

Note on a theorem of J. Baumgartner

by

Keith J. Devlin (Bristol)

J. Baumgartner has proved that if V=L (the Axiom of Constructibility) is assumed, then there is an Aronszajn tree order embeddable in the reals but not in the rationals. We extend this result to show that, under a weaker assumption than V=L, there are 2^{n_1} non-isomorphic such trees.

We wish to thank Richard Laver for introducing us to the topic here discussed.

During the preparation of this paper the author was a student at the University of Bristol, England, and was supported by an S.R.C. Research Studentship.

1. Introduction. We work in Zermelo-Fraenkel set theory (including Choice), denoted by ZFC, and use the usual notations and conventions. R denotes the real numbers (as an ordered set) and Q denotes the rationals.

A tree is a poset $T = \langle T, \leqslant_T \rangle$ such that for any $x \in T$, $\operatorname{pr}(x) = \{y \in T \mid y <_T x\}$ is well-ordered by \leqslant_T . The order-type of $\operatorname{pr}(x)$ is the height of x in T, $\operatorname{ht}(x)$. For each ordinal a we set $T_a = \{x \in T \mid \operatorname{ht}(x) = a\}$ and $T \mid a = \bigcup_{\beta \leq a} T_{\beta}$. T_a is the ath level of T. A branch of T is a maximal totally ordered subset of T; if it has order-type a it is an a-branch. An antichain of T is a pairwise incomparable subset of T.

Let $\lambda \leqslant \omega_1$. A tree T is a λ -tree if:

- (i) $(\nabla \alpha < \lambda)(T_{\alpha} \neq \emptyset) \& T_{\lambda} = \emptyset;$
- (ii) $(\nabla a < \lambda)(|T_a| \leqslant \aleph_0) \& |T_0| = 1;$
- (iii) $(\forall \alpha < \lambda)(\forall x \in T_{\alpha})[(|\{y \in T_{\alpha+1}|x <_T y\}| = \aleph_0) \lor (\alpha+1 = \lambda)];$
- (iv) $(\nabla \alpha < \beta < \lambda)(\nabla x \in T_a)(\exists y \in T_b)(x <_T y);$
- $(\nabla) \ (\nabla \alpha = \bigcup \alpha < \lambda) (\nabla x, y \in T_{\alpha}) (\operatorname{pr}(x) = \operatorname{pr}(y) \to x = y).$

An ω_1 -tree is *Aronszajn* if it has no ω_1 -branches. It is *Souslin* if in addition it has no uncountable antichains.

THEOREM 1.

- 1. (Aronszajn) There is an Aronszajn tree.
- 2. (Gaifman-Specker) There are 2^{1/2} non-isomorphic Aronszajn trees.
- 3. (Jensen) If V = L, there is a Souslin tree.
- 4. (Jech) If V = L, there are 2^{\aleph_1} non-isomorphic Souslin trees.

For proofs of 1 and 3 we refer the reader to [5]; a proof of 2 may be found in [3], whilst 4 is proved in [4]. It is also proved in [5] that the existence of a Souslin tree is not provable in ZFC alone.

2. The theorem. Let T be an ω_1 -tree, $X = \langle X, \leqslant_X \rangle$ a poset. We say T is X-embeddable if there is $f\colon T \to X$ such that $x <_T y \to f(x) <_X f(y)$. We then say f embeds T in X.

THEOREM 2. Let T be an ω_1 -tree.

- 1. T is X-embeddable iff T is Aronszajn and there are antichains A_n , $n < \omega$, of T such that $T = \bigcup A_n$.
- 2. If T is R-embeddable, then T is Aronszajn and such that every uncountable subset of T contains an uncountable antichain of T.

Proof. 1. If f embeds T in Q then T is clearly Aronszajn. Also, $A_q = \{x \in T | f(x) = q\}$ is an antichain of T for each $q \in Q$, and $T = \bigcup_{q \in Q} A_q$. The converse is trivial.

