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Compact spaces homeomorphic to a ray of ordinals
by
Jobn Warren Baker (Tallahassee, Flor.)

For an ordinal number & we denote by I'(£) the set of ordinals not
exceeding £ provided with the interval topology. The second theorem

- characterizes the compact Hausdorff spaces which are homeomorphic

to some I'(£) and generalizes the following well-known theorem due to
Mazurkiewicz and Sierpifski (cf. [8], p. 21 or [7], p. 103): If X® is the
last nonempty derivative of a compact, countable space X and n is the number
of elements in X®, then X is homeomorphic to I'(«® n). Theorem 4 gives
a generalization of the Cantor-Bendixson Theorem restricted to com-
pact sets.

A subset of a topological space X which is both closed and open is
called clopen. If there is a meighborhood base for each point of X con-
sisting of clopen sets, X is called zero-dimensional. If each component
of X is a point, then X is totally disconnected. For compact Hausdortf
spaces, these two concepts are equivalent [3]. If £ is an ordinal number,
X® denotes the derivative of order & of X (cf. [6], p. 261 or [12], p. 64).
If X is finite and contains exactly n points, the pair (1, n) is called the
characteristic of X. The set of ordinals less than £ with the interval topology
is denoted I(&); therefore, I'(§) = I'y(£+1). The symbol w represents
the first. infinite denumerable ordinal and the symbol 2 denotes the first
uncountable ordinal. By map, we mean a continuous function. AIl spaces
are assumed to be Hausdorff. The predecessor of a nonlimit ordinal « is
denoted by a—1. All other notation and terminology is standard as fou.nd
for example, in Kelley’s General Topology.

I wish to express my appreciation to Professors John Brya.nt Monika
Kartowicz, and Hilbert Levitz for several profitable discussions. In
particular, I wish to thank Professor Karlowicz for pointing out an error
in the original draft of this paper.

In [10], Professor Z. Semadeni asked if a sufficient condition for
a compact, dispersed space X to be homeomorphic to I'(a) for an ordinal
o is that the following condition be satisfied: for each x ¢ X there exists
& (possibly transfinite) decreasing sequence {U,},., of neighborhoods of x
2% .
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such that () U, = {z}. The first example shows that this condition is
: .

not sﬁfﬂcierfg. However, if {U,},., is assumed to be a neighborhood base
for @, Theorem 1 states there is a map of X onto an ordinal space I'(w*. n)
with the same characteristic system. Theorem 2 establishes a necessary
and sufficient condition for this map to be a homeomorphism. Example 1
in [1] shows that the “decreasing neighborhood base” agsumption cannot
be omitted in Theorem 1. ’

The following two lemmas are needed in the proof of the first theorem.
The first lemma is known (see [8], p. 21) and the proof of the second is
a routine transfinite induction argument.

Levma 1. For every ordinal A, I'(0")® = {o*}. Therefore, if n is
a natural number, CardM(z@)® > n if and only if =2 w-n.

Lrnwa 2. Suppose X is a totally disconnected, compact space and
® e X. If x has a local neighborhood base consisting of o (possibly transfinite)
decreasing sequence {Ugec, of sets, then {U,}.., can also be selected with
each U, clopen. :

TemoREM 1. Let X be a compact dispersed space with characteristio
(4, n). If each point x in X has & neighborhood base consisting of (possibly
iramsfinite) decreasing sequence {U,},., of sets, there is a map of X onto
I(w*-n).

