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Let us consider a pointed compact Hausdorff space (X, x,) and an
ANR-system (X, x,) associated with (X, z,) (see [3]). Let (X, x,) be
an inverse system of nth homotiopy groups. Its inverse limit does not
depend on the choice of (X, x,) (see 6.3) and here is referred to as the
nth limit homotopy group of (X, ,) (in symbols (X, z)).

Consider two pairs, (X, ®,) and (¥, y,), and the associated inverse
systems (X, x,) and (Y, y,). To any map f: (X, x,)—(Y, y,) (in the sense
of [3]) and a natural number % we can assign the induced morphism
fur (X, X)) >ma(¥, y,) and its inverse limit, limfy = f;: my(X, o)
=¥y Yo)-

In general, the algebraic properties of limfy do not determine the
algebraic properties of f,,. For instance, the implication

(*) limf, is a bimorphism = f, is a bimorphism

in general fails (see § 6).

The purpose of this paper is to distinguish a-class of spaces which
satisties (*). This leads to the notion of uniform movability of an inverse
system in an arbitrary category, in particular in the category of ANR’s
or in the category of groups (§§ 3, 4). A uniformly movable inverse system
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of spaces hag the uniformly movable system of homotopy groups. This
makes our proofs purely algebraic (§§ 1~4).

Some results of Mardefié and Segal enable us to define the uniform
movability of a compact Hausdorff space (a pointed space) by means
of inverse systems (§ 5). The resulting class of spaces is a shape invariant
and is contained in the class of all movable compact Hausdorff spaces
(2], [5]). As an example, any plane continuum is proved to be uniformly
movable. .

For the notions of category theory, see [7].

Introduction. We start by recalling some definitions.
Consider the arbitrary category % and take fe Mory (X, ¥).
f is a monomorphism <= fo=fo'=v="1,
DE v,v" e Mory((Z, X)

f is an epimorphism <==- uf = w'f=>u=u,

Df w,u’ eMory (¥, 2)
f is a bimorphism <= f is a monomorphism A f is an epimorphism ,
Dt
f is an r-morphism <=
Df geMory (¥, X)

f is an isomorphism <=
Dt geMory (T, X)

fo=1y,
fg=1rAgf=1x.

Obviously any isomorphism is a bimorphism.

We say that the object ¥ is r-dominated by X in X (in symbols .

X > ¥) if there exists an r-morphism fe Mory (X, ¥).
rThe set A is said to be directed with respect to the relation >,
whenever )
az>aq,
d'=zdAd za=>a" = aq
AVd =arnd =a. ‘

a,d a”

If, additionally,

AVid: a=d}=n,

a neN

XN being the set of natural numbers, then 4 is a closure-finile directed set
(see [3]). '

The system X = (X, p¥, A) is said to be an inverse system in @ cate-
gory X whenever

A is a (closure-finite) directed set (1),
X, € Oby, for any ae 4,

() In §§ 14, #% is assumed to be a directed set, but subsequently, with regard to
compact spaces, & must be additionally assumed to be closure-finite.

icm
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% e Morg (X, X,) for any o' = q
pi=1x, and pipy = p% for o' > o' > a.
Given two inverse systems X = (X, pZ, A), Y= (¥,, ¢, B), the

system f= (¢, fp) is said to be a map of X into Y in ¥ whenever p: B—A
is an increasing function,

Jp e Mory (X, ¥y,
and. all the diagrams o

pP8)
o(8)
X‘P(ﬁ) “ *(8")
7p T for ﬂl > ﬁ
| .

v ¥
Y, < - Y,

%

are commutative, i.e. fzpf) = ¢}fs. 7
The composition of maps of inverse systems is defined as follows:
it f= (‘pafﬂ): XY, g=(p, gy): Y—Z, then

gf

We thus obtain a new category %* of inverse systems in K. .
Any object in J can be treated as a constant inverse system. More
precigely, we can define a covariant functor

= (@, 9,y

Const: %—&*
as follows:
(}ons,tXit (X,1x, 4),

A being an arbitrary (closure-finite) directed set.
If feMorg (X, Y), then '

Constfﬁ (L)

The object X of X is said to be an inverse limit of X (in symbols
X = limX) whenever there exists a map p: X X such that

2
ph=Hh(*),
ZeQby, h: Z-X heMory(Z, X)

®) \{ — there exists a unique h.