2. Let $U \subset T$ be uncountable. Then U inherits a tree structure from T. Let $U^* = \bigcup_{\alpha < \omega_1} U_{\alpha+1}$. It T is R-embeddable, so is U, whence U^* is Q-embeddable. By 1, U^* is the union of countably many antichains, one of which must be uncountable.

Now, the Aronszajn trees constructed in ZFC are all Q-embeddable. By the above theorem, no Souslin tree can be R-embeddable. The question arises, therefore, as to whether there can be Aronszajn trees R-embeddable but not Q-embeddable. That such trees cannot be constructed in ZFC follows from the following result, proved in [2]:

THEOREM 3 (Baumgartner). If ZFC is consistent, so is ZFC+ "Every Aronszajn tree is Q-embeddable".

However, the following was announced in [1]:

Theorem 4 (Baumgartner). Assume V = L. Then there is an Aron-szajn tree which is R-embeddable but not Q-embeddable.

Baumgartner's proof, as outlined to us by Richard Laver, involved a forcing construction over initial segments of L. At the cost of some messy combinatories, we have adapted this argument to deduce Baumgartner's conclusion from an assumption \diamondsuit , weaker than V=L, which is due to R. B. Jensen. This approach allows us to extend Theorem 4 along the lines suggested by Theorem 1.

Let λ be a limit ordinal. A set $A \subset \lambda$ is stationary if it intersects every closed unbounded subset of λ .

Axiom \Leftrightarrow . There is a sequence $\langle S_a | \ \alpha < \omega_1 \rangle$ such that $S_a \subset \alpha$ for each α and such that whenever $S \subset \omega_1$, then $\{\alpha \in \omega_1 | S \cap \alpha = S_a\}$ is stationary in ω_1 .

THEOREM 5 (Jensen). If V = L, then \Leftrightarrow holds.

Proof. By induction, define $\langle S_\alpha, C_\alpha \rangle$ as the least pair (under the canonical well-order of L) of subsets of α such that C_α is closed and unbounded in α and $\gamma \in C_\alpha \to S_\alpha \cap \gamma \neq S_\gamma$. If no such pair exists, set $S_\alpha = C_\alpha = \emptyset$. Assumption that $\langle S_\alpha | \alpha < \omega_1 \rangle$ is not as required now leads speedily to a contradiction. Q.E.D.

We are now ready to prove our theorem. The proof was inspired by arguments in [4].

THEOREM 6. Assume \diamondsuit . Then there are 2^{\aleph_1} non-isomorphic Aronszajn trees R-embeddable but not Q-embeddable.

Proof. By \diamond there is a sequence $\langle h_a | \ a < \omega_1 \rangle$ such that $h_a \colon a \to a$ for each a, and whenever $h \colon \omega_1 \to \omega_1$, then $\{a \in \omega_1 | h \upharpoonright a = h_a\}$ is stationary in ω_1 . We fix this sequence for the rest of this proof.

By induction on $\alpha < \omega_1$, for each $f \in 2^{\alpha}$ we shall construct an $(\alpha+1)$ -tree T_f consisting of sequences of distinct integers of lengths $\leqslant \alpha$. The ordering will be sequence extension. If $s \in T_f$ and $\gamma < \text{length}(s)$, then $s \upharpoonright \gamma \in T_f$, whence the height of any s in T_f is its length. If $f, g \in \bigcup_{\alpha < \omega_1} 2^{\alpha}$ and $f \subset g$, then T_g will be an end-extension of T_f . Hence for each $F \in 2^{\omega_1}$, $T(F) = \bigcup_{\alpha < \omega_1} T_{F \upharpoonright \alpha}$ will be an ω_1 -tree. It will automatically be R-embeddable. For, given any $X \subset \omega$, let $f_X \in 2^{\omega}$ be defined by $f_X(n) = 1$ iff $n \in X$. Then the map $h \colon T(F) \to R$ defined by $h(s) = f_{\text{range}(s)}$ embeds T(F) in R. We shall ensure that no T(F) is Q-embeddable, and that $F, G \in 2^{\omega_1} \otimes F \neq G$

As the induction proceeds, we define one-one maps π_f : $T_f \to \omega_1 - \omega$ so that $s \subset t \to \pi_f(s) < \pi_f(t)$, and so that $f \subset g \to \pi_f \subset \pi_g$.

