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On semi-closed sets and semi-open sets
and their applications (*)

by
J. H. V. Hunt (Saskatoon, Canada)

1. Introduction. The notion of a semi-closed set was originally intro-
duced in 1936 by G. T. Whyburn in [19]. The results in § 2 of this paper
were reproduced in [20]. However, the notion lay dormant for twenty
years until in 1956 J. Nagh defined the concept of = connectivity funetion
in [15]. Nash asked whether Brouwer’s fixed point theorem held for
connectivity functions. In 1957 O. H. Hamilton answered this question
affirmatively in [6]. J. Stallings noticed, however, that Hamilton’s proof
contained a gap, and in [17] he showed that this gap could be filled by
observing that the inverse of a closed set under a connectivity function
was a semi-closed set. Since the appearance of Stalling’s paper in 1959,
several papers have appeared developing the properties of connectivity
functions, notable among them being [5], [1], [21], [22], [2] and [3], and
in each of them the notion of a semi-closed set has been used prominently,
even when it has not been named as such, as in [1] and [2].

We shall first briefly indicate the extent to which semi-closed sets
play a part in the above-mentioned papers. In [1], [22] and [3] only simple
results involving semi-closed sets are established, and these are used to
prove theorems about eertain non-continuous functions (mainly con-
nectivity functions). In the proof of theorem 4 of [17], lemma (2.1) of
the present paper is proved. This is a fundamental result on semi-closed
sets, as will be apparent from the sequel, though it is not isolated as
a result on semi-closed sets in [17]. Lemma 1 of [2] is a significant result
on totally disconnected sets (i.e., on a subelass of semi-closed sets), and
it is the key to proving the theorem of [2]. In [5] the monotone-light
factorization for certain non-continuous functions is established. In the
course of doing this several theorems are proved concerning the use
decompositions which certain semi-closed collections of sets induce on

(*) Several portions of this paper are taken from the author’s Ph. D. Thesis
University of Warwick, 1971.
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a space. Several topics are covered in [21], new among them being the
results concerning the guasi-components of loosely closed and quasi-
closed sets (both of which are special cases of semi-closed sets). In [19]
various theorems are proved concerning the connectedness and local
connectedness of certain semi-open sets. These are similar to the corol:
laries of lemma (2.1) given below.

In this paper we make a study of semi-closed sets and semi-open
sets per se. This is done in § 2. While a number of properties of these
sets are given—most of them similar to those for closed sets and open
sets—the objective of the paper is to prove theorems (2.1) and (2.2),
the first of which concerns semi-closed sets and the second of which
concerns semi-open sets.

The formulation of these two theorems arises from drawing an
analogy between semi-closed sets and semi-open sets on the one. hand
and quasi-closed sets and quasi-open sets on the other. This analogy Wé
shall now explain. In [6] Hamilton introduced the notion of a peripherally
continuous function, and the study of these functions has been closely
related to that of connectivity functions. However, unlike the connectivity
function, the peripherally. continuous. function has a particularly useful
f:ha,ra,cterization: a function is peripherally. continuous if -and only if the
inverse of every closed set under the function is quasi-closed (S(;e [22)).
In [22] Whyburn proved two particularly useful theorems about qufhéi-
closed sets and quasi-open sets, namely theorems (2.1) and (2.2) of that
paper. Theorem (2.1) of [22] was given its most satisfactory form in [4]
where it reads as follows. o ‘ ’

TemorEM I. Let A and B be closed sets in a locally cohesive regular

Tl-sp‘ace X. Any quasi-closed set L which weakly separates A and B in X
contains a closed set K which separates A—K and B—K in X. -

Theorem (2.2) of [22] is the following.

nede:,ll?ﬂ;:tollmy II i_;]: X is locally cohesive (and regular and 1), any con-
ing i . L , ; ) ,
.o ”11{ g in the union of two disjoint quasi-open sets lies entirely in
s gzgswlogd sets and quasi-open sets are special cases of semi-closed
s sefml-open sets, ag we have remarked (*), and theorems (2.1)
o .4.~) of the present paq?er are the analogues of theorems I and IT
seﬁmf-%osed sets and semi-open sets, respectively.
o exmtf'n m?hz:ed theorems (.2.1) and (2.2) of [22] to simplify the proofs
g rems on peripherally continuous functions. Similarly,

. .
i () Every totall;y disconnected set is semi-closed. Thus
e ognectgd set VY}l\ch becomes connected upon the :
escribed in [13], is semi-closed but not quasi-closed.

for example, the totally

adjunction of a single point, °
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using theorems (2.1) and (2.2) of this paper, we are able to simplify the.
proofs of existing theorems on connectivity functions and pseudo-continu-
ous functions. Using these two theorems, we are also able to prove new
results for semi-closed sets and semi-open sets in partieular spaces (viz.,
cubes and spheres) which are more general than the corresponding results.
for quasi-closed sets and quasi-open sets. These applications are dealt
with in § 3.

