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Note on a theorem of J. Baumgartner
by
Keith J. Devlin (Bristol)

J. Baumgartner has proved that if V=1 (the Axiom of Con-
structibility) is assumed, then there is an Aronszajn tree order embeddable
in the reals but not in the rationals. We extend this result to show that,
under a weaker assumption than ¥ = L, there are 2% non-isomorphic
such trees.

We wish to thank Richard Laver for introducing us to the topic
here discussed.

During the preparation of this paper the author was a student at
the University of Bristol, England, and was supported by an S.R.C. Re-
search Studentship.

1. Introduction. We work in Zermelo—Fraenkel set theory (including
Choice), denoted by ZFC, and use the usual notations and conventions.
R denotes the real numbers (as an ordered set) and @ denotes the
rationals. )

A tree is a poset T = (T,<s) such that for any xeT, pr(z)
= {y e T| y <r @} is well-ordered by <r. The order-type of pr(z) is the
height of © in T, ht(x). For each ordinal a we set T, = {x e T| ht(z) = a}
and Tla= |J Tp. T, is the ath level of T. A branch of T is a maximal

<a
totally ordefred subset of 7'; if it has order-type e it is an a-branch. An
antichain of T iy a pairwise incomparable subset of T.
Let 1< ;. A tree T is o A-tree if:
(i) (Va < (2, # 0) & T, = 0;

(1) (Vo < D(|T,] < %) & | Tyl = 1;

(i) (Va < 2)(Va e Ty € Topal® <z 9} = sV (a+1 = A

(iv) (Va< B < A) (Ve eT,)(Hy e Tp)(x <zy);

(v) (Va= Ja< A)(Vz,y e L) (pr(@) = pr(y)>o=y)

An o, -tree is Aronszajn if it has no w,-branches. It is Souslin if in
addition it has no uncountable antichains.
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THEOREM 1.

1. (Aronszajn) There is an Aronszajn tree.

2. (Gaifman~Specker) There are 2% non-isomorphic Aronszajn trees.

3. (Jensen) If V = L, there is a Souslin tree.

4. (Jech) If V=1, ‘there are 2% non-isomorphic Souslin trees.

For proofs of 1 and 3 we refer the reader to [5]; a proof of 2 may he
found in [3], whilst 4 is proved in [4]. It is also proved in [5] that the
existence of a Souslin tree is not provable in ZFC alone.

2. The theorem. Let T be an o,-tree, X = (X
say T is X -embeddable if there is f: T X such that o < y—>f(@) <y fly).
We then say f embeds T in X.

THROREM 2. Let T be an w,-tree.

1. T is X-embeddable iff T is Aronszajn and there are antichaing A,
n< w, of T such that T= | A,.

) n<w
2. If T 48 R-embeddable, then T is Aronseajn and such that every
uncountable subset of T contains an wncountable antichain of T.

Proof. 1. If f embeds 7 in Q then T is clearly Aronszajn. Aiso,
Ag={x e T| f(z) = ¢} is an antichain of 7 for each qeQand T = | 4,.

A geQ
The converse is trivial.

2. Let U*C T Dbe urcountable. Then U inherits a tree structure
from 7. Let U*= |J U,,,. Tt T is R-embeddable, so is U, whence U*is

a<omy
Q-embeddable. By 1, U* is the union of o

ountably many antichains,
one of which must be uncountaple.

Now, the Aronszajn trees constructed in ZFC are all Q- embeddable.
By the above theorem, no Souslin tree can be R-embeddable. The question
arises, therefore, as to whether there can be Aronszajn trees R-embedd-
able but not Q-embeddable. That such trees cannot be constructed in
ZFC follows from the following result, proved in [2]:

THeOREM 8 (Baumgartner). f ZFQ s consistent, so is ZEC+ “Bvery
Aronszajn tree is Q-embeddable”,

However, the following was announced in [1]:

‘ THIEOREME 4 .(Baumgartner)‘ Assume V = L. Then there s an Aron-
szajn tree which is R-embeddable but nog Q- embeddable.

outlined to us by Richard Laver, involved
: ! _ nitial segments of I, A% the cost of some
messy combinatories, we have adapted thig argument to deduce Baum-
gartner’s conclusion from an assumption <, weaker than V = I, which

is due to R. B. Jensen. This approach allo
. lows u )
along the lines suggested by Theorem 1. " fo extend Theorem 4

) x> @ poset. We

e ©
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Let 4 be a limit ordinal. A set 4 C 1 is stationary if it intersects every
closed nnbounded subset of A.