Proof. First observe that if the theorem is true for (4, 1), it is also
true for (4,n) for each positive integer n. For suppose that X@ hag
exactly n points, say @, 2,, ..., @, and that the theorem hag been established
for (1,1). We can partition X into disjoint clopen sets Uy, Uy, ..., Uy $0
that @; € U for each 4. But there exists amap f; of U; onto (0 (i—1), o*-4)
and f={J f: is a map of X onto I'(w* n). '

I ¥ is a closed subspace of X with characteristic system (0, 1),
Y is homeomorphic to I'(1) and the theorem statement ig valid for Y.
Suppose the theorem Has been. established for each closed subset of X
with characteristic system (y, 1) where y<Zand 23> 1. By the preceding
Daragraph, we may also assume the theorem has been proved for each
closed subspace with characteristic (7, m) where y < 2 and m is a positive
integer. Let ¥ be a closed subset of ¥ ‘with characteristic (4, 1) and let y,
be the one point in ¥®. There is a decreasing sequence {U,},., of sets
in ¥ which form a neighborhood base for Yo and, by Lemma 2, we may
assume each U, is clopen. Tt is convenient to assign Uy = ¥ and U, = 0.

Since 4= 1, 7 is a limit ordinal. Suppoge W, = U,~U,,, has charac- ‘

teristic (22, n,). But W, C (¥ ~T®); hence, 1,< 1 and, by hypothesis,
there exists a map f, of W, onto I'(w'.n,). Therefore, there is a map g,

of W, onto
(2 w'e Py 2 501“47%']’ ((010'77'0 =1).

o<a o<a
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We define a map h, of Y~T, onto I'( 3 w'.n,) for each a < 7 with

o<a .
the property that o< g implies %, C k;. Liet %, = g,. Suppose %, has been
defined for each a<C § where § is a fixed ordinal and g < z. If § is non-
limit, f,_, is defined and we let hy= %,_, g, ,. Clearly, h; is the desired
map since ¥Y~~oU;= (¥ ~Us,) v W5, where ¥ ~U,_; and W,_, are
clopen, disjoint subsets of Y.

Next, suppose § is & limit ordinal. Since u < a<< g implies &, Ch,, g
= UM, is a map of ¥y= |J(¥Y~T,) onto Iy } w'n,). For if ze¥,,
a<f

a<f a<B

there exists £ < § such that 2 ¢ ¥ ~U, and

(%) = hy(w) EF(Z ofen) CIo( 3 wtan,) .
a<g

a<fB

Moreover, if 6 e Iy( 3 w’-n,), then 8 eI’} w'-n,) for some £< f and

a<p a<f
there exists z ¢ (¥ ~U,) C ¥, such that g(x) = h(z) =0.
We define %; by R

9@, i seT=Y~([) U,
a<,
h =
&2 Y whan,, it ze( Uy)~U,. i
ﬁ .. a<f T

The domain of hy is ¥ ~Up,, and it is obvious that &, is continuous ab
each point in ¥ ~( () U,). Suppose ze ([ U,) ~U; and {#,},.5 Is & net -
a<p a<p

in ¥~U, such that #,->2. Let 6 <} w'e-m,. There exists &< § such

a<f
that 8 << Y wa-m,. Thus, § < hy(y) < 3 w'e-n, for ye [USN(QﬂUa)]' But
a<f& a<f . a

for y e () U,)~T,, hy(y) = Y wla-m,. Since z,~>a, there exists p, such
a<p a<p

that @, € U;~U, for u > p,. Therefore,

hyla,) €[8, 3 weny]
a<p
for all p > py, 50 h{w,)—>h(x). This shows h, is continuous; consequently,
h, can be defined for each a < 7. R
Thus, &, is & map of ¥ onto I'(} w'e-n,). We show Y e’ n,> o’

a<t a<t
If 2 is nonlimit, A, = 1—1 for infinitely many values of ¢ and, by in-
duction on n,

s
S»
1

Z wla.m, = lim ( Z a)‘a-%c) >

agt P<? a<y i

{|
-1


Artur


29 J. W. Baker

for each natural number n. Thus,
o«
. A1t

2 when, = 21: () w

a<t = .
£ 1 is a limit ordinal and y < 1, there exists 0 < 7 such that 4, > y. Tlier&
fore, Y w'e-n, > wh > o, Since this is true for each y < A, D oten,

bl a

a<t
alr

; ST A P
> supe’ = o’ Thus > we.-n, =e* in both cases. It } wh.n, > o, there

<2 a<t . a<v )
exiysts y< v such that Y @' m,> o’ Since h, is & homeomorphism of
a<ly
; @ ja Mhie de
Y~U, onto I'( Y w'=-n,), by Lemma 1 (Y ~U,)? is nonempty. This is
a<y .

