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Characterizations of uniformity-dependent dimension
functions

by

‘Leonard E. Soniat (Tampa, Fla.)

1. Introduction. Let (E, o) be a metric space and let dim(F) denote
the .covering dimension of E. M. Katetov gave the first definition of
a metric-dependent dimension function which he designated do( B, p) [3].
dy(E, o) was not a true topological dimension funetion but was an integer
valued function on metric spaces which depended on the particular
metric defined for a given space. His definition was modeled on a charac-
terization of the covering dimension of a space. J. H. Roberts and K. Na-
gami expanded the idea of metric-dependent dimension by construeting
several new metric-dependent dimension functions [6] which they de-
signated dy(E, o), dy(¥, o), and dy(E, ¢). Their definitions were analog-
ously modeled on certain defining properties of the covering dimension
of a space. In this paper the author is interested in pursning a generali-
zation to uniform spaces for dyH, o) of Katetov and for d(E, p) and
di(HB, ¢) of Nagami and Roberts.

The denotation for a uniform space, its definition, and the definition
of uniformly continmous function, along with the notations and con-
ventions employed below, are found in N. Bourbaki (General Topology).
The following definitions and results concerning uniform spaees will find
particular use in the remainder of this paper.

DEFINITION. Let (B, U,) be a uniform space and let € and €’ be
subsets of H. If there exists U e U such that U is symmetric and (X C') ~
~ U =0, then ¢ and ¢’ are said to be uniformly separated in (B, U) or
U-separated in E.

THEOREM 1.1. Let € and ¢ be Us-separated sets in a uniform space
(B, W). Then there exists a uniformly continuous function f: (B, W)~I
such that f(C) = —1 and f(C’) =1 [4, Theorem 3, p. 90].

DEFINITION. A covering £ of a uniform space (E, W) is called Lebesgue
if there exists U € U such that {U(z)|z ¢ B} refines £. An open Lebesgue
cover i3 a Lebesgue cover each of whose elements is open.
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2. Definition and characterizations of d, for umiform spaces.

DermNITioN 2.1, Let (B, W) be a uniform space. do(H, W) <n if

for every U el there exists §, an open refinement of {U(@)| ¢ B} with

order of § (denoted ord8) < n-+1. If dy(E, W) < n is true, and dy(B, U) -

< n—1 is false, then we say do(H, W)= n.
DEFINITION 2.2. Let (#,W) bhe a uniform space and let f: Y

be a continuous function. Let U ¢ . f is called a U-mapping if for every -

2 €Y there exists Gp, an open neighborhood of p such that {f(Gp)| pe T}
is a refinement of {U (%) % ¢ E}.

Remark 2.3. Let P be a polyhedron (i.e., the geometric realization
of a simplicial complex). If » is & vertex of P then St(v) denotes the union
of all the interiors of simplices which have v as a vertex. Observe that
{St(v)| v a vertex of P} is an open covering of P. If F is a normal space
and S i§ a locally finite open cover of H such that ord ¢ < n+1 then there
exists a metric polyhedron P with dim(P) < » and a continuous mapping

f: B~P such that {f-(St(v))| v a vertex of P} refines § [1, Theorem 5.4,

p. 172].

TarorEM 2.4. The following are equivalent for a paracompact uniform
space (B, ). '

1) ayB, W) < .

2) For every U-eU there exists a U-mapping f: B—~P where P is
a metric polyhedron with dimension less than or equal to n. ‘

3) Every open Lebesgue. cover has an open refinement of order less than
or equal to n--1. }

"4) Ewvery Lebesgue cover has an open refinement. of order less tham or
equal to n--1.

5) Every Lebesgue cover has a ome-ome open refinement of order less
than or equal to n-1.

6) Hvery Lebesque cover has a locally finite one-one open refinement
of order less than or equal to 1. :

Proof. 1) implies 2): Let U ¢ U and let U = {Va: 0 € A} be an open
refinement of {U(x): @ ¢ B} such that ord VU < n+1. Let § = {G,: a e A}
be a locally finite open refinement of U (and hence of {U(2): ©eEY})
with ord § < #+1. By Remark 2.3 there exists a metric polyhedron P
with dimension less than or equal to %, and a continuous mapping f: B P
such that {f(St(v)): v a vertex of P} refines G. Thus f is a U-mapping
_sinee § refines {U(z): z<H).