Axiom <>. There is a sequence ¢S, a < w,> such that 8,Ca for
each o and such that whenever SCow,;, then {cew] Sna= 8.} is
stationary in ow;.

TaeoREM 5 (Jensen). If V = L, then < holds.

Proof. By induction, define <S,, C,> as the least pair (under the
canonical well-order of L) of subsets of a such that C,.is closed and un-
bounded in a and ye 0,8, ~y#8,. If no such pair exists, set &,
= (0, = 0. Assumption that {8, a < w,> is not as required now leads
speedily to a contradiction. Q.E.D.

We are now ready to prove our theorem. The proof was inspired -
by arguments in [4].

THEOREM 6. Assume <. Then there are 28 non-isomorphic Aron-
szajn trees R-embeddable but not Q-embeddable.

Proof. By < there is a sequence <k} a < w,)> such that %,: a—>a
for each o, and whenever : w,—w,;, then {a € w;| A} a= h,} is stationary
in w,. We fix this sequence for the rest of this proof.

By induction on o < w,, for each fe2® we shall construct an
(a+1)-tree Ty consisting of sequences of distinct integers of lengths <a.
The "ordering will be sequence extension. If s e Ty and y < length(s),
then s 'y € Ty, whence the height of any s in T is its length, If f, g ¢ | J 2°

e<oy

and fC g, then T, will be an end-extension of Ty. Hence for each F e 201,
T(F)= | Ty, will be an o, -tree. It will automatically be R-embeddable.

a<wg

For, given any X C w, let fx ¢ 2° be defined by fx{n) = 1 iff n e‘X. Thevn
the map h: T(F)— R defined by h(s) = frungers embeds T(F) in R. We
shall ensure that no-T(F) is @-embeddable, and that F, G2 & F # ¢
implies T'(F) 2& T(G).
As the induction proceeds, we define one-one maps my: Tr—+wo— o
50 that s Ct—me(s) < my(t), and so that fC g—mr C 7.
By @, we shall mean o endowed with a dense linear order <g. ‘
We shall carry out the construction so as to preserve the following
conditions:
(B) If felJ2* and s e Ty, then [ — range(s)| = ¥,.
a<o . ,
() If fe U1 2¢ and s e Ty and @ e [w]<“— range(s), there is &' Ds
a<wy

on each higher level of 7y such that range(s’) ~& = 0. .

Let Ty = {@). Suppose a < wy, fe2*, Ty, wy, are gleflned, al(;g
that 7, satisties (E) and (¥). To obtain T7, for ea‘ch.s ca”n T tray a’:
all one-point extensions of s by distinct infegers. This is possible by (2),
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which guarantees the existence of ¥, such. Clearly, T’ satisfies (8) ang ().
To obtain 7y from =y, extend the latter arbitrarily, except for ensuring
that if g2 and g+ f, then range(n,;) 5% range(ny). Since 280 — ¥ is
a trivial consequence of <, this causes no trouble.
Suppose now that a= Ja<w, fe2% Ty, @, are defined fop
all y <a, and that each Ty, satisfies (E) and (¥). Let T;—= | Ty,
<a

an a-tree. We must decide which a-branches of T} to extend in order
to obtain Ty. Let i} = | J m;;,. Then =; induces an a-tree isomorphic to T
y<a

whose elements are countable ordinals. Also, s <<g;¢ implies 7y(8) < awi(t)
There are three cases to consider. ’

Case I. h, embeds #;"” T} in Q. (We understand this to imply that
domain (h,) = ;" T7;.) .