8 -— Fundamenta Mathematicae, T. LXXVII
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§
ie. the diagram

P
Xe——X
\ Th is commutative.
h
Z

Let us refer to p as a projection.

Obviously, if X =1lmX, ¥ =1mY, and p: XX, ¢: Y~Y are
projections, then for every f: X—Y there is a munique morphism
feMorg (X, Y) such that

Jp=4qf. .
(in symbols f=lmf).
It is known that
| limgf = limglimf,
and thus lim: X*—>X is a covariant functor.

The values of this functor are determined uniqtiely up to an iso-
morphism.

1. Categories of inverse systéms. An ordinary category of inverse
systems (see the Introduction) is a particular case of the category J*
defined as follows.

Consider the pair (X, ~), X being a category and ~ — an equivalence
relation in Mory, satisfying the following condition:

for any f,f' e Moty (X, Y); g,9 ¢ Morg(Y, Z)

f~f'Ng~g"=gf ~g'f".
Let the objects of X% be inverse systems in X, i.e. Oby* = Obyx.
Take X,YeObygx, X=(X,,p5,4), Y= (¥, 4¢,B) and let

{hz (9, fg), where ¢: B—+A is an increasing function and f; e Mory(X 5, ¥5);
en

S eMoryx(X, ¥) g qg’fp’ prpﬁﬁg;’ for any ' =8,

ie. the diagram

2(B")
Pote)
Xoey - X o)
s s
commutes up to ~.
{ J
5 Y,
%
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The composition of morphisms in K is defined as in the ordinary case.
We thus have

F* = Kk

The relation ~ generates the following equivalence relation ~ in

the set Mory»: let :

X:YEOthfv fif e Morgx(X, Y),
X= (:-Xa,.p:,yA), Y= (yﬁngyB)1

f= (‘nyp)v J= (qjlifﬁ’);
then

e e 0%
I~y Dt ﬂ/e\B u}q}(\p{’w)fppm ~Iive
One can easily verify :
1.1. For any f,f" e Moryx(X, Y), g, &' « Moryx(Y,Z)

frfrg~g =gf~gf.

We can thus define a new category }f,’f, with the same objects and
with morphisms being the equivalence classes of morphisms in K* with
respect to the relation ~.

Staternent 1.1 enables us to define the composition in Morgs:

[61Lf) = [&f]-

Thus, given the pair (¥, ~), we have defined two categories of
inverse systems in J: the category X* and its quotient category xx.

In the case of ~ heing the identity relation, we write siply &*
ingtead of 0. In this case, we use the symbol =~ to denote the equivalence
relation generated by =.

Exampre 1. Let B be the category of topological spaces with
continuous maps as morphisms and ~ — the relation of homotopy (=2).
Then B*, B* are the categories studied by S. Mardesi¢ and J. Segal in [3].

Exampre 2. Let B be the same category of topological spaces
and ~ — the relation of identity (=). Then B, 8. are the categories
studied in [6], ~ being the relation of similarity.

2. Limit morphisms in X*. Given any category X, let ws consider
two categories %* and RX* as defined in § 1.

One can easily show that

21, feof = lmf=lmf" ().

(*) The proof is quite analogous to that for the special case of the category of
topological spaces — see [6].
B+
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Some properties of morphisms are preserved by lim. Por m%tance
as a consequence of 2.1, we get

2.2. f is am isomorphism in R* = limf s an isomorphism in XK.

We have also

2.3. fisa monomorphism in F* = Lmf is a monomorphism in K.

Proof. Let f be a monomorphlsm in K% feMorg«(X, Y). Let X
=1limX, ¥Y=1imY, f=limf -

“We have

W | . =,

p: XX, ¢: Y-Y being the projections.
Take Z < Oby, v, 0" e Mory(Z, X) and assume

2) T fo=f
We have to show that v =",
Put : :
(3) v=pv, v’ﬁpv’;
we have
(4) v=1limy, o =limy.