However, in spite of the analogy between the statements and appli-
cations of theorems (2.1) and (2.2) of this paper and theorems I and IT,
the proofs of the former theorems are quite different from those of the
latter. This is because each point of a quasi-open set has a base of neigh-
bourhoods whose frontiers lie in the quasi-open set, and this property is -
used continually in the proofs of theorems I and II (and in the proois
of other theorems on quasi-closed sets and quasi-open sets—see [21],
[22]). For semi-open sets there is no such simple and useful property.
Thus in the proofs of both theorems (2.1) and (2.2) we have relied on the
more complicated result of lemma (2.3). :

Finally, the results in § 2 require that the spaces be at least Peano-
spaces. We shall not, however, use locally cohesive Peano spaees (cf.,
theorems T and IT). We shall simply use cyelic, unicoherent Peano spaces.
The reason for this is twofold. On the one hand, it will save us from
complications which clutter the proofs. On the other hand, locally cohesive
Peano spaces are not the most general spaces in which the results can
be proved (see [9]). In fach, it is probable that all the results hold in
certain infinitely mmlticoherent spaces (e.g., @ plane from which the
interiors of a null sequence of disjoint disks have been removed).

2. The main theorems on semi-closed sets and semi-open sets. Throughout
this section X will denote a cyclie, unicoherent Peano space unless other-
wise stated.

We shall use several characterizations of unicoherence in a Peano
space, all of which can be found in or are immediately derivable from
the results on p. 429 of [18] or pp. 47-51 of [23].

We shall denote the frontier of an open set G by Fr@; ie., Fr@
= G— @."We shall uge the terms “cyelic”, “non-degenerate”, “convergence”
for a sequence of sets, “separated sets” and “to separate”, and the defini-
tions of these terms can be found in-[20] or [23]. For convenience we
restate the following two definitions. Let L be a subset of X and C, D
two non-empty subsets (or one or both of them may be points) of X—L.
We say that L separates ¢ in X if X—T is the union of two non-empty
separated sets both of which meet (. We say that I separates C and D
in X if X—ZT is the union of two non-empty separated sets one of which
contains ¢ and the other of which contains D.
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A subset I of X is said to be semi-closed in X if for each convergent
sequence F,, F, ... of components of L, limF, is a single point or a subset
of L. This definition is given in [19] and [20]. We shall saiy that a subset @
of X is semi-open in X if its complement is semi-closed in X.

Notice that the components of a semi-closed subset of X are
closed in X. ‘

Tet I be a semi-closed subset of X, and ¢ a non-empty subset of
X—IL which L does not separate in X. We shall denote by [L] the union
of I and the set of all points in X—L that L does not separate from ¢
in X. We shall call [L] the enclosure of L with respect to C.

Using the notation of the previous paragraph, let @ be the quasi-
component of X—L in which C lies. Notice, then, that ¢ = X—[L] and
that [L] is also the enclosure of L with respect to @ = X—[L].

It will often be convenient to refer to an enclosure of a seri-closed
set I without indicating the set with respect to which the enclosure is
taken. To facilitate this we shall say that an arbitrary set [L] is an
enclosure of L if it is the complement of some (unspecified) quasi-com-
ponent of X—L. .

LeMyA (2.1). Let L be a semi-closed set in X and [L] an enclosure of L
such that X—[L] is non-degenerate. Then each component of [L] is the en-
closure of a component of L with respect to X—[L].

Although this lemia is not solated as such in [17], its proof is given
in the eourse of—and occupies the major part of—the proof of theorem 4
of {17]. The space X in this theorem is an Ipc polyhedron, the operative
properties of which are those of being a cyclic Peano space with a bage
of unicoherent regions. Under the hypotheses of lemma (2.1), it follows
from lemma (2.1) that [L] is o semi-closed set and X—[L] is connected.
From this we obtain the following simple corollaries.

