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6.6. COROLLARY. If (X, @), (X, 4, are wniformly movable pointed
compact Hausdorff spaces, and (X, x), (¥, y,) —the dssoctated ANR-
systems, then for any map f: (X, xo) (¥, o)

ANN 4
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6.7. Remark. When the paper was in press, the question 5.5 wag

is & monomorphism in 8 =-f, is @ monomorphism in &,
is an epimorphism n §= f, is an epimorphism :n &,
is a bimorphism in S = f, is a bimorphism in §*,

answered by 8. Spiez [8]. He proved that every movable compactum i

uniformly movable.
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An atomic map onto an arbitrary metric continuum
by

A. Emeryk (Katowice)

A continmum means in this paper a compact connected Hansdorff

space. A continuons map f: X = Y is said-to be atomic if for each sub-
continuum K of X such that f(K) is non-degenerate we have f~*(f(K)) = K.
The notion of an atomic (continnons and open) map was originally intro-
duced by Anderson [2] and was applied by Anderson and Choquet [3],
and then by Cook [4], to the constructions of some singular continua.
In 1966 Mahavier [8].and Thomas [10] showed independently that there
is no atomic map from an irreducible, mefric continuum onto an arc
such that the preimage of each point is a non-degenerate, hereditarily
decomposable, chainable continuum. In 1970 Mahavier [9] showed that
if K is a metric continuum, then there is an atomic map from a separable,
first countable, irreducible continuum onto an arc such that the preimage
of each point is homeomorphic to K. In this note we show that if X is
a metric continuum and K, # ¢ X, are metric continua, then there is
an atomic mayp f from a separable, first countable Hausdorff continuum
onto X such that the preimage under f of any point # of X is homeo-
morphic to K. If, in addition, X is irreducible, then the continuum in
question proves to Dbe irreducible, and so the construction given here
is a generalization of that of Mahavier. A gimilar construction is given
also in a paper of Fedoréuk [6], who applied it to the proof of the existence
of a compact Hausdorff space having the dimension dim. less than the
dimension ind. However, Fedorduk’s construetion is incomparable with
that of the present paper: although it satisfies some special conditions,
the map is not atomic, and X and K ., for & ¢ X, are rather special spaces,
such ag an n-sphere or an n-torus, and are locally connected continua
in the most general cage.

Let X be an arbitrary metric continnum. For each z ¢ X, let M, be

onto .
a metric continwum and let Ty: My — X be a continuous map. Let
8= | {{@}x T;Xa): e X}. For each ¢ X and an open subset U of My
which intersects T;(x), let R(w, U) denote the subset of 8 to which
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(t, P) belongs iff either {=x and P is in U ~ T7%w) or P is in T;(p)
and T7(t) C U. The collection of all such subsets of § generates a topology
in S. Let = denote a map (projection) of § onto X such that »~(x)
— T;Y(x) for each z<X. Let d be a metric on X and let K(t,e)
= {t' e X: d(t, 1) <e}.

Levua 1. If (t, P) is a point of 8 and & >0, then there is an R(t, U)
such that (¢, P) € R(t, U) Ca YK (1, ¢)).

Proof. Tt U= T;YK(t,¢)), then from the definition we have
(t, P) e R(t, U) Ca K¢, s)).

Levva 2. If (¢, P) e R(z, U) and x 5= 1, then there is an & >0 such
that = (K (¢, ¢)) C R(2, U).

Proof. Let t=¢x and (f, P) e R(x, U). Then T;*#)C U and the

set V= {t' e X: T;X') C U} is non-void and open (since the map T is

closed, M, being eompact, X Hausdorff and Ty continuous). So there
is an & >0 such that T;Y{K(t, ¢))C U. From the definition of E(z, T)
it follows that 2K (t, £)) C R(z, D).

COROLLARY 1. The map m 8 CONHNUOUS.

COROLLARY 2. The collection of all subset of S of the form R(zx, U) is
a basis for the topology in S.

Proof. It suffices to prove that if the point (¢, P) is in both k(z, U)
and R(y, V), then there is an R(z, W) containing (f, ) and lying in
Rz, U)~R(y,V). T o #t and y 1, then from Lemma 2 we infer
that there is an ¢ >0 such that a YK (,¢))C R(z, U) ~ R(y, V). By
Lemma 1, there is an R(a, W) containing (¢, P) and lying in n“l(K (%, a)).
If z=1¢ and y=1, then (¢, P)eR(t, UnV)CR(@, U)nE(@E,V) If
% =t and y = t, then from Lemma 2 we infer that there is an ¢ > 0 such
that (K (t, ¢))C R(z, U). By Lemma 1, there is an RE(t, W) such that
(t,P) e R(t, W) CaY(K(t, ). This implies that (¢, P)C R(, WnV)
CR(x, Uy~ E(y, V).

THEOREM 1. S is a Hausdorff space.