VBY (1), (3), we get

fr=fpr=gfo and f'=fpv' = qfv’;
thus, by (2),
] fv = fv’ .
Since f is a monomorphism, it follows that'v = v’ and hence, by 2.1
and (4), v=17". m
Let us notice that a similar implication for ep1morph1sms fails.
In fact, we have

ExAMPLE 1. Let X = §-the category of groups. Take an inverse
sequence X = (X, ph*"), where X,= N — a cyclic infinite group,
(@) = 22 for n=1,2,..; take a constant sequence Y = (X, g,
where ¥, = N, ¢"tYy )—— y and let f=(1,fa), fulw) = '
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It is easy to show that f is an epimorphism in &* ; however, since
11(_111X (0), limf is not an epimorphism in 6. m

All of the converse implieations in general fail.

Exampre 2 (%). Let X =6 Take X=(X,,pi), ¥ = (¥, g&h),
Xp= Y= N, pp"(x) = bz, ¢4 (y) = 3y, and let f = (1, f,), falz) = 2"z.
Since th 0) = limY, limf is an 1somorph1sm On the other hand,
fis not an 1s0morph1sm n

ExavpLe 3. Take the category § and X, Y as in Example 2. Now,
let f: X—¥ be the trivial morphism, ie. fa(x) =0 for n=1,2,.. Of
course f is not a monomorphism, but limf is 2 monomorphism. m

Examrie 4. Take a trivial sequence X e Obg, and take ¥ as in
Examples 2, 3. The trivial morphism f: X—¥ is not an epimorphism but
Limf is an epimorphism. m

We are interested in the case of bimorphisms. The questlon arises
what assumptions on inverse systems are to be made in order to obtain
the implication:

limf is a bimorphism in X = f is a bimorphism in #*.

The answer is given in § 4. There the above implication is proved
for uniformly movable systems as defined in § 3.

3. Movable and uniformly movable inverse systems. The notion of
movability introduced by K. Borsuk in [2] for compacta and expressed
by 8. Mardefié and J. Segal in [5] by means of inverse systems, can
easily be generalized to an arbitrary category.

Let X = (X,,p%, A) ¢ Obye*.

X is said to be movable in X' whenever

AV A V P i~ -

ao€d fo~qy a>a0 Ry €MOry(Xg,,X,)

Notice that there is no connection between two maps kg, kg,
for a £ o',
Now, for any (closure-finite) directed set A, leb

A(”°)~{aeA az>a), oed.

Then, to any: inverse system X = (X,,p¥,4) in X the following
collection of inverse systems can be assigned:

X E (X, Z’ﬁ'y A(%)) ) gped.

We shall refer to X as a partial system of X.
Obviously

‘) This example is due to W. Holsztyzski.


Artur


132 M. Moszyhska

3.1. X© is cofinal to X for every oy e A.
X is said to be uniformly movable in % whenever there is a collection

oz A > Ay
of constant functions and a collection
{h(a‘)): Xao—)'x(%)}uosA

of morphisms in X% such that
£ is inereasing with respect to o
i) (ie. ap=>ap= A 2%(a) > 1)(a)
azzap
7%(a) = Gy a, for every ae A,
Bleo) — ( %(aa), h&ﬂu)) ,
@ AN N PR ~po.
% ged(a0)
‘We have ‘
32. Let {yeq ond (K}, .. satisfy the conditions (i), (ii).
Consider a collection {y'®}, 4 Of constant functions such that
., $ @ is increasing with respect 10 o,
® )= ay>a, for every oe A@,
Then there exists a collection {h}, ., such that
B — ( X'(ﬂo)7 h;(ﬂo)) ,

(i) AN B i

a0 ge4(0)

Proof. Take {5, ., and {K}, ., satistying (i), (ii) and let {5},
satisfy (i'). We have to find {A®}, ., satisfying (il').

a

Py,

X«—— X

a

I L

X «—— Xu
~r
PO
ag

Let

Bl — (%'(uu)’ h;(ao)) ; where h’ﬂ(ao) — h[(lan)pzz.{ for ae AL,
. DE Qo

icm®
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Then, by (ii), we have
. S A
Daghs™ = PR IpR~pip® —p2 . W
Let us notice that