COROLLARY 1. Let H be a non-degenerate component of a semi-open
subset G of X. Then H is itself a semi-open subsei of X.

COROLLARY 2. Let @ be a semi-open subset of X. Then the quasi-com-
ponents of G are connected.

Corollaries 1 and 2 have been partially proved, or proved for ditferent
classes of spaces, in several places. Corollary 2 can easily be deduced
from lemma 1 of [2] for the case in which the space iy a finitely multi-
eoherept Peano continuum. Theorems (3.2), (41) and (4.2) of [19] have
much in common with corollaries 1 and 2, and also suggest that the set H
of corollary 1 is locally connected. Although this is so, we shall not digress
to prove it. : il

In order to prove lemma (2.3)
proof of which is straightforward an
case given in [11]) '

we need the following result, the
d is omitted. (The proof is in any
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Lemma (2.2). Let L be a semi-closéd set in X, and V an open set in X
with a compact closure. Denote by M the union of X—V and all the com-
ponents of L that meet X—V. Then M is a closed set. '

In order to prove lemma (2.3) we also need to know the easily proved
fact that a cyclic Peano space has & base of open sets whose complements
are: connected. i

LemMa (2.3). Let L be a semi-closed subset of X and H a component
of X—L. Then there is an arbitrarily small neighbourhood U of H such
that Fr U C L.

In fact, if H s non-degenerate, then FrU C H—H.

Proof. In the first case we suppose that H it a degenerate component
of X—L, and put H = {p}. We let V be an arbitrary neighbourhood
of p such that ¥ is compact and X—V is connected. If there is a com-
ponent F' of L lying in V and separating p, X—7V in X, then the com-
ponent U of X—F to which p belongs satisfies the requirements of the
lemma. So we guppose that this does not occur, and we let M be the
union of X—V and all the components of I which meet X—V. Then, by
lemma (2.2), M is a closed set. We let U be the component of X—M to
which p belongs. :

To see that Fr U C L, suppose on the contrary that there is a point
g (FrU)—L. Then g e(X—V)—L and, by corollary 2 to lemma (2.1),
L separates p, ¢ in X. Thus in fact a component F' of L separates p, ¢ in X,
because X is unicoherent. Now F does not lie in ¥, for otherwise F would
separate p and the connected set X—V in X, contrary to supposition.
So FC M. Consequently F separates ¢ and the connected set U in Xj
ie., ¢¢ U, which is a contradiction. This shows that FrT CL.

Secondly, we suppose that H is a non-degenerate component of
X—I. Then, by covollary 1 to lemma (2.1), H is a semi-open set; ie.,
X— H is a semi-closed set. Let 7 be an arbitrary neighbourhood of H and,
for each p < H, let ¥V, be a neighbourhood.of p such that ¥, is compact
and V, CV. Let M, be the union of X—V, and all the components of
the semi-closed set X — H that meet X—V,. By lemma (2.2), My is a closed
set. Let Up= X—Mp and U = {J{Up: p ¢ H}. Then FrUC(H—H) n L.

In order to prove this, we first show that Fr U, C H for each p e H.
To see this, lot @ « FrU, and let y2 be an arc in an arbitrarily small
neighbourhood of » such that ye—{¢}C Up and zeFrU,. Since the
components of X— H which meet Uy are closed sets lying in Up, i.t follows
that ys— {g} ¢ X— H; i.e., yo— {¢} meets H. Thus » ¢ H, and this proves
that Fr U, C H. It follows from the local connectedness of X thz_l.t FrU
is contained in the closure of | J{FrUp: p ¢ H}. This now gives us
FrUCH. But UD H, and so FrU C H—H. Since H—H CL, it follows
that FrU C (H—H) ~ L. This completes the proof.

3 — Fundamenta Mathematicae T. LXXVI
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.. Let A, B be two subsets or two. points of X. 'We shall say that a sub-
set L of X disconnects A, B in X if no component of X— L meets both 4
and B. This definition is given on p. 439 of [18]. In [22], [4] and [9] the
same definition is given, but in these papers the phrase “weakly separates”
is used ingtead of “discomnects”. ‘Notice that the definition permits
AnBAL+#0. ) ‘

TEEOREM (2.1). Let L be a semi-closed subset of X and, A, B two closed
subsets of X which are disconnected in X by L. Then L contains a closed
subset K of X which separates A—K and B—K in X.

