \times Y$ is open, then

(a) $\operatorname{Int}_X \pi(\operatorname{Fr}_X \times_Y G) \neq \emptyset$, or

(b) there exists an $x \in X$ such that $\pi^{-1}(x) \subset \operatorname{Fr}_{X \times Y} G$, or

(c) G is dense in $X \times Y$.

Proof. (I) Let us assume that there exists a point $(x,y) \in X \times Y$ such that $(x,y) \in \overline{G}$ and $x \in \pi(G)$. Then there exists an open set $U_x \subset \pi(G)$ such that $x \in U_x$ and (a) $U_x \subset \pi(\operatorname{Fr}_{X \times Y} G)$. Indeed, there are open sets $U_x \subset \pi(G)$ and $U_y \subset Y$ such that $(x,y) \in U_x \times U_y \subset (X \times Y) - \overline{G}$. We show that $U_x \subset \pi(\operatorname{Fr}_{X \times Y} G)$. Suppose that there exists an $x' \in U_x - \pi(\operatorname{Fr}_{X \times Y} G)$. A subspace $\{x'\} \times Y \subset X \times Y$ is homeomorphic with Y. We have

$$O \neq G \cap (\{x'\} \times Y) \neq \{x'\} \times Y$$

and

and this contradicts the fact that $\{x'\} \times Y$ is connected.

- (II) Let us assume that the condition (I) is not satisfied. We have $\operatorname{Fr}_{\mathcal{X}}\pi(G)\neq\emptyset$ or $\operatorname{Fr}_{\mathcal{X}}\pi(G)=\emptyset$.
- (b) If $x \in \operatorname{Fr}_{X \times T}(G)$ then $\pi^{-1}(x) \subset \operatorname{Fr}_{X \times T}G$. Indeed, suppose that there exist an $y \in Y$ and such an open neighbourhood $U_x \times U_y$ of point

(x,y) that $U_x \times U_y \subset X \times Y - \overline{G}$. Then there exists an $x' \in \pi(G) \cap U_x$. Hence we have $(x',y) \notin \overline{G}$ and $x' \in \pi(G)$, which is a contradiction of assumption (II).

(c) If $\operatorname{Fr}_X\pi(G) = \emptyset$, then G is dense in $X \times Y$. Indeed, in this case we have $\pi(G) = X$. Thus for every point $(x, y) \in X \times Y$ we have $x \in \pi(G)$ and hence, according to assumption (II), it follows that $(x, y) \in \overline{G}$.

LEMMA 2. Let Z be a connected space and $D \subset Z$ a dense subspace of Z. If for every open set $G \not\supset D$, $\emptyset \neq G$, we have $D \cap \operatorname{Fr}_Z G \neq \emptyset$, then D is a connected subspace of Z.

Proof. Let $H=D\cap G$ where G is open in Z and $\emptyset\neq G\not D$. $\operatorname{Fr}_D H=\widetilde{H}-H=D\cap \overline{G}-D\cap G=D\cap (\overline{G}-G)=D\cap \operatorname{Fr}_Z G\neq \emptyset$, where \widetilde{H} means the closure of H in D. Thus H is not a closed-open set in D, and hence D is connected.

DEFINITION. A set $C \subset X$ is called τ -dense in X if, for every open and non-empty set $G \subset X$, card $C \cap G \geqslant \tau$.

THEOREM 1. Let X, Y be connected spaces such that $w(Y) \leq w(X)$, $w(X) \geq \chi_0$ and, for every non-empty open set $U \subset X$, $\operatorname{card} U = 2^{w(X)}$.

Then for every $2^{w(X)}$ -dense set B in X there exists a map $f: B \rightarrow Y$ such that each extension $f^*: X \rightarrow Y$ of f has a connected and dense graph in $X \times Y$.

Proof. The family of all open sets in $X \times Y$ is of cardinality not greater than $2^{w(X)}$. Let T_0 be a family of open sets in $Y \times Y$ satisfying the condition (a) of Lemma 1 or being of form $U \times V$. From the assumption of X and from Lemma 1 it follows that if $G \in T_0$, then card $\operatorname{Fr}_{X \times Y} G = 2^{w(X)}$. We may assume that T_0 is well ordered; $T_0 = \{G_{\xi} : \xi < \gamma\}$, where γ is an initial number of power $\leq 2^{w(X)}$.