2) implies 3): Let £ be an open Lebesgue cover of B and let U €W
such that {U(2): » < B} refines L. Lot f: B—>P be a U-mapping where
P is a metric polyhedron” with dimension less than or equal to n. For
every point peP, let W, be an open neighborhood of p such that
(W3 CV for some Ve{U(®): ©eB}. Let S be a locally finite open

©
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refinement of the cover {W,: peP}. Since dim (P) < n, let U be an open
refinement of § of order less than or equal to n-+1 [5, Theorem 2.1, p. 181,
Then {f(W): W U} is an open refinement of {U(z): « ¢« B} (and thus
of £) of order less than or equal to n--1.

3) implies 4): Let £ be a Lebesgue cover and let U e AU such that
U is open and {U(x): x € B} is a refinement of £. Then {U{z): < E} is
an open Lebesgue cover for E which has a refinement or order less than
or equal to n-}1.

4) implies 5): Let £ = {L.;: aeA} be a Lebesgue cover of B. Let
VU = {¥,;: feB} be an open refinement of £ of order less than or equal
to n+1. Let A4, the index set for £, be well ordered. Define
B,= {8 eB: V;CL,} — ] B,. Define W,= {J ¥, for every a e 4. Then

<a €Bg
W= {W,: ae A} is an 7,open refinement, of fi}l and ord W< n+1, also W
refines £ in a one-one fashion since W,C L, for every ae 4.

5) implies 6): Let € be a Lebesgue cover of E and let U be zn open
one-one refinement of £ of order less than or equal to n—+1. Let § be
a locally finite refinement of 9. Then § can be amalgemated inside Q7
as in 4) implies 5), to produce a locally finite one-one refirement of order
less than or equal to »-+1.

6) implies 1): Tet U € U; then {U(x): z ¢ E} is a Lebesgue cover of E
and thus has a refinement of order less than or equal to n-1.

COROLLARY 2.5. Statements (1), (3), (4), and (5) are equivalent in any
uniform space.

3. Definition and characterizations of d, for uniform spaces. Consider
& uniform space (E, U) and a subset ¥ of E. Then (F, Uy) will denote
a uniform space where U is the natural restriction of b to F.

DrrixiTioN 3.1. Let (E, U) be a uniform space. dy(B, )< n, if
for every clesed set ' of E and every uniformly continuous function
fi (F, Uyp)— 8", there exists f: F—8" a continuous function such that
FB=f It do(B, W} < n and dy(B, W) < n—1 is false, then dy(E, W)= n.

THEOREM 3.2. For every normal uniform space (E, L), the following
properties are equivalent to the property dyfE, Us) < n..

Pyn): For every collection {Cy, Oy, ..., Cpyyy Chiy} such that C; and C)
are closed “U-separated subsels of H, there exists a collection {Bi: i
=1, ..., n+1} of closed subsets of E such that B; separates C; and C% and
n+1
M By=0.
i=1

Py(n): This property is the same as Py(n) except that C; and C are not
necessarily closed.

Pyn): For every uniformly continuous function f: (B, W)=I*t1, the
pont p=(0,0,..,0) 38 an unstable value of f.

5 ~— Fundamenta Mathematicae T. LXXVI.