8.3. X is uniformly movable in K, iff there is & collection of maps
of X into its partial systems,

{0 X X9,

such that
h(ﬂo)( x(ao), hs:n)) ,
where
(1) x(ao): A@) 5 A (Z(an)(d) ;1&0 for every a e A)

are constant functions satisfying (i), and
@) ' BES o

Proof. If iy a constant funchion, then any map A = (3, p)
can be treated either as a map of Xinto X® or as & map of X; into X
(where a, = “(a)).

Since A ¢ Moryx, we have

PE RO~ for every a> g,
ie. the diagram.
1
Xy X3

(ao) (ao)
P %" commutes up to ~.

X, «~—X,

o

ap

Hence, the two conditions

pehO~ps  and WP ~pg

(1

are equivalent to each other. m
One can easily prove that
3.4. If X is uniformly movable in X2, then X is movable as well.
We have
3.5. Hvery constant system in ¥ is uniformly movable in .
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Proof. Take X= (X, 1x,
> ap, W =1x. We get K™ = (4, k") X;—>X“ satisfying the
Df !
condition (i), (ii). @

Now, let us consider two pairs, (X, ~u) and (£, ~¢) (see § 1), and
the corresponding ecategories X.,fr. Let @ (X, ~gx)—(L, ~¢) Dbe
a covariant functor preserving the equivalence relation, ie. for any
X, Y ¢« Oby, and fy, fo e Morg (X, ¥)

Joropfr=m (fo) ~pm(fy) -

It iy easily seen that = carries any inverse system in % onto an

inverse system in £ and any map of systems onto a map .of systems, i.e.,
7 generates the following functor:

7 Kt»ﬂt:

if X=(X,,p?, 4), then
n(X) = (n(X), n(p3), 4);
it f=(9,fy): X= (X, %, 4)~(X;, g5, B) = Y, then
| w(f) = (@, 7(fy)): w(X)~>m(¥).

Ubviously the generated functor is also covariant.
. Let us notice that

3.6. If X and Y are isomorphic in KX,
morphic in £

It fo]lows by the definition of uniform movability that

3.7. X is uniformly movable in X* = w(X) is wniformly movable in ¥ .

Now, let us assume all the objects of XY to be inverse systems over
a fixed directed set A.

We are going to prove that the uniform movability in K¥ is an
invariant of any isomorphism in &¥; moreover — that it is an r-invariant
in &* (statements 3.9, 3.10).

First let us notice that

3.8. Given two inverse systems X, ¥ over. A, for cvery fe Morgx(X, Y)
there exists an. f'= (¢, f;) such that f' == f and ¢'(B) = p for any Be 4.

Proof. Take X=(X,,p5,4), Y= (¥, q5,4) and f= (p,fp)
X-Y.

For every feA choose aeA such that o>

97(/3)=D=ta-

> ¢(B), we can define f;:

then #n(X) and =(X¥) are iso-

= fi, p(f) and put

Since ¢'(p) X, p—~Y, as follows:

R
fr= Towi) -

A). Let ayeA. Define 5“a)= g, for'

icm
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The morphism f'= (¢, f‘;) satisfies the required conditions:
1° by definition, ¢'(8) = f for every fed,
2° for every f e A thele is an a= ¢'(f) such that a > ¢(B), ¢'(8) and

TePom = fp TPy

thus f' =~ f. ®
Let us prove
3.9. THEOREM. Lej X, Y be two inverse systems in X over a directed
set A. If X=Y in KX, then
r
X is uniformly movable in X% = ¥ is uniformly movable in %¥.

Proof. Take X = (X, p%, 4),

Y= (Y, qf, A). By hypothesis, there
exist

f= (g, fp): X=>Y
such that fga1ly, ie.