Proof. In order to prove this theorem we infroduce the Iol]owmg
notation. Let {H,}, be the collection of all components of X1 which
meet 4, and let M = | JH,. For each o, let U, be a neighbourhood of I,

such that U,~nB =0 :nd FrU, C L (that there is such a neighbourhood
follows from lemma (2.3)). Let {Hﬁ}ﬂ be the collection of all components
of X— L which do not méet 4, and let N = UH 5 For each g, let U, be

a neighbourhood of Hy such that Uyn A = Qf and FrU, C L.

We first show that M ~ U,= @ for each §. For suppose on the
contrary that M~ U, @ for some f. Then we have M n U, @,
because FrU, C L. This implies that H, ~ U, # @ for some a. However,
H,n(X—U;) #9, because H, meets A and U, does not. But this is
a contradiction, because H, ~FrU; =@. This establishes that M ~ U,
=@ for each §.

Now let U,, U, .. be-a countable subcollection of {U,}, which

covers M, and let Uy, Uy, ... be a countable subcollection of { Uy}, which

covers N. Such countable subcoverings can be chosen because a Peano’

space has a countable base (see p. 75 of [16]). We define
V = Uru’
Ve = Us, Uﬁlu Uﬂ RV Uﬂn—ﬂ .
for each n > 1. Then M~ U . CV,, and T]?Vun CL for each n.

Now let G = U i Then MCE and G~ B=0@. We assert that
n=1
FrGCL.

"To prove this, suppose that there is a pomb % e (Fr¢f)—1. Then

xeN, and consequently u « Us,, for some f,. Now it follows from the

deﬁmtlon that Up, ~ (V,,, vV, v .) =0. Further, ¢ @, and 8o
VvV, v,

w " o Vo But also z ¢ FrV, Vo OBV, for this

lgtter set is conta,med in L. Thus sz uV eV, ]ﬂlt now
2

Ve Vo o vV, isa neighbourhood 01’ @ Whmh does noL meet G
at all; ie. m¢FrG The contradietion shows that FrG C L.

Let K (4~ @) wFr@ Then X is a subset of L wluoh iy closed
in X, and it separates A— K and B—K in X.
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.The result of theorem (2.1) was announced for a wider class of spaces
in theorem (3.4) of [9].

In the proof of theorem (2.2) we shall make use of lemma (2.3) and
each of the next two lemmas.

LemMmA (2.4). Let GI, Gy be disjoint semi-open subseis of X Then
L=X—G u@isa ,sema, ~closed subset of X.

Proof. Let {Iu}n be a convergent sequence of components of I such
that ' = lim I, is non-degenerate. Bach F, is then contained in X— @,
and so is contained in a component M, of X— @,. Let {M,.}; be 2 con-
vergent subsequence of {My}y and let M = lim M,,. Since X— G, is semi-
closed and M D T, it follows that M C X— @&,. Consequently F ~ Gy, = @.
Similarly 7 ~ G, = ©. This proves that FCL and so L is semi-closed.

LemwA (2.5). Let I, L be two semi-closed subsets of X such that L C K.
Let [L] be an enclosure of L such that X—[L] is non-degenerate. Then
K o[L] is also a semi-closed subset of X.

Proof. By lemma (2.1); each component of [I] is the enclosure of
a component of L. with respect to X—{[L]. Let {F;}, be the subcollection
of all components of I such that, for each g, the enclosure [¥;] of F; with
respect to X—[L] is a component of [L]. Let {H}, be the subcollection
of all components of K such that, for each «, B, ¢ [F;]—F; for all g.
For each «, let B, be the ‘rhe union of B, and all the sets [F] for which
Fy; CE,. Then Kull]= UE

We claim that {E }. i the collection of components of K w [L]. We
first show that the sets in this collection are disjoint, by supposing on
the contrary that L' ~ B, #0 for somé pair B, +* B,. In this case
We may Suppose Lhm‘u there is a set Fp CH, such that [Fp]1~ E,, +0.
But this implies that H, C[#s)—Ty, which contradicts the chmce
of E, as a member of the collectmn {L’} Thus {&,], is a collection of
dlb]OlIlt sets. This now implies thatb {B,}, is the collection of components
of X w[L]. For if we take any one of its non-degénerate subcollections
{an}y then there are two non-empty separated sets M, N whose union
is L J B, By setting M’ equal to the union of M a;ud all the E for which

E, C M, and N equal to the union of N and all the E, , for which B,, C N,
we- obmm two non-empty disjoint sets M’, N’ whlch by the local con-
nectedness of X, are separated.