By Q, we shall mean ω endowed with a dense linear order $<_Q$.

We shall carry out the construction so as to preserve the following conditions:

 $(\Xi) \text{ If } f \in \bigcup_{a < \omega_1} 2^a \text{ and } s \in T_f, \text{ then } |\omega - \operatorname{range}(s)| = \aleph_0.$

implies $T(F) \not\cong T(G)$.

(Ψ) If $f \in \bigcup_{a < \omega_1} 2^a$ and $s \in T_f$ and $x \in [\omega]^{<\omega}$ —range(s), there is $s' \supset s$ on each higher level of T_f such that range(s') $\cap x = \emptyset$.

Let $T_{\varnothing} = \{\emptyset\}$. Suppose $\alpha < \omega_1$, $f \in 2^{\alpha+1}$, $T_{f|\alpha}$, $\pi_{f|\alpha}$ are defined, and that $T_{f|\alpha}$ satisfies (Ξ) and (Ψ) . To obtain T_f , for each $s \in \omega^{\alpha} \cap T_{f|\alpha}$, add all one-point extensions of s by distinct integers. This is possible by (Ξ) ,

which guarantees the existence of \mathbf{s}_0 such. Clearly, T_f satisfies (Ξ) and (Ψ) . To obtain π_f from $\pi_{f|\alpha}$, extend the latter arbitrarily, except for ensuring that if $g \in 2^{a+1}$ and $g \neq f$, then $\operatorname{range}(\pi_g) \not\cong \operatorname{range}(\pi_f)$. Since $2^{\aleph_0} = \aleph_1$ is a trivial consequence of \diamondsuit , this causes no trouble.

Suppose now that $a = \bigcup \alpha < \omega_1$, $f \in 2^{\alpha}$, $T_{f|\gamma}$, $\pi_{f|\gamma}$ are defined for all $\gamma < \alpha$, and that each $T_{f|\gamma}$ satisfies (Ξ) and (Ψ) . Let $T'_f = \bigcup_{\gamma < \alpha} T_{f|\gamma}$, an α -tree. We must decide which α -branches of T'_f to extend in order to obtain T_f . Let $\pi'_f = \bigcup_{\gamma < \alpha} \pi_{f|\gamma}$. Then π'_f induces an α -tree isomorphic to T'_f whose elements are countable ordinals. Also, $s < T'_f t$ implies $\pi'_f(s) < \pi'_f(t)$. There are three cases to consider.

Case I. h_a embeds π'_{j} " T'_{j} in Q. (We understand this to imply that domain $(h_a) = \pi'_{j}$ " T'_{j} .)

Then $h_a \cdot \pi'_f$ embeds T'_f in Q. (Note that f is uniquely determined by a here. For suppose $g \in 2^a$, $g \neq f$. Since $a = \bigcup a$ there is $\gamma < a$ with $f \upharpoonright \gamma + 1 \neq g \upharpoonright \gamma + 1$. By construction, $\operatorname{range}(\pi_{f \upharpoonright \gamma + 1}) \neq \operatorname{range}(\pi_{g \upharpoonright \gamma + 1})$. So, as π'_f and π'_g are order-preserving, $\operatorname{range}(\pi'_f) \neq \operatorname{range}(\pi'_g)$. But $\operatorname{range}(\pi'_f) \neq \operatorname{domain}(h_a)$. Thus $\operatorname{range}(\pi'_g) \neq \operatorname{domain}(h_a)$, whence h_a does not embed $\pi'_g \cap T'_g$ in Q.) Let

$$X(a) = \{(s, x) | s \in T_f' \& x \in [\omega]^{< w} \& \operatorname{range}(s) \cap x = \emptyset\}.$$

For (s, x), $(t, y) \in X(a)$, say $(s, x) \leq_a (t, y)$ iff $s \subset t \& x \subset y$. This defines a partial order on X(a).

Recall that if P is a poset, a set $U \subset P$ is cofinal if

$$(\nabla p \in P)(\exists q \in U)(p \leqslant_{P} q)$$
.