We define by transfinite induction a sequence of pairs of points $\{(P_0^1, P_0^2), \dots, (P_\xi^1, P_\xi^2), \dots\}_{\xi < \gamma}$ such that;

 $1^{\mathfrak{o}} \ P_{\xi}^{1} \in G_{\xi}, \ P_{\xi}^{2} \in \overline{G}_{\xi} - G_{\xi} \ \text{and} \ \pi(P_{\xi}^{i}) \in B,$

2° if $\xi \neq \xi'$ or $i \neq j$ then $\pi(P_{\xi'}^i) \neq \pi(P_{\xi'}^i)$ for $\xi, \xi' < \gamma, \ i, j = 1, 2$. Let P, Q be points such that $P \in G_0, \ Q \in \overline{G}_0 - G_0, \ \pi(P) \neq \pi(Q)$ and $\pi(P), \pi(Q) \in B$. We put $P_0^1 = P, \ P_0^2 = Q$. Let us suppose that the points $P_{\xi}^1, \ P_{\xi}^2$ are defined for $\xi < \alpha$, and that they satisfy the conditions 1° and 2°. The cardinality of $C_a = \{\pi(P_{\xi'}^i): \xi < \alpha, \ i = 1, 2\}$ is less than $2^{w(X)}$. Hence there exist points P_a^1, P_a^2 such that $\pi(P_a^1) \neq \pi(P_a^2), \ P_a^1 \in G_a, \ P_a^2 \in \overline{G}_a - G_a$ and $\pi(P_a^i) \in (X - C_a) \cap B$, i = 1, 2. Let $G(f) = \{P_{\xi'}^i: \xi < \gamma, \ i = 1, 2\}$ and let $B_0 = \pi[G(f)]$. The virtue of 2°, the set G(f) defines a unique map $f: B_0 \to Y$ whose graph is G(f).

Let $D \subset X \times Y$ be a set such that $G(f) \subset D$ and $\pi(D) = X$. We shall prove that D is dense and connected in $X \times Y$. The density of D follows from the fact that open sets of form $U \times V$, belong to T_0 . Hence G(f) and D are dense in $X \times Y$.

To prove that D is connected in $X \times Y$ it suffices to show (see Lemma 2) that for every open set $G \subset X \times Y$, $G \not\supset D$, $G \neq \emptyset$, we have $D \cap \operatorname{Fr}_{X \times Y} G \neq \emptyset$.

(a) If $\operatorname{Int}_X \pi(\operatorname{Fr}_{X \times Y} G) \neq \emptyset$, then $D \cap \operatorname{Fr}_{X \times Y} G = D \cap (\overline{G} - G)$ $\supset G(f) \cap (\overline{G} - G) \neq \emptyset$, since $G \in T_0$.

(b) If there exists a point $x \in X$ such that $\pi^{-1}(x) \subset \operatorname{Fr}_{X \times Y} G$, then $D \cap \operatorname{Fr}_{X \times Y} G \supset D \cap \pi^{-1}(x) \neq \emptyset$.

(c) If $G \not\supset D$ is dense in $X \times Y$, then $D \cap \operatorname{Fr}_{X \times Y} G = D \cap \lfloor (X \times Y) - G \rfloor = D - G \neq \emptyset$.

Thus, according to Lemma 2, it is proved that D is connected. Now, it is obvious that if $g: X \to Y$ is such that $g|B_0 = f$, then the graph of g is dense and connected in $X \times Y$.

COROLLARY. If X, Y satisfies the assumptions of the Theorem 1 and X-B is $2^{w(X)}$ -dense in X, then for every map $g\colon X\to Y$ there exists a map $g^*\colon X\to Y$ having a connected and dense graph and such that $g^*|B=g|B$.

Proof. It follows from Theorem 1 that there is a map $f: X - B \rightarrow Y$ such that each extension $g^*: X \rightarrow Y$ has a dense and connected graph. We define

$$g^*(x) = \begin{cases} f(x) & \text{if} \quad x \in X - B, \\ g(x) & \text{if} \quad x \in B. \end{cases}$$

LEMMA 3. Let X be a space such that $w(X) \ge \chi_0$ and, for every non-empty open set G, card $G \ge \tau$, where $\tau \ge w(X)$.