(1) ’ /\ \/ T(ﬁ;ﬁ’)r

T B B'=Bv9(B)

and  g=(y,0.): Y>X

the formula ¥ being defined as follows:

(2) V(B B) <= foloin ot~ -
Notice that

3) B=p= /p\[T(ﬁ, B)=¥(B, B
By 3.8, we can assume

(4) o(f)=p
thus condition (1) can be replaced by

(1) P, B).
a f'2yp(f)

Let X be uniformly movable in X% . Prove ¥ to be uniformly movable.
Fix f;e A and put

and y(a)>a tor every a,fecd;

5) % ;:i ®(By) -
By (1), there is a fj = w(a,) such that
(6) P (Bo, B) -
Let
A = {a: 0> qp}, AP = {8: f>fo}.
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Since X is uniformly movable, there is a constant function
4@: A@ 4 and a map A X5 —~X“ such that

1) =y, z“ is increasing with respect to a,

o 93>0 and Pl NP::@ for a>a.

By 3.2, we can assume. that
(8)  a=p-
By (6), (8), (3) and (4) we get
9 P(Bos () -

Put
(10 Bo=v(@)
and define

W A 4 and kP Xp X
as follows:
Py =B, for any peAP,

1) Dt

Bo) (00 G — £ 30 e Ty
KOO = (@, 1), YO = fahda: T~

Let us notice that, by 3.3, A can be treated as a morphism of X
into X, k®) __ a5 a morphism of Y into ¥Y®. By (5), we can define

f: Xy,
f'= (@ f5),  where ¢': AD—A), o'(B) = g(f) for f=f,,
and then we get the diagram

2 nlao) 5

Y > X > X 2 o,

Thus k% = f'hg, and therefore k% ¢ Moryx(Y, Y).

It remains to verify the conditions (i), (ii) for {#®}, ., (K®}p 4.

By (10), (11), (), ¥ = yy @ Thus, »® is increasing with
respect to f,, since @, are both increasing and #* is inereasing with
respect to a,. Moreover, by (4) and (7),

#P(B) = fV(B) > p(By) =B, for every B = fy;

hence {x®)}, satisties (i). Let us prove that {(k®), satisties (i), ie.
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B0 ~g  for every =8 4

Since f, g € Morgx, we have

78 1
(12) B fo~Tnboy for B=p \
¥
Yy, — ¥,
%,
and
qg(zg)
Y Yoo
T
(13) D28 Gy ~ oo Ciiee N
! .
X, — X,

~
a0
Poy

Applying in turn (5), (11), (12), (7), (13), (5), (10), we obtain
QP = T H0 05, ~Tr D DS T, ~ o050
— Fp05~ Fraleo |
= Frdusa Lo -

Thus, by (2) and (9), we geb ko~ ie. (k) satisfies (ii).

Hence Y is proved to be uniformly movable as well as X. &

As an immediate consequence of 3.9 we obtain

3.10. COROLLARY. In an arbitrary category R, every isomorphism
preserves umiform movability.

4. Algebraic properties of uniformly mpvable systems. In this gecti?n
we are concerned with the category %, as defined in the Introduction (%)

() As has been noticed in § 1, K* = KZX.
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We start with proving the following statement:

4.1. If the inverse system X = (X,, p%, A) is uniformly movable in X,
X =lmX and p = (p,): XX is a projection, then there exist an inereasing
fundtion y: A—>A and a collection {h®: XX}, 4 stuch that y(ap) > g,
and

A N e = pi,

o' apza’

i.e. the diagram

Dy

X, X
3

e

/) s commutative .

/

#(a0)

pggao)

Proof. Assnme X to be uniformly movable in %*. Take

{0 A4}, ., and (A Xy X,
satisfying (i), (i) (see § 3).
Define y: A—A4 as follows:
(1) ) 1 1 (@) ot a‘u

(Le. 7(a) = £%9(a) for any ). Then A € Moy (Xyqq), X).
Since, by 3.1, X* ig cofinal to X, we have

lmX©® = limX = X .
Put

(2) B = limpe; X X
Y= * " ulag) .

Let us show that the formulae (1), (2) determine the desired function z
and collection {n®},

By the properties of a limit map, we have

(3) phe = ﬁ‘““’, Le.  phl =3 for any o> qp.