For each $n \in \omega$, set

$$\Delta_n^{\alpha} = \{(s, x) \in X(\alpha) | h_{\alpha} \cdot \pi_{f}'(s) \geqslant_{Q} n \text{ or else} \}$$

$$(\nabla(t,y) \in X(a))[(t,y) \geqslant_a (s,x) \rightarrow h_a \cdot \pi'_f(t) <_{\mathbf{O}} n]$$
.

Clearly, each Δ_n^{α} is cofinal in $X(\alpha)$.

Let $s \in T'_f$, $x \in [\omega]^{<\omega}$ —range(s). Let $\langle a_n | n < \omega \rangle$ be cofinal in a with $a_0 = \text{length}(s)$. By (Ψ) we can find $s'_0 \in T'_f$, $s'_0 \supset s$, such that $\text{length}(s'_0) \geqslant a_0$ and $\text{range}(s'_0) \cap x = \emptyset$. Since $(s'_0, x) \in X(a)$ and Δ^a is cofinal, we can find a pair $(s_0, x_0) \geqslant_a (s'_0, x)$ in Δ^a_0 . Let $m_0 \in \omega$ —[range $(s_0) \cup x_0$], by (Ξ). Let $x'_1 = x_0 \cup \{m_0\}$. By (Ψ) we can find $s'_1 \in T'_f$, $s'_1 \supset s_0$, such that $\text{length}(s'_1) \geqslant a_1$ and $\text{range}(s'_1) \cap x'_1 = \emptyset$. Since $(s'_1, x'_1) \in X(a)$ and Δ^a_1 is cofinal, we can find $(s_1, x_1) \geqslant_a (s'_1, x'_1)$ in Δ^a_1 . Pick $m_1 \in \omega$ —[range $(s_1) \cup x_1$], set $x'_2 \in X$.

Let $s(x) = \bigcup_{n < \omega} s_n$. Then s(x) is an α -sequence of distinct integers which defines an α -branch of T'_f . Also, $s(x) \supset s$ and $\operatorname{range}(s(x)) \cap x = \emptyset$.

Case II. For some $g \in 2^a$ with $g \neq f$, h_a : $\pi'_f " T'_f \cong \pi'_g " T'_g$. As before, f and g are uniquely determined by a. Let $s \in T'_f$, $x \in [\omega]^{<\omega}$ —range(s). Take $\langle a_n | n < \omega \rangle$ as before. By (Y) we can find $s_0 \in T'_f$, $s_0 \supset s$, such that length(s_0) $\geq a_0$ and range(s_0) $\cap x = \emptyset$. Let $m_0 \in \omega$ —[range(s_0) $\cup x$]. Let $x_0 = x \cup \{m_0\}$. By (Y) again we can find $s_1 \in T'_f$, $s_1 \supset s_0$, such that length(s_1) $\geq a_1$ and range(s_1) $\cap x_0 = \emptyset$. Let $m_1 \in \omega$ —[range(s_1) $\cup x_0$], put $x_1 = x_0 \cup \{m_1\}$, and proceed inductively. This yields an α -sequence $s(x) \supset s$ which determines an α -branch of T'_f . Also, range(s(x)) $\cap x = \emptyset$ and $|\omega$ —range(s(x))] = s_0 . Let the α th level of T_f consist of one such s(x) for each such pair s, x. Similarly for T_g . The only cause for concern now is if $\pi'_g \cap h_a \cap \pi'_f$ extends to an isomorphism of T_f and T_g . If it does, pick any distinct α -branch t of T'_f with $|\omega$ —range(t)| = t_0 and put t into the tth level of t. To find such a t, proceed much as before, but miss the (countably many) branches which already extend. Thus $\pi'_g \cap h_a \cap \pi'_f$ cannot now extend to an isomorphism of t and t.

In either case, T_f and T_g are (a+1)-trees satisfying (Ξ) and (Ψ) . Extend π'_f and π'_g to π_f and π_g arbitrarily.

Case III. Neither of cases I or II occurs. As in Case II, add one s(x) for each pair s, x to obtain T_f , and extend π'_f arbitrarily.