impossible; hence, w'e-n,= o’ Thus h, is a map of ¥ onto I'(o%).

a<lt . . . .
It follows by transfinite induction and by the first pgmrqgmph of this
proof that if ¥ is a closed subspace of X with characteristic (1, n), there
exists a map of ¥ onto I'(w*.n). This completes the proof.

‘We shall say that a point  in X satisties (D) in X if 4 has a neighbor-
hood base consisting of a decreasing possibly transfinite, sequence {Ua}? <
of clopen sets with the additional property that ( ﬂﬂ Ua)NUﬁ containg

a<|

at most one point for each limit ordinal f with §< 7. If each point in X
satisties (D), we say that X has property (D). It should be noted that
every first-countable, regular space and évery set of ordinals satisfies (D).
Theorem 2 gives a complete characterization of compact dispersed (Haus-
" dorff) spaces with property (D). In particular, it characterizes closed
sets of ordinals which are homeomorphic.

THROREM 2. Let X be a compact, dispersed space with characieristic
(A, n). If X has property (D), it is homeomorplic to I'(w*-n).

Proof. The proof of this theorem is identical to the proof of Theo-
rem 1, except “map” is replaced with “homeomorphism” throughout.

Note that ks is injective since ([} U,)~U, contains exactly one point.
i a<p

A subset X of I'(§) = I'y(£-+1) is well-ordered and hag order type f
for some B < £+41. Therefore, there is an injective, order preserving
map ¢ of I'y(B) onto X. If X is a closed subspace of I'(£), ¢ is also a homeo-
morphism. The proof that ¢ is a homeomorphism is omitted since the
following corollary is an easy consequence of Theorem 2.

CorOLLARY 1. A closed subspace of I'(&) is homeomorphic to I'(n) for
some 7 < &. ;

Theorem 2 is & generalization of the previously cited theorem of
Mazurkiewicz and Sierpinigki. In fact, we obtain the following generali-
zation of their theorem established by Z. Semadeni in [10].
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CoROLLARY 2. (Semadeni). A first-countadle, dispersed, compact space
X is metrizable. In fact, X is homeomorphic to I'(w® n) where (a,n) is the
characteristic of X and a<< Q.

Proof. Bince X satisfies (D), it is homeomorphic to I'(w®-n) by
Theorem 2. Now 2 ¢ I'(w®-n) because X is first-countable. Therefore, |
X is .denumerable and second-countable. According to the TUrysohn
Metrization Theorem, X is metrizable. ' ’

Every ordinal 42>0 has a unique representation of the form
A= o™ a4 0" ay4 ... Lo a; where k and a,, a,, ..., ar are natural
numbers and y;, s, ..., yx is a decreasing sequence of ordinals ([11], p. 323).
‘We follow Cantor and call this the normal form of 1 and the ordinal «;
its degree. Also, a; will be called the leading coefficient. According to
Lemma 1, the characteristic system of I'(1) is (y, @,). The following
well-known corollary is an immediate consequence of these definitions,
Lemma 1, and Theorem 2.

COROLLARY 3. Suppose a and B are ordinals and (A, n) is the characteristic
of I'(A). The following are equivalent: '

(a) I'(a) 48 homeomorphic to I'(B).

(b) I'(a) and I'(B) both have characteristic (1, n).

(©) ot n<a< ot (n+1) and o*n < < o (n+1).

(d) The normal forms of both « and f have degree A and leading coef-
ficient n.

The following example illustrates that “map” cannot be replaced
with “homeomorphism” in the statement of Theorem 1. This example

~ gives a complete answer to question 8 raised by Z. Semadeni in [10] (2).