By (i), 7 is an increasing function and y (ay) > a. Take o' = a; applying (3)
and putting x(a,) for a in (ii), we get

Z’a'h(ao) — ngun)px(ao) h@od pﬁgao)hgzg)u) = p% ﬁ(“")h;‘?‘))]
0 ao,
= PIPEY =¥ m

Uniformly movable compact spaces 139

Proposition 4.2, which we are going o prove now, states an impli-
cation converse to 2.1 in the case of X being uniformly movable in X*.

4.2. Let X be uniformly movable in X*. Then, for an arbitrary ¥ ¢ Oby+
and for any two maps f,f': XY,

limf = Hmf' = f = f'.

Proof. Take a uniformly movable system X= (X, pZ, 4), an
arbitrary ¥ = (¥, ¢f, B), and two maps f= (¢,f,), f = (¢,f) of X
into Y.

Let X =lmX, ¥ =1mY. Assume limf=f=limf’, ie.

- FoPoy = fsPy for every feB.
We are going to show that fof", ie.
(2) A Vo f 5050 = I ;;P;'(g) .

B a=0@),e'(B)
By 4.1, there exist y: A—A4 and a system

(R X, > X}ies  such that  y(a) =a for eoed
and

(3) AN N P = pr

o’ op>a’

Take feB and a, = (), ¢'(8); let
a ;S; JACHE

We have a = @(f), #'(B).
Putting ¢(B) for o« in (3), we get

{4) ’ Dy = Puyh™;
putting ¢’(8), we get
(8) Dy = Py

Applying in turn (4), (1), (5), we obtain

FoPi = FoPup W = FoDyh™ = f3D3 -

Thus condition (2) is proved. ®

Let & be the subcategory of X* with uniformly movable inverse
systems in K* as objects.

As a consequence of 4.2 we obtain the following two corollaries
concerning any morphism of uniformly movable inverse systems in .

4.3. COROLLARY. limf is an epimorphism in K= fis an epimorphism
in K. N
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4.4. QOROLLARY. limf is @ monomorphism in 3= fis & monomorphis: .
in % -

Proof. of 4.3. Take f: XY and let f=limf. Assume f to be an
epimorphism in K.

Take any Z and u,u’:
fo]lows by 2.1 and 4.2 ‘nhat

Y—+Z, and let u=1limu,w =lmw'. It

uf~uf:>uf_uf:>u—u »urvu,

thus fis an eplmorphlsm in &;.m

Proof of 4.4. Take f: X—¥ and let f = limf. Assumef 10 be a mono-
morphism in %. Take any Z and v,v": Z-X, and let v = limy, ¢’ = limy'.
It follows by 2.1 and 4.2 that

frofsfo=Ff=v=10=>yxy;

thus f is a monomorphism in Kg. m
By 4.3 and 4.4 we get
4.5. COROLLARY. limf is a bimorphism in %= f is a bimorphism in Re.

5, Uniformly movable compact spaces. Let us consider the category R
of compact ANR’s as objects and continuons mappings as morphisms.
Obviously, R is a subcategory of the category B (see § 1, Examples 1, 2).

By o theorem of Mardesié and Segal ([3], Th. 12, Cor. 1), two
ANR -systems associated with the same compact Hansdorff space X are
isomorphic in category RA (=~ being the homotopy relation). Thus,
Corollary 3.10 enables us to define the uniform movability of any com-
pact Haugdorff space by means of inverse systems (in a similar way as
has been followed by Mardesié and Segal in [5] for. movability).

A compact Hausdortf space X is said to be uniformly movable whenever
there is an inverse system X in R such that X = th and X is umt‘ormly
movable in RX.

By the Mardesié and Segal Th. 10 of [3], shape domination for
compact Hausdorff spaces can be defined as follows:

Sh(X) > Sh(Y) iff there exist ANR-systems X, ¥ associated with
X, Y and such that ¥ is r-dominated by X in the category BL (see
Introduction).

By the results of [4], in the case of metric compact spaces shape
domination coincides with fundamental domination in the gense of
Borsuk (see [1]).