Since it follows immediately from the local connectedness of X thab
the sety T' arve closed, we have only %0 copsider a convergent sequence

o B, ... of distinet compopents of K w[L] in order to prove thab

Ko [L] is semi-closed. For such a sequence it follows from the local
connectedness of X that limint H,, Climint B,,. Thus lim %, =lm%,,

3%
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and from this it immediately follows that lim,, is a subset of K u[I]
in case it is non-degenerate. This proves that J'o [L] is semi-closed.

TEEOREM (2.2). Let Gi, Gy be two disjoint semi-open subsels of X.
Then there is no connected subset O of Gy @, which meels both Gy and G,.

Proof. We suppose on the contrary that there is a connected sub-
set € of Gy v @, which meets both @ and G,. We let I = X—G, L G,.
By lemma (2.4), L is a semi-closed set.

Firstly, let H be a non-degenerate component of Gy. Then H iy a4 non-
degenerate component of X—Lw G, and Lw G, is a semi-closed set.
Thus by lemma (2.3) there is a neighbourhood U of H such that the
non-empty set ¢~ G, ¢ U and FrU C H—H. But H iy o connected sub-
set of the semi-closed set L v G4, and this set has cloged components.
Thus HCLu @ Since (H—H)~ G, =@, it follows that H—HCL.
That is, FrU CL. '

Now let [L] be the enclosure of I with respect to C. It follows from
the re§ult of the previous paragraph that each non-degenerate component
of &, is contained in [L]. Thus T' = G,— [L]is a totally disconnected set
and, sinee it contains the non-empty set O~ Gy, it iy itself non-empty.
Thus no component of T separates X, which is a cyclic space, and so it
follows from the unicoherence of the space that X— T is conpected. Now
let K =1Lwvu @, Then, by lemma (2.5), K [L] is a semi-closed set
because [L] is an enclosure of L and X—[L] is non-degenerate (because 07
by supposition, is non-degenerate). But K u [L]= X— T and go K v [L]’
as a connected sef, iy closed. Since the complementary components oé
a proper closed subset of a Peano space are all non-degenerate, it now

fo].lows bha:b T ha)s non‘degEHGTQJte compo ts. T 1 0, ﬁIadICLIOII [JIOV63
p nents h 3 con

the 3. Applications. We shall now deal with several applications of
orems (2.1) and (2.2), these being similar to the corresponding appli-
cations of theorems I and IT, as we mentioned in §1 ;
by T(I;()a _graph Sunction gj:.X+XX Y of a funetion fi X =Y ig defined
> itgj a_h(mf\’].{l (93)) A function f: XY is called a connectivity fumciion
Itg'-f‘ P : ction gr: XX x ¥ preserves connectedness.
. Pean:}s ga(sllclz sh;w; t?lat ffi XY isa connectivity function, where X is
‘wﬁmwér 1%1 06 and: ¥ 18 @ regular space, then f~Y(F) is semi-closed in X
ety o Oz:ScZosed i }Y (cf.. theorem (3.1) of [5]). However, since this
ot et not chara.fzterl,ze connectivity functions, the notion of
ST on a‘ug:;;soﬁ;;mtmxi was defined in [8], [9] and [11]. A function
P X ) space X is said to be -conti if =47 i
seml;glosed in X whenever F is cloged in 31398 oudo-continsous 18 fE) o
e following theorem ig then g consequence of theorem (2.2).
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- THEOREM (8.1). Let f: X—>X be a pseudo-continuous function, where
X is a cyclic, unicoherént Peano space and Y is a completely normal space.
Then f preserves conmnectedness. _

Proof. Suppose there is a connected set ¢ in X such that f(C) is not

connected. Then there are two disjoint open sets U, ¥ in ¥ such that

f(O)CTVY and Unf(0)#0B #TV nf(0), because Y is completely
normal. But now fYT), V) are by definition two disjoint semi-open
gets in X such that O CFHT)uf V) and O~ fHU)# 0 # 0 fHV).
This contradicts theorem (2.2).

Tn [11] the following proposition is proved: if f: XY is a pseudo-
continuous function on a Peano space X, then the graph function gg: X >X X ¥
of f is also pseudo-continuous. This and theorem (8.1) immediately imply
the following.

TagoreM (3.2). Let f: X—~Y be a pseudo-continuous function, where
X s a cyclic, unicoherent Peano space and XX Y is a completely normal
space. Then f is a connectivity. function.