ExaMPLE 1. There exists a compact, dispersed, Hausdorff space X
not homeomorphic to any set of ordinals and such that for each ze X
there exists a transfinite decreasing sequence {U_},., of clopen sets which
form a local neighborhood base for z.

Proof. Let K be the decomposition of I'(2-2) consisting of points
and the one plural set {2, Q2-2}. Then the quotient space X = I'(2-2)/K
is a compact dispersed Hausdorff space. It is easy to see that for each
« ¢ X, there is a sequence {U,},., 0of clopen sets which form a neighboxr-
hood base for x. Since X contains two uncountable sets 4 and B such
that K¢ 4, K¢B, but 4~ B= {K}, X cannot be homeomorphic to
a subset of I'(a) for any a. -

(*) The referee informed the aunthor that Example 1 was also given by M. Katetov
in an unpublished letter in 1959 to Z. Semadeni. Actually, Katetov’s example was
2+41+402* where 2* denotes the order type inverse to 2 which is a simpler way of de-
scribing the author’s space I'(2-2)/K.
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By using a (transfinite) stairstep method, we can select for each » in
the space X of Example 1 a decreasing sequence {U.}ue, of sets forming
a closed neighborhood base for & which also - satisfies the property that
(N U,)~U, contains at most one point for each f< 7. Therefore, one
a<

cannot assume that the sets in the required neighborhood systems in
Theorem 2 are merely closed instead of clopen. ’ S

The next example shows that the compactness requirement in
Theorem 2 cannot be replaced by sequentially compact or by normal.
This gives a negative answer to a natural refinement of question 8 in [10].
T wish to thank Professor James Keesling for suggesting this example.

BxAMPLE 2. Let X = I'(2) X I'(w). Then X is sequentially compact,
dispersed, normal, and satisfies (D), but X is not homeomorphic to a sub-
set of I'(e) for any ordinal a.

Proof. Let {(an, ku)} be an arbitrary sequencein X and let a = supa,.
Since a< £ and {(an, ks)} CI'(a) X I'(w), this sequence has an accumu-
lation point. Thus, X is countably compact. By Proposition 1 in [2],
X is sequentially compact. Also, X is norimal by problem 8J in [4]. As
éach limit ordinal less than £ is the limit of an increasing sequence of
ordinals, X has property (D). '

Suppose X is homeomorphic to a subset of I'(a) for some a. Let
Cl(X) denote the closure of X in I'(a). By 8J in [4], the Stone—Cech.
compactification X of X is I'(Q)X I'(w). There iy a quotient map ¢
from X onto CI{X) with ¢(x) = » for each z ¢ X. Suppose 2 and y are
distinet points in X with ¢(x) = ¢(y). Let # = (2,n) and y = (2, m).
Then Y = q[{(6, k)| k e {m,n} and 6 ¢ I'(2)}] is a closed subset of CL(X)
homeomorphie to I'(2-2)/{Q, 2-2}. By Corollary 1, ¥ is homeomorphic
to a ray of ordinals. This contradicts Example 1. Thus, ¢ is a homeo-
morphism of I'(Q) X I'(w) onto a ray of ordinal numbers. Since I(Q) X
%X I'(w) does not satisfy (D), this is impossible (see 3.10 in [107).

PROPOSITION 1. If & and n are ordinal numbers, then I'(n-+£), I'(E-+ 1),

. R . 7
and the free (i.e., discrete) 'union I'(n) © I'(£) are all homeomorphic. If either
§w <y or w&<, they are oll also homeomorphic to I'(n).