Then h,-7; embeds T; in Q. (Note that f is uniquely determined
by o here. For suppose ge27 g f. Since a= | J a there is y < a with
fly+1sgly+1. By construction, range(w,,.,)  range (7gpys1). So,
as 7; and =, are order-preserving, range (7;) # range(z,). But range (s7;)
= domain (h,). Thus range(s,) 7 domain (%,), whence %, does not embed
7T, in Q.) Let

X(a)={(s,2)] seT;& v ec|w]<* &range(s) Ng=0}.
For (s, #), (t,9) « X(a), say (s,2) <, (¢, ) iff sCt &2 Cy. This defines
& partial order on X(a).
Recall that if P is a poset, a set U C P is cofinal if

(Vp eP)(ﬂg eU)p<pq.

For each n ¢ w, set
45 = {(s, x) e X(a)| ha.'n;(s) ZoM OF else

(Y, 9) e X(a))[(t,y) >, (s, &) >Ry my(t) < nl} .
Clearly, each A% is cofinal in X (a).

Let s ey, ©e[w]“*— range(s). Let {on| m < »)> be cofinal in «
Wwith ay = length (s). By (¥) we can find 8, € T}, 8,0 8, such that length (s;)
> 0, and range(s;) nz = @. Since (s, x) e X (@) and 45 is cofinal, we
‘can find a pair (s, 2,) >, (55, #) in 45. Let my € w—[range(s,) v %], by (E).
Let o, = 2, {m,}. By (¥) we can find 8 € Ty, 57D s, such that length (s;)
> o and range(s;) Nz, = 0. Since (81, 2) € X(a) and 4f iy cofinal, we
can find (s, 2,) >, (s;, ;) in 4%. Pick My € o—[range(s,) U x,], set )
= & {m,}, and proceed inductively. )

Let s(a) =nL<JcoS"' Then s(z) is an a-sequence of distinet integers

which defines an a-branch of T;. Also, s(2)D s and range(s (z)) ~ & = @.

° ©
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Finally, since {mgy, my, ...} ~range(s(#)) = @, we have [w-range(s(w))[
= No. We may thus let the ath level of 7Ty consist of one such s(z) for
each pair (s, #) as above. Then Tris an (a—1)-tree satisfying (E) and ().
Extend =} to m; on T arbitrarily. .

Case II. For some g ¢ 2° with g == f, h,: 7" Ty e m,"" Ty As before,
f and g are uniquely determined by a. Let s e T}, @ e [w]~*—range(s).
Take {an| 7 < w) as before. By (¥) we can find s, e T}, s, D s, such that
length(sy) > o, and range(s,) ~z= 0. Let m,e w—[range(s,) v «]. Let
Zy= @ v {my}. By (¥) again we can find s, « T}, 8. D 5y, such that length (s,)
> o; and range(s;) na, = @. Let m; ¢ o— [range(s,) w 2o, PUb @ = 25w
v {my}, and proceed inductively. This yields an a-sequenece s(z)Ds
which determines an a-branch of T;. Also, range(s(z)) ~z =@ and
lo—1ange(s (2))]| = ¥,. Let the ath level of T; comsist of one such s ()
for each such pair ¢, #. Similarly for 7T,. The only cause for concern now
is if 7,7 h,"7; extends to an isomorphism of T; and T,. If it does, pick
any distinct a-branch ¢ of T with |o—range(t)| = &, and put ¢ into the
ath level of Ty. To find such a %, proceed much as before, but miss the
(countably many) branches which already extend. Thus 7, Ry ) cannob
now extend to an isomorphism of 7 and T,.

In either case, Tr and T, are (a-1)-trees satisfying (E) and ().
Extend w; and =, to =, and =, arbitrarily. '

Case IIL. Neither of cases I or IT occurs. As in Case IT, add one s(z)
for each pair s, z to obtain Ty, and extend a; arbitrarily.