A function f: XY is said to be peripherally continuwous if for each
point p in X and for each pair of neighbourhoods ¥V and W of p and flp),
respectively, there is a neighbourhood U of p such thab UCYV and

f(ErU)C W. A set F in a space X is called quasi-closed if each point

in X— & has a bage of neighbourhoods whose frontiers lie in X—E. The
complement of a guasi-closed set is called gquasi-open- : )

The following characterization of peripherally continuous functions
was mentioned in § 1: @ function f: X X is peripherally continuous if and
only if fHF) is a quasi-closed set in X whenever F is a closed set in ¥
(see [22]). Since quasi-closed sets are semi-closed, this means that a pe-
ripherally continuous function is automatically pseudo-continuous. The
following theorem, the proof of which uses theorem (3.1), is a converse
to this.

TeroREM (3.3). Let f: XY be a pseudo-continuous function, where
X is a cyclic, unicoherent Peano space and Y is o regular and completely
normal space. Then f.is peripherally continuous.

Proof. Let V', W be arbitrary neighbourhoods of p, (1), respectively,
p being any point in X. Tet W, be a neighbourhood of f(p) such that
W, C W and let I = f~(FrWy), so that T is a serni-closed set. Let p belong
to a component H of X—L:

¢ in the first case H = {p}, then there is by lemma (2.3) a neighbour-
hood U of p such that UCV and FreU CL; ie., f(FrU) CFV,CV.
This shows that f is peripherally continuous at p.

Suppose in the second case that H = {p}, so that H is non-degenerate.
Then f(H)C V,, because f preserves connectedness, by theorem (3.1).
Thus f(H) CV,., again Dbecause f preserves connectedness. We now use
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a technique introduced in the second half of the proof of lemma (2.3).
We refer to the paragraph starting “Secondly, ...” in that proof and use
practically the same notation as there. Let V, be a neighbourhood of p
such that ¥, is compact and ¥, CV. Let My be the union of X—V, and
all the components of X— H that meet X— V. Because X— H is actually
a semi-closed set, it follows, as in the proof of lemma (2.3), that M, is
closed. Let Uy= X—Mp. Thepn, as in the last paragraph of the proof
of lemma (2.3), FrlU, C H. Putting U= Up, this means that f(Frl)
CV,CV; ie., f is again peripherally continuous at p. This completes
the proof.

Notice that theorem (3.3) is an improvement on theorem (2.4) of [9]
in the case where the domain space is a cyclic, unicoherent Peano space,
because the function f is not assumed to be connectedness-preserving
in the hypotheses of theorem (3.3).

The above three theorems, which concern cyclic, unicoherent Peano
spaces, are direct or indirect consequences of theorem (2.2). We shall
now show how the theorems (2.1) and (2.2) can be used to prove new
results for semi-closed sets and semi-open sets in cubes and spheres.

Let I denote the set of points 2= (@, X4, ..., Zs) in Huclidean
n-space defined by —1 < #; < 1 for each 4. Let 4; and B; be the subsets
of I" defined by @ =-—1 and z; = 1, respectively. Then we have the
following theorem:

TeeorREM (3.4). Let Ly, Ly, ..., Ly be semi-closed sets in I"™ such that L;

disconnects Aq and By in I* for each 4. Then (n]Li # @.
i=1
. Proof. By theorem (2.1), there is for each ¢ a closed set K in I;
which separates Ai.—‘Ki and B;—H&; in I". By a simple modification of
the proof of proposition D, p. 40 of [12] (the modification referred to is

carried out in the proof of theorem (2.3) of [22]) we have {n] K;# 0
7 ’
and this proves the theorem. v .
This result is a generalization of theore i
1t is ‘ m (2.3) of [22], in which t
same conclusion is deduced under the hypothesis thm[ LlL L e
> o 1y~

quasi-closed sets. 2y ey L e

@ tBy virtue of theprem (8.3) and theorem 5 of [6], it is of course true
ﬁa 5 any pse}ldo—eo_ntmuous funetion f: " I"™ has a fixed point, form =9
! gw‘ ever, using ’Evheorem (3.4), this property can be proved direct:lv vw‘vvit}'l;)m:A
eferring to peripherally continuous functions at all ( ‘
the Fixed-Point Theorem of [22],

of that paper).

unct c.f., the proot of
which is deduced from theorem. (2.3)