. 1
, Proof. Since I'(n+&) = [1, 9] C [+1, n+&] and I'(E+9) = [1, €] kfi
U [£+1, £+, the first statement follows from Theorem 2. Lt (a, &)

be the characteristic of I'(€) and let (8, m) be the characteristic of I'(n).
By Lemma 1, 0"k <& and o-m < 7. If, in addition, & o < #, then
a}“+1<§-w< 7. By L;amma 1, o™ < of-m and a1 < B. As [I‘(n)ufd
O TP = T’ m)® O (0 B = {of, o2, ..., of-m}, I'(y) > I'(&) has

characteristic (8, m) and is homeomorphic to I'(n) by Theorem 2. The
proof for the case where o £ < 7 I8 similar.

icm®
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ToumA 3. Let X and Y be compact spaces. If ¢ is a map of X onto ¥,
the inclusion IO Cp(X®) is satisfied for every ordinal a.

This lemma is established in [9] and is restated here for convenience.

Lt X be a compact, dispersed space with characteristic system (4, n).
Ar immediate consequence of Theorem 2 and Lemma 3 is that if ¢ is
a map of X onto a space Y which satisfies (D), then Y is homeomorphic
to T'(&) for some & < w*-m. In particular, if X = I'(a) then ¥ is homeo-
morphic to I'(§) for some & < a. If X = I'(a) and a< £, the requirement
that Y satisfy (D) can be dropped as I'(a) and its images will be’ denumer-
able, and therefore metrizable. However, this requiremen.t cann9t be
dropped in general since it is known that if a > Q, the continnous Image
of I'(a) may not be homeomorphic to a subset of I'(B) for any B. For
example, the quotient space ¥ = r@)e, o} (e, Y‘= Q+1ﬂ-w*
where w* denotes the order type inverse to o) iz a continuous image
of I'(Q) with characteristic (2,1). However, if ¥ is homeogmrphic to
o subset of some I'(8), then by Theorem 2, ¥ is homeomorph?c to I’(Q).
This is impossible ds {w, 2} is the limit of 3 sequence of dlstmctrpomts
put each of its meighborhoods are uncountable. ‘

T# X is a topological space and if £ is the least ordilllal sueh .‘c{m.t
X® ig perfect, then P = X¥, ¢= Ue (X@ ~X0+D) is a unique partition

a< ~

of X into a perfect set P and a dispersed set G (see [12], p. 64). Of course,
either of these sets may be empty. The set P is the largest perfect subset
of X and is denotes by Ker(X) (i.e., the kernel of X). I

Tn Theorem 3, we assume that X is compact, & is- the lea.s(:;) Qrdmal
such that X® is perfect, and ¢ = X ~X®. The notation X/x 1(: used
for the quotient space of X consisting of X® and points of X ~X°. The
restriction of a map ¢ to the subset ¢ is denoted by ¢|G- C.Ehgorem 3 gives
a characterization of @ for spaces X in which X/X® satisties D).

TemoREM 3. If X, /X(g) satisfies (D), there is an ordinal = and a map q;
of X onto I'(m) such that @|G is a homeomorphism of G onto Do) and
(@)= x for v ¢ X ~G.

In particular, :

(a) If XO ~ G is infinite for each a<§, then 7= of. ;

(b) If X@ ~@ s finite for some a< &, then & 18 nonlzm(zi lgm Gn
= wft - o where A= inf{a: X~ G is closed} amd n = Card (X"~ ).

Proof. Let D be the decomposition of X consisting of X® and the
singleton subsets of X ~X®. Let ¢ denote the quotient map. This Xfital)
composition of X is upper semicontinuous and the quotient space ]é
(i.e., X/X®) is a dispersed, compact Hausdorff space satisfying (D).
Clearly (X/D)® C {X©}. )

ﬁy (X“{) rl G—ié inf}inite for each a< £ by compactness X G I8
not closed in X for a < & Since X/D is compact, (X/D)® contains the one
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point X®. By Theorem 2, there is a homeomorphism h of X/D onto I'(«).
Then ¢ = h o ¢ is & map of X onto I'(»*) and, by Lemma 3, ¢(#) = of if
and only if e X®.