Then X is a union of τ mutually disjoint sets, each of them being τ -dense in X.

Proof. (I) Let $\tau > w(X)$ and let R of card R = w(X) be a base for the topology on X. Let β be an initial number of the power τ . We shall define sets $A_{\xi} = \{x_{G}^{\sharp}: G \in R\}, \xi < \beta$ such that

1° $x_{\alpha}^{\xi} \in G$ for every $G \in R$ and $\xi < \beta$,

 $2^{\mathsf{o}} \ \text{if} \ \xi \neq \xi', \ \xi, \xi' < \beta, \ \text{then} \ A_{\xi} \cap A_{\xi'} = \emptyset.$

For every $G \in R$ we assume x_G^0 to be an element of G. Let us assume that the points $x_G^{\mathcal{E}}$ are defined for every $G \in R$ and $\xi' < \xi$. Notice that $\operatorname{card} \{x_G^{\mathcal{E}}: G \in R, \xi' < \xi\} < \tau$. This makes it possible to define the set $A_{\xi} \subset X - \bigcup_{k' < k} A_{\xi'}$ whose elements satisfy 1°.

Since $\tau \cdot \tau = \tau$, there exists a one-to-one map $\varphi \colon \{(\gamma, \gamma') \colon \gamma, \gamma' < \beta\}$ onto $\{\xi \colon \xi < \beta\}$. Let $B_{\gamma} = \bigcup_{\gamma' < \beta} A_{\varphi(\gamma, \gamma')}$. From 1° and 2° it follows that $\operatorname{card}(B_{\gamma} \cap G) \geqslant \tau$ and $B_{\gamma} \cap B_{\gamma'} = \emptyset$ for every $\gamma \neq \gamma'$ and a non-empty open set G. The sets $C_0 = X - \bigcup_{\gamma > 0} B_{\gamma}$ and $C_{\gamma} = B_{\gamma}$ if $\gamma > 0$, are mutually disjoint and each of them is τ -dense in X.

(II) Let $\tau = w(X)$ and let $\{G_{\xi}: \xi < a\}$ be a base for the topology, where a is an initial number of the power τ . We shall define points α_{λ}^{2} , $\xi, \gamma < \alpha$, such that

1° $x_{\varepsilon}^{\gamma} \in G_{\varepsilon}$ for every $\gamma, \xi < \alpha$,

 $2^{\mathbf{o}}$ if $\gamma \neq \gamma'$ or $\xi \neq \xi'$, then $x_{\xi}^{\gamma} \neq x_{\xi'}^{\gamma'}$.

Let us assume that the points $x_{\xi'}^{y'}$, γ' , $\xi' < \xi$, are defined. Since $\operatorname{card} \{x_{\xi'}^{\gamma'}: \gamma', \xi' < \xi\} < \tau$, it is possible to define points satisfying 1° and 2°. We put $C_0 = X - \{x_{\xi}^{\gamma}: \xi < \alpha, \gamma > 0\}$ and $C_{\nu} = \{x_{\xi}^{\gamma}: \xi < \alpha\}$ if $\gamma > 0$.

THEOREM 2. If Y is a group and X, Y satisfy the assumptions of Theorem 1, then every map $f: X \to Y$ is a sum of two maps $h, k: X \to Y$, f(x) = h(x) + k(x), where h and k have connected and dense graphs in $X \times Y$.

Proof. It follows from Lemma 3 that there exist mutually disjoint sets B_1 , B_2 , each $2^{w(X)}$ -dense in X and such that $B_1 \cup B_2 = X$. Let h_1 : $X \rightarrow Y$, k_2 : $X \rightarrow Y$ be extensions of maps having properties as in Theorem 1, respectively for sets B_1 and B_2 . We define

$$h(x) = \begin{cases} h_1(x) & \text{if} \quad x \in B_1, \\ f(x) - k_2(x) & \text{if} \quad x \in B_2, \end{cases} \quad k(x) = \begin{cases} f(x) - h_1(x) & \text{if} \quad x \in B_1, \\ k_2(x) & \text{if} \quad x \in B_2. \end{cases}$$

THEOREM 3. If X, Y satisfy the assumptions of Theorem 1, then every map $f: X \rightarrow Y$ is the point-wise limit of a sequence $f_1, f_2, ...$ where every map $f_n: X \rightarrow Y$, n = 1, 2, ... has a connected and dense graph. More precisely, for every $x \in X$ there exists an n_0 such that if $n \ge n_0$, then $f_n(x) = f(x)$.