For $F \in 2^{\omega_1}$, set $T(F) = \bigcup_{\alpha < \omega_1} T_{F|\alpha}$, an ω_1 -tree embeddable in R. Let $\pi_F = \bigcup_{\alpha < \omega_1} \pi_{F|\alpha}$. Then $\pi_F \colon T(F) \to \omega_1 - \omega$ and $s <_{T(F)} t \to \pi_F(s) < \pi_F(t)$. Also, π_F induces a tree isomorphic to T(F) whose elements are countable ordinals.

Suppose T(F) is Q-embeddable. Then there is an h which embeds $\pi_F{}''T(F)$ in Q. Let

$$\begin{split} A &= \left\{ a \in \omega_1 | \ a = \bigcup a \cdot \& \cdot [\pi_F^{\prime\prime} T(F)] \upharpoonright a = \pi'_{F \upharpoonright a}^{\prime\prime} T'_{F \upharpoonright a} \cdot \& \cdot \right. \\ &\cdot \& \cdot h \upharpoonright a \text{ embeds } \pi'_{F \upharpoonright a}^{\prime\prime} T'_{F \upharpoonright a} \text{ in } Q \cdot \& \cdot \\ &\cdot \& \cdot (\nabla s \in T'_{F \upharpoonright a}) (\nabla x \in [\omega]^{\leq \omega} - \operatorname{range}(s)) (\nabla n >_Q h(\pi_F(s))) \\ &\left[(\exists t \in T(F)) (t \supset s \& \operatorname{range}(t) \cap x = \emptyset \& h(\pi_F(t)) \geqslant_Q n) \right. \\ & \left. \Rightarrow (\exists t \in T'_{F \upharpoonright a}) (t \supset s \& \operatorname{range}(t) \cap x = \emptyset \& h(\pi_F(t)) \geqslant_Q n) \right] \right\}. \end{split}$$

It is easily seen that A is closed and unbounded in ω_1 . Hence by \diamondsuit there is $a \in A$ such that $h \upharpoonright a = h_a$. Thus, by the definition of A, Case I applied in constructing $T_{F \upharpoonright a}$ from $T'_{F \upharpoonright a}$. Let $s \in \omega^a \cap T(F)$. Let $n = h(\pi_F(s))$. By construction, let $(t, y) \in \mathcal{A}_n^a$ be such that range $(s) \cap y = \emptyset$ and $t \subseteq s$.

As h is order-preserving, $h(\pi_F(t)) <_Q n$. By the definition of A and the relation of s to t, there is $t' \in T'_{F|\alpha}$ such that $t' \supset t$ and range $(t') \cap y = \emptyset$, and such that $h(\pi_F(t')) \geqslant_Q n$. In particular, $(t, y), (t', y) \in X(\alpha)$ and $(t', y) \geqslant_\alpha (t, y)$. But look, $(t, y) \in A^n$, so by definition we must have that $h_\alpha(\pi_F(t)) \geqslant_Q n$. Since $h \upharpoonright \alpha = h_\alpha$, this contadicts our earlier inequality. Hence T(F) cannot be Q-embeddable.

Suppose now that for some $F, G \in 2^{\omega_1}, F \neq G$, we have $T(F) \cong T(G)$. Let $h: \pi_F "T(F) \cong \pi_G "T(G)$. Pick $\alpha_0 < \omega_1$ such that $F \upharpoonright \alpha_0 \neq G \upharpoonright \alpha_0$. Let

$$A = \{ a \in \omega_{\mathbf{I}} | \ a = \bigcup \alpha > \alpha_{\mathbf{0}} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& \cdot [\pi_F ^{\prime \prime} T(F)] \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} T_{F \upharpoonright \alpha} T_{F \upharpoonright \alpha} \cdot \& (\pi_F ^{\prime \prime} T(F)) \upharpoonright \alpha = \pi_{F \upharpoonright \alpha} T_{F \upharpoonright \alpha}$$

$$\cdot \& \cdot [\pi_{G} ^{\ \prime \prime} T(G)] \upharpoonright \alpha = \pi_{G \upharpoonright \alpha} ^{\prime \prime} T_{G \upharpoonright \alpha} ^{\prime} \cdot \& \cdot h \upharpoonright \alpha \colon \pi_{F \upharpoonright \alpha} ^{\prime \prime} T_{F \upharpoonright \alpha} ^{\prime} \cong \pi_{G \upharpoonright \alpha} ^{\prime \prime} T_{G \upharpoonright \alpha} ^{\prime} \rbrace \; .$$