Proof. Let (a, P) and (b, Q) be two points of 8. Suppose a 7 b.
Let ¢ = 4d(a, b). There are, by Lemama 1, B, and R, such that (@, P)
eR, CaY(E(a,¢) and (b,Q) ¢ B, Ca YK (b, &)}, and thus R, ~R,= 0.
If a =0, then P # @ and there are mutually disjoint open subsets U
and V containing P and @, respectively. Then R(a, U) ~ R(a, V)= 0.

THEOREM 2. § 48 a first countable space.

Proof. Let (@, P) denote a point of § and let {U;: ¢=1,2,..} be
a countable base in M, at the point P. Suppose (a, P) iy in E(z, V).
If o +# &, then there is an & >0 such that = YK (a, ) C R(z,V) and
an n >0 such that U,C T;*(K(a,e)). This implies that R{(a, Un)
CR(»,V). If a= 2, then P is in V. Hence there is an » > 0 such that
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U,CV. Then E(a, Us) CE(a,V). Thus {R(a, Uy): i=1,2,..} is

‘a countable base in § at (a, P).

THEOREM 3. If, for each »eX, T \t) are one-point seis for i+ x,
then S s a compact space.

Proof. Let @ be a covering of § consisting of sets from the bagis.
We first show that for each o ¢ X we have ¢; > 0 and a finite subfamily
of @ which covers 2~} (z, &;)). Let x ¢ X. If there are a point P in T %(z),
t# a, and B(¢, U) in @ containing (z, P), then, by Lemma 2, there is
an ; >0 such that 27K (s, &5)) C R(t, U). Otherwise, for each point P
in T,(w), there is an open subset Up of M, such that R(z, Up) is an
element of ¢ containing (x, P). Sincé T;%(z) is compact, there is a finite
subset H of T.%z) such that T7%(z) C | {Up: P ¢ H}. There is an ez > 0

 such that T;Y(K(x, ex)) C \U{Up: P e H}. It ¢ € K(3, &), then T5Y(t)C Up

for some point P in H, Hence z~(t) C B(x, Up), and therefore 2K (2, &)
CU{R(», Up): P eH}. Note that X is compact, and therefore a finite
family of K (x, ;) covers X. But we have proved that each n (K (z, &)
can be covered by a finite subfamily of @. This leads to the compactness of 8.

THEOREM 4. If, for each xeX, T, x) is connected and T,Yt) are
one-point sets for t £ x, then 8§ is connected.

Proof. Since n~*(2) is homeomorphic to 7;%(x) for each » ¢ X, the
map z is monotone. It is known (e.g. from Kuratowski’s book [7], p. 123)
that a continuons mayp f from a compact Hausdortf space M onto a Haus-
dorff space N is monotone iff the preimage under f of any subeontinunm
of N is connected. Since  is a continuous map, § is compact (in virtue
of Theorem 3), X is a connected Hausdorff space and § = =z *(X), § is
connected. ’

LemMA 3. If T.*t) are one-point sets for t£x, HCX—{z} and -
PeTMx) is a limit point of T7Y(H), then if (z,P) e R{t, U), then there
is an a € H such that n~Y(a) C R(t, U).

Proof. If ¢ s «, then, by Lemma 2, there is an >0 such that
a YK (@,e))C R(t, U). By hypothesis, there is an aeH such that
weK(w,e). Hence n(a) Ca ) (K(2,s)CR({E, U). If t=w2, then P is
in U. By hypothesis, there is an « ¢ H such that T;%(a)C U, whence
~~(a) CR(t, ). |

TEEOREM 5. If for » ¢ X, T;%(x) are sets with a void interior in Mz
and TZY(t) are one-point sets for t +# «, then 8 is separable.

Proof. Leb {;: ¢ =1,2,..} be a countable dense subset of X. Leb
us choose Py in each T} x;). We show that each set {(, Ps): i =1,2,...}
is a dense subset of 8. Let R(z, U) be given. Since U n T;Y(z) # 0, let
Q ¢ U ~ T-Y(z). By hypothesis, § is a limit point of 7;(X —{z}). Hence, -
by Lemmsa 3, there is an a ¢ X —{z} sueh that x %a)C E(z, U). By
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TLemma 2, there is an & >0 such that » *(K(a, ¢)) CR(z, U). But there
is an o such that @; e K(a, ¢). Hence (i, P;) e R(z, U). Note that the
axiom of choice has been used in the proof.

TEROREM 6. If for # « X, T5'(®) are sets with a void interior in M,
and TZY(t) are one-point sets for © - @, then the map 7% s irreducible.

Proof. In the proof of the preceding theorem it was shown thag
for each set R(f, U) there are a ¢ X and &> 0 such that a (K (a, €))
C R(t, U). This implies that there exist no closed subsets Z of § different
from S and such that x(Z) = X. This means that = is irreducible.

Note. T, in addition, X is irreducible, than § is irreducible, in virtue
of the irreducibility of m.

Lemma 4. Lei f be an atomic map from a continuum X onto a non-
degenerate continwum Y. If K is a subcontinuum of X such that f(K) is
non-degenerate, then for each y < f(K) the set f7(y) has a void imterior in K.