Fron_l the fixed point theorem, it follows that there is no pseudo-
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continuous retraction 7: I"->oI" for n > 2, where 9I" = Lnj A;w By. This
i=1

result can also be deduced directly from theorem (3.4) as follows. Let Ci

be the set of points @ = (2, @, ..., #s) in 21" defined by @¢= 0. Then C;

separates 4; and B; in 21", Thus by theorem (3.1), r~}(C;) is a semi-cloged

get which disconnects 4; and B; in I*. Theorem (3.4) now tells us that

n . n .
M #XCs) # @, but this is impossible, because (M 0; = @. The contra-

i=1 =1
diction proves what was required.
Tet §* denote the set of points @ = (By, sy o) Byy) in Buclidean

n+1
(n+1)-space such that 3 42 =1. Let T denote the antipodal map on s

=1
defined by T(z) = —a. In [10] the following theorem was proved, and
we shall use it to prove theorem (3.6). )
TEEOREM (3.5). If Ly, Lsy ..., In are self-antipodal semi-closed sets
n
in S* and each L; disconnects x, —z in 8" for all @ ¢ L, then N L # 9.
i=1
The Lusternik—Schnirelmann theorem is given in, among other places,
theorem (21.2), p. 138 of [14]. It is stated there for a covering of 8" by
n-+1 closed sets. It holds, equivalently, for a covering of 8" by n+1 open
sets. We now prove it for a covering of 8" by w41 semi-open sets.

TreorEM (3.6). If S is covered by n+1 semi-open sets, then at least
one of these sets contains & pair of antipodal points, where n 7~ 1.

Proof. The theorem is true for n= 0, so suppose # >1, in which
case S* is a cyclic, unicoherent Peano continuum. Let Gy, Gy, ooy Gt
be.n--1 semi-open sets which cover 8™ such that G4 ~ TG; = B for each i.

n' n .
C UG‘i a.nd Gn—i—lc UTG':Z- ThuS G1:G27 -":GTH TGI)-TGE’
i=1 =1

., TGy, is a covering of 8™ Now let L;= S*— Gy u TQ; for each i << m,

Then TG,

n+1l

n .
so that () Li = @. By lemma (2.4), L; is a semi-closed set. Further, by
i=1

theorem (2.2), I; disconneets z, —= in 8" for all # ¢ L;. Thus, by theo-
n

vem (3.5), {\L: # @. This contradiction proves the theorem.
i=1
Notice that this theorem does not hold for m =1, because §* ecan
be expressed as the union of two disjoint 0- dimensional sets neither of
which contains a pair of antipodal points. However, S* is not unicoherent.
The following example shows that the ILusternik—Schnirelmann
theorem does not hold for a covering of 8" by n+1 semi-closed sets,

~ where n >0.
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EMLE (8.1). There is a covering of 8™ by n~+1 disjoint 0 - dimensional
sets no one of which contains a pair-of antipodal points, for n > 0.

Let B™ = {(;, @a, o) Bypy) € 8% &4, >0}, We show the existence
of such a covering by induction. We have already mentioned that §* can
be covered by two disjoint 0-dimensional sets neither of which containg
a pair of antipodal points; in fact, E' v {(1, 0)} can be expressed as the
union of two disjoint 0-dimensional sets A and B, and 4 v T'B, Bu T4
is the required covering of S% Suppose mow that S*~%, for %7> 1, has
a (?overing by = disjoint 0-dimensional sets 4, 4y, .., 4y no 0]”16 of
which contains a pair of antipodal points. By theorem ITI 3, p. 32 of [12]
E™ has a covering by n+1 disjoint 0-dimensional sets By, By, ..., B, Lei

L =4,9B,uTB,,
L, =A4,0B,uv1B,,

Ln =‘A'nu-Bnu TBn+1i

Ly, =09vB, . ,vTB.

Tfhen pl,La, ...,_Lnﬂ are disjoint sets no ome of which containg & pair
of antipodal points, and I, ., is evidently 0-dimensional. To see that

L, is 0-dimensional, for r < n, let B" = iU X, where each K is compact.
Then -

L=(4, 8" (B, nEK)uw (B, nK,) ..,

w O (TByyy " TEy) w (TB, oy A TH,) © ...,

and each set in parentheses is a relatively closed 0-dimensional subset

of the s
0L the subspace L,. Thus by theorem TT 2,p. 18 of [12], L, is 0 - dimepnsional.
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