Clearly, A is closed and unbounded in ω_1 . By \diamondsuit , there is $\alpha \in A$ such that $h \nmid \alpha = h_\alpha$. Thus Case II applied in constructing $T_{F \mid \alpha}$ from $T'_{F \mid \alpha}$ and $T_{G \mid \alpha}$ from $T'_{G \mid \alpha}$. This means that the map $\pi'_{G \mid \alpha}^{-1} \cdot h_\alpha \cdot \pi'_{F \mid \alpha}$ does not extend to an isomorphism of $T_{F \mid \alpha}$ and $T_{G \mid \alpha}$, which is absurd, since $\pi_G^{-1} \cdot h \cdot \pi_F$ extends it. Thus T(F) and T(G) are not isomorphic. The proof is complete.

References

- J. Baumgartner, Decompositions and embeddings of trees, Notices A.M.S. 17 (1970), pp. 967.
- [2] J. Malitz, and W. Reinhardt, Embedding trees in the rationals (to appear).
- [3] H. Gaifman, and E. P. Specker, Isomorphism types of trees. Proc. A.M.S. 15 (1964), pp. 1-7.
- [4] T. Jech, Automorphisms of ω_1 -trees (to appear).
- [5] Trees, J. S. L. 36 (1971), pp. 1-14.

UNIVERSITY OF BRISTOL, Bristol

Reçu par la Rédaction le 7, 7, 1971

Shapes of finite-dimensional compacta

by

T. A. Chapman (1) (Lexington, Ken.)

1. Introduction. The results of this paper deal with shapes of finite-dimensional compact metric spaces (see [4] for definitions concerning the concept of shape). In Theorem 1 below we give a characterization of shapes of finite-dimensional compact metric spaces (i.e. compacta) in terms of embeddings in Euclidean n-space E^n . In an earlier paper the author obtained a characterization of shapes of compacta (with no dimensional restriction) in terms of embeddings in the Hilbert cube [8]. In a sense the results obtained here are motivated by [8], and to some extent the general structure of the proof of Theorem 1 is a modification of the argument used in [8], but the present paper does not involve any infinite-dimensional topology. For the sake of completeness we give a short summary of the infinite-dimensional characterization at the end of the Introduction. We use the notation $\operatorname{Sh}(X) = \operatorname{Sh}(Y)$ to indicate that compacta X and Y have the same shape.

THEOREM 1. Let X, Y be compacta such that dim X, dim $Y \leq m$.

- (a) For any integer $n \ge 2m+2$ there exist copies X', $Y' \subseteq E^n$ (of X, Y respectively) such that if Sh(X) = Sh(Y), then $E^n \setminus X'$ and $E^m \setminus Y'$ are homeomorphic.
- (b) For any integer $n \ge 3m+3$ there exist copies X', $Y' \subset E^n$ (of X, Y respectively) such that if $E^n \setminus X'$ and $E^n \setminus Y'$ are homeomorphic, then Sh(X) = Sh(Y).

We remark that a similar result holds for embeddings of X and Y in the n-sphere S^n .

For prerequisites we will need some elementary facts concerning the piecewise-linear topology of E^n plus an isotopy extension theorem from [11]. We also use a characterization of dimension in terms of mappings onto polyhedra in E^n (see [14], p. 111). As for techniques we remark that part (a) of Theorem 1 is the most difficult part of the proof. Roughly the idea is to construct a sequence $\{h_i\}_{i=1}^{\infty}$ of homeomorphisms

⁽¹⁾ Supported in part by NSF Grant GP 14429.

^{18 -} Fundamenta Mathematicae T. LXXVI