For Fe2™, set T(F)= | Ty, an o,-tree embeddable in R. Let

a<<ay

ar = J 7py,. Then mp: T(F)—>w— o and $ <y t->7p(8) < mr(3). Also,

a<oy .
np indoces a tree isomorphic to 7'(F) whose elements are countable
ordinals.
Suppose T'(F) is Q-embeddable. Then there is an & which embeds
zr''T(F) in Q. Let )
A=loew] a= Ua & [ar"T(FE)]l a=ap,"” Tpra &-
-&-h [a embeds nzy, " Thy, in Q- &-
& (Vs € Ty (Vi e [0]<*— range(s))(V—n > h(nF(s)))
[{Et e T(F))(tD s & range(t) ~ o = O & h(zr(t)) >4 n)
+ (8t € Tp)(tD s & range(t) ~ &= B & hlmalt)) 2o 7)]) -

It is easily seen that A is closed and unbounded in w,. Hence by <> there
is a € A such that k a= h,. Thus, by the definition of 4, Case I applied
in constructing Tpy, from Tpy,. Let sew®~T(F). Let n= h(ur(s)).
By construction, let (¢, y) € 4; be such that range(s) ny =8 and ¢Cs.
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As b is order-preserving, h(ms(f)) <o m. By the definition of 71 and the
relation of s to %, there is i’ e Ty, such that ¢ D¢ and range(t') ~y = @,
and such that h(vz(t)) = n. In particular, (t,9), (', y) e X(a) and (#, )
‘>, (t, ). But look, (t,y)ed;, so by definition we must have that
]Ta(ﬂ:}:(t)) >qm. Since hla="h,, this contadicts our earlier inequality.
Hence T(F) cannot be Q-embeddable. N
Suppose now that for some F, & ¢ 21, F # &, we have T(F) =2 T(@).

Let h: ap" T(F) = 25" T(@). Pick oy < o, such that F Moy & [ ay. Let

A={ceay a=Ja>ay& [z T(E)1a= mg’ Tppe- &-
'&'[ﬂauT(G)] la= n/ara”T(’Jfa'&'hTa: ﬂ_;"ra”Tllf"ra = n(,}ra”Té‘ra} .

Clearly, 4 is closed and unbounded in w,. By <, thereis a ¢ 71 such that
h}a= h,. Thus Cage IT applied in constrl}cting ll’ma from Tp,, and ViP
from Tf,. This means that the map ngjj-@a-npra does 1'1017 extelznd o
an isomorphism of T, and Tg,, which is absurd, since =ng'-h-mp
extends it. Thus T'(F) and T'(@) are not isomorphie. The proof is complete,
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Shapes of finite-dimensional compacta
b’yx
T. A.-Chapman (% (Lexington, Ken.)

1. Introduction. The results of this paper deal with shapes of finite-
dimensional compact metric spaces (see [4] for definitions concerning
the concept of shape). In Theorem 1 below we give a characterization
of shapes of finite-dimensional compact metric spaces (i.e. compacta) in
terms of embeddings in Euclidean n-space’ B". In an earlier paper the
author obtained a characterization of shapes of compacta (with no
dimensional restriction) in terms of embeddings in the Hilbert cube [8].
In a sense the results obtained here are motivated by [8], and to some
extent the general structure of the proof of Theorem 1 is a modification
of the argument used in [8]; but the present paper does not involve any
infinite-dimensional topology. For the sake of completeness we give
a short summary of the infinite-dimensional characterization at the
end of the Introduction. We use the notation Sh(X) = Sh(Y) to indicate
that compacta X and ¥ have the same shape.

TEEOREM 1. Let X, Y be compacta such that dim.X , Aim Y << m.

(a) For any integer n>2m-+2 there epist copies X', Y'C E™ (of
X, Y respectively) such that if Sh(X)= Sh(Y), then EN\X' and B\ Y’
are homeomorphic.

(b) For any integer n>>3m--3 there exist copres X', Y ' CE" (of
X, X respectively) such that if BN\X' and E™\Y' are homeomorphic, then
Sh(X)= Sh(Y).

We remark that a similar result holds for embeddings of X and ¥
in the #-sphere S8~

For prerequisites we will need some elementary facts concerning
the piecewise-linear topology of B plus an isotopy extension theorem
from [11]. e also use a characterization of dimension in terms of
mappings onto polyhedra in E* (see [14], p. 111). As for techniques we
remark that part (a) of Theorem 1 is the most difficult part of the proof.
Roughly the idea is to construet a sequence {h;}7, of homeomorphisms
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