By the statements 3.9, 3.10 we obtain

5.1. CorOLLARY. Let X, Y be two compact Hausdorff spaces. If Sh(X)
>8h(Y) and X is uniformly movadle, then Y is uniformly movable as well.

5.2. CorOLLARY. The uniform movability is a shape invariant.
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Since every ANR -space is an inverse limit of a constant ANR -gystem
in R, 3.4 implies

5.3. X e ANR =X s uniformly movable.

Let us prove

5.4. THEOREM. Any plane continuum is uniformly movable.

Proof. By a theorem of Borsuk ([1], p. 235) any plane continuum
is fundamentally dominated by the continuum X defined as follows:
Take

ll

1 <1, 2, = 0},

<o <1, 8=},

1
0 << o< 2k 1},

{(@y, )
{

(1, %2): 0 <

ll

=

(%1, mz) Ly = oFE-1!

1 .
{(wl,wz) 0< 1<F,0<m2<9:1} for »n=1,2,..

and put
n—1
Xi=4,, Xp=AyvdyudyuvJIxy for n =2
Dt Dt e}
Obviously, X, ¢« ANR and X,,,CX, for n=1,2,..
Let
H X
T =1

Since all X, are continua, X is a continuum as well. By 3.1, it suffices
to prove the uniform movability of X.
Take the inclusion ANR-sequence X =

X =1limX.

(X,, ™, N). We have

For every n > n, consider the set

no—1

X =A4,0dvdo U
k=1
Obviously X° is a subset of X, homeomorphic to X,. Take n,e N and
define A" — (5™, pmo): X, »X™ ag follows:
X(n?)(") =N
h: X, X, — a topological imbedding satisfying the condition
WX, = X

for every n =1,

It is easily seen that
PR o B
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i. e. the diagram

o
n
Xy X
4 /!
commutes up to o~<;
plno) %ﬂl) P ’
% "/ .
x.”

no
thus A™ is a map of inverse sequences. Moreover,
PRIy = i = P
Hence X iy uniformly movable and thus the proof is complete. m
The following problem remains open:
5.5. Does there exist a compactum which is movable but not uni-
formly movable (%) ¢ :

6. Homomorphisms of limit Lomotopy groups for uniformly movable
-compact spaces. We are interested in the category & of pointed ANR’s (")
and the category § of groups. '

Let us consider two pairs (R, ~) and (§,=), a natural number
and the covariant functor

Tt (Ry 22)>(8, =)
defined as usually, i.e.
an(X, ;) is the nth homotopy group of (X, x,),
for any f: (X, m) (X, 9,)
an(f) = fa: (X, @) »n( Y, o)

‘the indnced homomorphism.

As was noticed in § 3, the functqr 7n, generates a covariant functor

s RE—GF,
By 3.7, the functor =, preserves uniform movability, thus we have

6.1. If the ANR-system (X, x,) is uniformly movable in R%, then the
homotopy system mwu(X, x,) is uniformly movable in G*,

Let (X, ) be a pointed compact Hausdorft gpace. By Theorem 7
-of [3], there is an ANR-system (X , Xp) such that

(X, 20) = lim (X, x,) .

(%) See Remark 6.7. .
(*) By a pointed space we mean the pair (X, ), being any point of the space X.
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Let us consider the group lim=,(X, x,) and prove that it does not depend
.on the choice of the inverse system (X,x,) (the statement 6.3).

6.2. If (X, x), (Y, ) are homotopicaly equivalent, then the groups
lim 7a(X, %o); Hm7a(Y, yo) are isomorphic.

Proof. Let (X, xo),(¥, ») be homotopicaly equivalent, i.e. iso-
morphic in the category RX. Then, by 3.6, the two inverse systems
(X, %,) and wn(Y, ¥,) are isomorphic in the category §*. Thus, by 2.2,
their inverse limits are isomorphic in §. m

By Theorem 12, Corollary 1 of [3], the statement 6.2 implies that

6.3. If two ANR-sysiems, (X, x,) and (X', x;), have the same inverse
Timit (X, @), then the groups Um (X, x,) and lim sz,(X, x,) are isomorphic
(in Q).