Proof. Tt is shown in [5] that if f is an atomic map from a con-
tinmum X onto a non-degenerate ¥, then a preimage under f of apy point
of Y is the set with a void interior in X. It is easy to check that the
partial map f lf'l{f(K)], where f(K) is non-degenerate, is atomic if f is
atomic. Hence the previous conclusion on f~(y) is true for f|.K, I and
f(K) instead of f, X and Y. This ends the proof.

THEOREM 7. If, for & ¢ X, T5 (&) is connected, Ty is atomic and T(?)
are one-point sets for t = x, then m is atomic.

Proof. Let ¢ be a subeontinuum of S such that () is non-degenerate.
Suppose that (#, P) e x~}n(C)). Then tex(0). Since each atomic map
is monotone (see a note by the present author and Horbanowicz [5]),
we have T;*(=(C)) is a subcontinunm of My and, by Lemma 4, we infer
that T7(t) is a set with a void interior in T;*(n(0)). By Lemma 3, for
each E(s, U) containing (¢, P) we have a € z(() such that z~*(a) C B(s, U).
This implies that ¢ ~ R(s, T) s 0. Since C is closed, we have (¢, P) e 0
and, in virtue of 0 C =z Yz (C)), we get = Y= (0))= C.

MAIN THEOREM. Let X be a meiric continuum. Let Kq, for each x e X,
be metric continua. Then there are o separable, first countable continuum 8

. . s

and an atomic irreducible map m: S %7 X such that Y @) = Ky for each
x e X; if, in addition, X is irreducible, then S irreducible:

Proof. The preceding theorems allow us to construct an atomic
. . onto
irreducible map #: § — X, S satisfying all the required conditions,
under sontloe hypotheses concerning the existence, for each z ¢ X, of maps
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fl’,: Mz - X such that (1) T, is atomie, (2) T;%(=) is a set with a void
interior in M, and (3) T;%(t) are one-point sets for ¢ = #. Now we shall
show that these hypotheses may be satisfied even with additional con-
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ditions which ensure that, for each » ¢ X, T;%(x) is a given continuum K.
Tt is shown in [1] that if K is a metric continunm and Z is a locally com-
pact, non-compact metric space with a countable base, then there is
a compact metric space M containing a dense subset Z’ homeomorphic
to Z and such that M —Z’ is homeomorphic to K; furthermore, the com-
pactification M of M —Z' has the following additional property: () if
¢ is a subcontinuum of M which intersects both Z' and M —Z’, then ¢
contains M —Z’. To get the required atomic map we take X —{x} for Z.
Then X is & one-point compactification of Z. Take K for K. The con-
tinuom My is M for K and Z defined above. So we get another comypactifi-
cation of X — {z}, the remainder of which is K. Thus there exists a map

A7
Ty Mwolo X which leaves the points of X —{z} fized and maps the
remainder K, onto the remainder {z}. The maps I, are the

required maps. The atomicity of these maps follows immediately from
the property (*) of the compactification. The additional assertion of the

 theorem, namely the irreducibility of 8, is a consequence of the assertion

formulated in the Note following Theorem 6.

Note. Theorems 3-7 are valid under more general conditions.
Namely, the condition that, for ¢ = @, T;'(f) are one-point sets, can be
replaced by weaker conditions that 1tim [Qiam T, (t)] = 0.

o )

References

[1] J.M.Aarts and P. van Emde B oas, Continua as remainders in compact extensions,
Niew. Archief voor Wiskunde 15 (1967), pp. 34-37. .

[2] R.D. Anderson, Atomic decomposition of continua, Duke Math. J. 24 (1956),
pp. 507-514.

3] — and G. Choquet, A plane continuwm no two of whose non-degenerate subcontinua
are homeomorphic: Amn application of inverse limits, Proc. Amer. Math. Soec.
10 (1959), pp. 347-353.

[4] H. Cook, Continua which admit only the identity mapping onto non-degenerate

. subcontinua, Fund. Math. 60 (1967), pp. 241-249. .

(6] A.Emerykand Z. Horbanowicz, On atomic mappings, submittéd to Collog. Math.

[6] B. Pemopuyk, O buxomnaxmax ¢ Hecos anu, OAH CCCP 182
(1968), pp. 275-278.

71 K. Kuratowski, Topologie I, Warszawa 1952.

[8] W.S. Mahavier, Upper semi-continuous decompositions of irred
Fund. Math. 60 (19867), pp. 53-57.

[9] — Atomic mappings on irreducible Hausdorff continua, Fund. Math. 69 (1970),
pp. 147-151.

[10] E. 8. Thomas, Monotone decompositions of irreducible continua, Rozprawy Mat.
50 (1966), pp. 1-73.

SILESIAN UNIVERSITY
Katowice

ML pas.
P P

ble i

Regu par la Rédaction le 24. 7. 1971



Artur