Artur


66 L. E. Soniat

Pyn): For every uniformly continuous function I (B, W) I if
p e I"1— 8" then p is an unstable value of f.
Py(n): This property is the same as Py(n) ewcept that p may be any
point of I, .
Pq(n): For every subset O of B and every uniformly continuous function
f(O, Usp) 8", there emists a continuous function f': H->8" such that f’
extends f.
P,(n): Bvery uniformly continuous function f: (B, W)-I"! s
inessem'la,l. .
Proof. dy(E, W) < n implies P;(n): Let {Cy, Oy, ..., On;ff'i ..} be
any n-+1 pairs of closed U-separated subsets of B. Let F = sul((h v 0});
then since C; and C; are Ujp-separated in the uniform space (I, Usy),
by Theorem 1.1 there-exists fi: (¥, Wp)—I such that Fi(Cy) = —1 and
fi(C) =1 and fiis uniformly contmuous The function f: (¥, WUp)—I"1?
defined, by f(#) = (fi(@), ..-s fural® ) is uniformly continuous. Also, the
range of f is a.subset of S” Bdry I"*! since #¢F implies there exists
i such that @ e 0y or Cj; hence, fi@)= +1. ‘Thus gince do(H, W) < m,y
there exists a continuous function g: H—S8" such that- g|F = f. Let

ni1
(N Bi= @ since the range of g is a subset of 9™

Py(n) implies Pyn): Let {C;, C},...,C,,,, n+1} be anv n-+1 palrs

of Us- separated sets in H. Then, it i3 easily seen that {C, Of, ... 0n+17 "

are n-+1 pairs of U-separated closed sets in B and by P;(n) there exists
. n+1

{By) ..y By} such that By separates O and C) and () B; = @, and By is

i=1
closed for every i. However, a fortlou B; also separates O; and Oj; there-
fore, Py(n) is true.

Py(n) implies Pyn): Let f(@) = (fy(@), ..y frus 1(®)). be a uniformly
continuous function from (B, W) mto I’”“ and let ¢ >0 be given. Then

the coordinate funetion f; is uniformly continuous for every i. Let

€

2Vn+1

e B fila) - '/_71751—1

Sinee f; is uniformly continuous, €y and O} are U-geparated. Let
{Bi; «ey B, ;} De closed sets having empty intersection such that B
separates O; and 0;. Let {V,,...,V,,.} be an open collection such that

BiCViC E—(Civ 0)) for every 4 and mvhe Let hs: B->[0,1] be
& continuous mapping such that hi(Bi) =0 and hy(B—V;)=1. B—B;

Ci=lzecE: filz) >

and (C;=
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Bi=g; (0) B; is a closed subset of B which separates C; and C; and
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= Uiv U; where U; and U; are dlS)omt open subsets of ¥ such that
C:CUsand C;CU;.

Define fi: B—>1I as follows:

.

ift ze(Cru 0y,
f;(m) { (2 V )]Li(m) ]
(

(9 )/'n ) )hi(w) s

Then f; is continuous and fi(z) = 0 implies that z € V.
Define f'(z) = (fi(@) ... fos,(2)); then

e (Ui v Be—int Cy) ,

€ (U} Bi—int (7).

n+1

<( X 1tto)— i) (._, {'2 (2 1/;+1)

=1

[f(@)—f" ()]

2\ 1/2
) 28

and

f"‘(O)g_ﬂ Vi=0..
i=1

Py(n) implies Py(n): Let p e (I""1— 8. Let f: B->I™ be uniformly
continuous and let h: I"**—I"*! be a homeomorphism with h{p)=0.
F~ is uniformly continuous and if >0, there exists >0 such that
lz—y| < 6 implies [F(2)—k"(y)| < e hof is uniformly eontmuous thus
there exists f': F—I"*' such that f*(0)=@ and |hef(z)—f'(z)| <
for every @ ¢ B. Observe that (< o f')(p) = @ and also that

[f(@)—R o f'(@)] = (B o k) o f(z)— k" o f'(x)]
= |W(h o f(@))— E(f (@) < &

since |k o f(x)—f'(2)] < 8, thus & o f' is the desired function. _

Py(n) implies Py(n): We need only show that the condition holds
for every point p in 8" Let p « 8” and let § be the surface of the e-ball
about p. We can obtain a function g: I"**-I"+! by retracting the - ball
about p onto § and letting g be the identity elsewhere in I"*, Then p is
not in the range of g. Now, letting f' = g - f we obtain the desired function.