It X@ ~ @ is finite for some «<< &, then £ is nonlimit and a = &§—1.,
Let m = Card (X¢ A @). Tt A = inf{o: X ~ @ is closed}, then 1< £—1
and X e (X/D)¥, but X® ¢ (X/D)*, There is a clopen subset U
of X/D with U~ (X/D)® = {X®}. Consequently, U (X¢ V@) =0,
G~T is closed, and COard(X¢~ (@~U))=m. By Theorem 2, there
is & homeomorphism f of G~T onto I'(«**-m) and a homeomorphism ¢
of U onto I'(«)). By Lemma 3, g(u) = o* if and only if = X%, Let ¢

‘be the homeomorphism of I'(w?) onto (wf™*.m, o~ m -] defined by

p(a) = 0¥ 1-m-+a. It follows that h defined by h(y) = f(y) for y e G~T
and h(y) =y og(y) for ye U is a homeomorphism of X/D onto
T m+o’) and h{y) = o* ' m+o* if and only if y = X*. Thus,
the p = h o g has the required properties. . ,

Remark 1. In case (b) of Theorem 3, it follows by Corollary 3 that
I(x) is bomeomorphic to I'(w*~'-m) where m = Card(X“ Y~ @) if
A<E—~1 and m=1+4+0Cwd(X* VA @G) if 1=E—1. Therefore, @ is
homeomorphie to a subset of I'(w*~1- m). However, it follows from. Lemma 3
that @ is homeomorphic to Iy(w*~*.m) if and only if 1 = &—1.

Remark 2. Cases (a) and (b) of Theorem 3 may be combined as
follows: If A =inf{a: X® ~ @ is closed}, u= inf{a: X~ @ is finite},
‘and n = Card (X® ~ @), then == w* ntw*. Moreover, o < m < o for
-each a<C &. o

Indeed, for Case (a), it is easy to see that y= A= ¢ n =0, and
o-n+o* = f. For Case (b), note that = &—1.

Theorem 3 is related to the Cantor-Bendixson Theorem (cf. [61,
p. 253): Ewery separable metric space is the union of two disjoint sets, one
-of which s perfect and the. other is countable and dispersed. Theorem 4
gives a generalization of this theorem for compact spaces.

THEOREM 4. Suppose X is a first-countable, compact space and Ker (X)
48 o Gyset. Then X dis the union of two disjoint sets P = Ker(X) and @
where P is perfect and G is metrizable, countable, and dispersed.

In fact, there is & denumerable ordinal & such that P = X9 and G is
homeomorphic to Iym) for an ordinal = with o° <w £ of for each a<< &

Proof. Let ¢ be the least ordinal number such that X@ is perfect.
Since Ker(X) = X® is a @-set, there is a decreasing sequence {U,}%,
-of clopen sets which form & neighborhood bage for X©. By Theorem 3,
there is an ordinal = with o* < < 0® for a< £ and there is a map ¢
of X onto I'(w) such that g|@ is a homeomorphism of & onto I'y(w). Also,
(@) = if and only it # ¢ X®; bence, X/D is homeomorphic to I'(z)
where D contains X and singleton subsets of X ~X®. But <R, a8
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XD is first countable; consequently, @ is metrizable, countable, and

dispersed. .

COROLLARY 4. A perfectly normal ([6], p. 133), compact space X is the
union of two disjoint sets P and @ where P is perfect and G is memzable‘,
countable, and dispersed. .

There are well-known examples which establish that, in Theorem 4:,
the hypothesis thatb Ker(X) is a G,-seb cannot. be dropped.' However,
if this hypothesis is dropped, it iy easy to establish the fo]lowmg.wea,kzer‘-
conclusion using & compactness argnment and Coro]lary' 43-1 in 1 ];‘;
Suppose X I8 a firgt-countable compact space..Then X is 1:.]16‘11'1111011et()1
two disjoint sets I = Ker(X) and G where.P is perfec.t,.G is 1sp(1rs G,
and a point has & countable neighborhood if and only if it belongs to G.
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