The last proposition enables us to define the group zi(X,x,) as
follows:

”:,(Xa %) E liln_ﬂn(X7 Xo) 5

the system (X, x,) being any ANR-system associated with (X, z,). We
shall refer to the group my(X,w,) as the n-th Wimit homotopy group of
(X, x,). By 6.2, @) is a shape invariant.

This group can be proved to be isomorphic to the fnindamental group
(X, 1) 25 defined by K. Borsuk in [1].
- Every map f: (X, xo) (¥, y,) induces a homomorphism of nth limit.
homotopy groups,

Frr wn( X, mg) »mn(¥, 9)
Ja=limfe, where fy = mlf)-

By 2.2, we have

6.4. fu is an isomorphism in §* = ¥ is an isomorphism in S.

By 2.3, we get ’

6.5. fn is & monomorphism in §*= fy is a monomorphism in .

By Example 1 (§ 2), we infer that a similar implication for epi-
morphisms fails. Tn fact, let X be a Van Danzig solenoid, X =limX,
where X = (81, p7it?), pmtiz) = 2%, and let ¥ = §'—a constant system
and n = 1. Take f= (1,fm), fm(2) = 2*". Then, by Example 1, f, is an
epimorphism in §* but limf; is not an epimorphism in §. .

In a similar way, al;plying Examples 2, 3, 4 of § 2, we infer that the
converse implications in general fail.

However, for uniformly movable spaces some positive results can

be obtained. Indeed, by 6.1 and 4.3-4.5, we get the following

9 — Fundamenta Mathematicae, T. LXXVII
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6.6. COROLLARY. If (X, @), (X, 4, are wniformly movable pointed
compact Hausdorff spaces, and (X, x), (¥, y,) —the dssoctated ANR-
systems, then for any map f: (X, xo) (¥, o)

ANN 4
@ Iy
(3) fa

6.7. Remark. When the paper was in press, the question 5.5 wag

is & monomorphism in 8 =-f, is @ monomorphism in &,
is an epimorphism n §= f, is an epimorphism :n &,
is a bimorphism in S = f, is a bimorphism in §*,

answered by 8. Spiez [8]. He proved that every movable compactum i

uniformly movable.
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iom

An atomic map onto an arbitrary metric continuum
by

A. Emeryk (Katowice)

A continmum means in this paper a compact connected Hansdorff

space. A continuons map f: X = Y is said-to be atomic if for each sub-
continuum K of X such that f(K) is non-degenerate we have f~*(f(K)) = K.
The notion of an atomic (continnons and open) map was originally intro-
duced by Anderson [2] and was applied by Anderson and Choquet [3],
and then by Cook [4], to the constructions of some singular continua.
In 1966 Mahavier [8].and Thomas [10] showed independently that there
is no atomic map from an irreducible, mefric continuum onto an arc
such that the preimage of each point is a non-degenerate, hereditarily
decomposable, chainable continuum. In 1970 Mahavier [9] showed that
if K is a metric continuum, then there is an atomic map from a separable,
first countable, irreducible continuum onto an arc such that the preimage
of each point is homeomorphic to K. In this note we show that if X is
a metric continuum and K, # ¢ X, are metric continua, then there is
an atomic mayp f from a separable, first countable Hausdorff continuum
onto X such that the preimage under f of any point # of X is homeo-
morphic to K. If, in addition, X is irreducible, then the continuum in
question proves to Dbe irreducible, and so the construction given here
is a generalization of that of Mahavier. A gimilar construction is given
also in a paper of Fedoréuk [6], who applied it to the proof of the existence
of a compact Hausdorff space having the dimension dim. less than the
dimension ind. However, Fedorduk’s construetion is incomparable with
that of the present paper: although it satisfies some special conditions,
the map is not atomic, and X and K ., for & ¢ X, are rather special spaces,
such ag an n-sphere or an n-torus, and are locally connected continua
in the most general cage.

Let X be an arbitrary metric continnum. For each z ¢ X, let M, be

onto .
a metric continwum and let Ty: My — X be a continuous map. Let
8= | {{@}x T;Xa): e X}. For each ¢ X and an open subset U of My
which intersects T;(x), let R(w, U) denote the subset of 8 to which
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