Pg(n) implies Py(n): Let ¢ CF and let f: (C, Up) > 8" be uniformly
continuous. By the application of theorem 3 of [4] to each of the coordinate
functions of f, there exists g: (E, W)—I*** such that ¢ extends f. Then
by Ps(n) and by [2, VI, I, B] there is a continuous function g's B>Imt1
such-that 0 is not in the range of g and g’ = g on 8™ Let a: (I"*'— {0})—§"

5%
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1

be the radial projéetion mapping, then f'=aocg’ is the desired
extension of f. . A

Py(n) implies Py(n): Let f: (&, ) -I"* be uniformly . continuous.
Then f<(8") C E and the restriction of f to f<(8"™ is uniformly continuous
and thus extendable to all of H. - ‘

P,(n) implies Py(n): Let {Ci, O, -y Onsay Cnpi) De w41 pairs of
subsets of B such that O; and €} are Us-separated. By Theorem 1.1 there
exists fi: (B, U)-I uniformly continuous such that fi(C;) = 71 and
Ffl0y=1. Let f=(fi,.sfupdd: (B U)—>I"*: Then f is uniformly

+ .
continuous and ytjl(GiuG;)g f<(8™. Let f': E-~8" be a continuous

{=1
function which éxtends f1f<(8" and define By =f;7(0), 1<i<ntl,
where f} is the ith coordinate function for f'. Then By separates C; and O]
n+1
and [\ By = 9.

Py(n) implies dy(F, W) < n: Trivial

Remark 3.3. For a Lebesgue covering characterization of d,, see
Smith {7]. ]

4. Definition and a characterization of d; for uniform spaces.

DrriNttioN 4.1, Let (E, W) be a uniform space. dy(H, W) < n if
for every finite Lebesgue cover £ of X, there exists 6, an open refinement
of £ such that ord S n+1. If dy(F, W) < n is true and dy(H, W) < n—1
is false, then we say dy(E, W) =mn.

TaEROREM 4.2. Let (B, ) be a normal uniform space. Then dg(W, L)
< n if and only if given {0y, O, ..., Cm, C,.} m pairs of closed “Us-separated
subsets of E, there exists {By, ..., Bu} a collection of closed subsets of I such
that B separates C; and Cy, 1 < i< m, and ord{B,, ..., Bn} < n.

Proof. Sufficiency: As was shown in the proof of Theorem 2.4, we
need only prove that every finite open Lebesgue cover has a refinement
of order less than or equal to n4-1. Let L= {L, ..., L,ﬁ} Pe a finite open
Lebesgue cover. Let U ¢ W such that {U(z): © ¢ H} refines £. Let W e W
such that W is symmetric and W WCTU. {W(z): zeB} is an open
refinement of f. Define Hy= Li— | W(a), # e B—L;, 14 m. Lot
P < B. Then there exists j such that U(p)C L;. Let y e B— Ly and assume
P eW(y). I @ ¢ W(y), we would then have (z,y) ¢ W and also (y,p) e W
since" p € W(y) andl W was chosen symmetvie. Thus (z,p)e Wo WCTU
and @ < U{p) implying that W(y) C U(p), a contradiction because of the
choice of y. Thus p ¢ W(y) for every y « E—L;, hence p ¢ Hy, and we

_ have shown that ¥ = {H,, ..., Hn} is a cover of B. Since H; and B—Is
are “W-separated, 1 <4< m, there exists {By, ..., Bu}, a collection of
closed subsets of F, sueh that B; separates H; and B—I; and
ord {Bi, ..., Bn} < n. Since F is a normal space, there exists an open
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collection {V,, ..., Vm} such that B;CV;CL; and ord {V;, ..., Vu} < n.
For 1 <i<m, E—Bi= Ui U;, where H;C U; and E—L;C U; and
U; and U; are disjoint open sets.

i1
Define Wy = U; and Wy = Ui~ () Tj) for 2 <i < m. Observe that
. ' ' i=1 :
ord {We 4=1,..,m}=1. Then {Wy: i=1,...,m}o {Vi: i=1,..,m}
is an open refinement of £ of order less than or equal to n+1.
Necessity: Let {0y, 0}, ..., Om, C;} De a collection of m pairs of
closed sets such that O; and O; are U-separated for every 1 < i < m.