Proof. Let $B_1, B_2, ...$ be a sequence of mutually disjoint sets each of them being $2^{w(X)}$ dense in X and $X = \bigcup_{i=1}^{\infty} B_i$. Let $A_n = \bigcup_{i=1}^{n} B_i$. The sets A_n and $X-A_n$ are $2^{w(X)}$ -dense in X. From the Corollary it follows that for every n there exists a map $f_n: X \to Y$ such that the graph of f_n is dense and connected in $X \times Y$ and $f_n | A_n = f | A_n$.

Lemma 4. If X is a vector space satisfying the assumptions of Theorem 1, then there exists a $2^{w(X)}$ -dense vector base for X.

Proof. A set A is called linearly independent if $r_1x_1 + ... + r_nx_n = 0$ iff $r_1 = ... = r_n = 0$, where r_i is rational and $x_i \in A$ for i = 1, 2, ..., n, n=1,2,... Let us write $S(A)=\{r_1x_1+...+r_nx_n: x_i\in A, r_i \text{ is rational,} \}$ i = 1, ..., n, n = 1, 2, ...

Let $\{G_{\xi}: \xi < a\}$ be a base for the topology on X, where a is an ordinal number of power w(X). Let β be an initial number of power $2^{w(X)}$. We shall define by induction points x_{ξ}^{η} , $\xi < \alpha$, $\eta < \beta$, such that:

1° $x_{\varepsilon}^{\eta} \in G_{\varepsilon}$ for every $\xi < \alpha, \eta < \beta$,

2° $B_0 = \{x_\xi^\eta\colon\ \xi < \alpha,\ \eta < \beta\}$ is linearly independent.

Let $0 \neq x_0^0 \in G_0$. Let us assume that the points $x_{\xi'}^0$, are defined. Since $\operatorname{card} S(x_{\xi}^{0} \colon \xi' < \xi) < 2^{w(X)}$, we may put $x_{\xi}^{0} \in G_{\xi} - S(x_{\xi'}^{0} \colon \xi' < \xi)$.

Now, let us assume that the points $x_{\xi}^{\eta'}$, $\eta' < \eta$, $\xi < \alpha$ are defined. Let us notice that card $S(x_{\ell}^{\eta'}: \eta' < \eta, \xi < a) < 2^{w(X)}$. This makes it possible to define points x_{ξ}^{η} , $\xi < \alpha$ such that $x_{\xi}^{\eta} \in G_{\xi} - S(x_{\xi}^{\eta'}: \eta' < \eta)$ and $\xi' < \alpha$ or $\eta' = \eta$ and $\xi' < \xi$).

From the Kuratowski-Zorn Lemma it follows that there exists a vector base B containing B_0 . The base B is $2^{w(X)}$ -dense in X because B_0 is $2^{w(X)}$ -dense in X.

THEOREM 4. If X, Y are vector spaces satisfying the assumptions of Theorem 1, then there exists a map $F: X \rightarrow Y$ satisfying Cauchy's equation F(x+y) = F(x) + F(y) and having a dense and connected graph.

Proof. Let B be a $2^{w(X)}$ -dense vector base in X, and let $f: B \to Y$ be a map such that every extension $f^*: X \to Y$ of f has a dense and connected graph. We define $F: X \to Y$; $F(x) = r_1 f(x_1) + \dots + r_n f(x_n)$, where $x = r_1 x_1 + \dots + r_n f(x_n)$ $+...+r_nx_n$ and $x_i \in B$, r_i is rational for i=1,...,n, n=1,2,...

References

- [1] J. B. Brown, Connectivity, semi-continuity, and the Darboux property, Duke Math. J. 36 (1969), p. 559.
- [2] D. Phillips, Real functions having graphs connected and dense in the plane, Fund. Math. 75 (1972), pp. 47-49.

SILESIAN UNIVERSITY Katowice

Recu par la Rédaction le 5. 4. 1971