m

Define £ as the collection of all sets of the form [ Y; where
i=1

Y;e{E— 0y, E—C;} for every 1 <i< m. Then eclearly £ is a finite

Lebesgue cover of E. Let U be an open refinement of £ of order less than
or equal to n+1. We may assume U is a one-one refinement of £ and thus
finite, U= {Vy, ..., Vom}. Let F = {Fy,...,Fm} be a closed one-one
refinement of V. Let §° = {G¥, ..., G}, for every 1 <{ i < m, be a sequence
of open covers of E such that

(4.1) F,CECEC..CGICHCETC..CV,

for every 1<j<2™ and for every 1<i<m. Let K;= | J{@ 8%

G ~ 0, = @} for every 1 < i< m. Then 0; C K; C E— (; since ¢ covers B

and refines V. Let B; = boundary of K;. Then B; separates C; and C;

for every 1<i<'m. To show that ord{B,, ..., By} <# assume the
n+1

contrary, i.e., [ B, # O where j; 5= j; if 4 % k. Then since G° is finite
i=1

for every 1 < i< m, there exists G{t €@l for every 1< i <n-+1 such

that

n+1

(4.2) N (GGl #0.
i=1

If k= k, when ¢ + s then by (4.1) we obtain (Gf— Gf) ~ (Gf:— ) = 0,
a contradiction to (4.2); hence k, 5 k, whenever s # { and thus the k; are
n+1 n+1

distinet indices. Let p e (1) (Gfi—G/s). From (4.1) it follows that p ¢ | Ty,
i=1 ¢ i=1

however, p ¢V, for every 1 < i< n--1. Since & covers E, there exists ¢

such that p eFy, where ¢ # k; for every 1< ¢ < n-+1. Consequently,
n-4+1

P Vg () Vy,) which contradicts ord U < n-+1. Thus ord {B,, ..., Bm} < n.
i=1
COROLLARY 4.3. In a normal uniform space (H, °b) we have dy(F, °Us)
< dy(B, ). ‘

Proof. Use Py(n) of Theorem 3.2 and Theorem 4.2.
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Closed mappings. and the Freudenthal compactification
by
Krzysztof Nowinski (Warszawa)

The main purpose of this paper is to give a characterization of
closed mappings of locally compact weakly paracompact spaces into
compact spaces and to apply this characterization in a study of the
problem of extending closed mappings over the Freudenthal compacti-
fication. In the first section we state Theorem 1, giving a necessary
condition for the closedness of a mapping f: X—Y from a weakly
paracompact space X into a compact space ¥, and give some applica-
tions of this theorem. The above-mentioned characterization of closed
mappings is given in Theorem 2. The second section contains results
about extensions of closed mappings over some cormpactifications. The
main theorem of this part is Theorem 5, an essential generalization of
a result of Morita ([7], Theorem 5). Lastly, the third section containg
some facts on the Freudenthal compactification. Tn partieular, Theorem 7
gives a characterization of the Freudenthal compactification of some
subsets of manifolds. ~

All notions and notations are taken from [1] with a small modification:
if »X is a compactification of X then we regard X as lying in »X and we
write shortly rX\X instead of »X\r(X). All spaces are assumed to be Ty
and all mappings are assumed to be continuous. The weakly paracompaet
(metacompact) spaces are called shortly WPC spaces.

We define, moreover, some useful notation: if + is a collection of
disjoint subsets of the space X, then X/# denotes the guotient space
X/R,4, where the equivalence relation R4 is defined as follows:

zkay iff x=y or @,yeAd for some Aet.

1. Closed mappings.

DEFINITION 1. A mapping f: X +Y is closed iff for every closed sub-
set A of X ity image f(4) is closed in Y.

Let us notice the following obvious

ProrosirioN 1. If there ewists a compact subset Z of X such that
F(X\Z) is finite, then the mapping f: XY is closed.
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