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Ir<Tas AS<T. If the embedding preserves order and if the latfice
Ser
ig distributive, then all necessary inequalities become true. (Distributivity

is needed becamse of clause (c).) Hence, the sublattice P of ‘W generated
by P is the completely free distributive lattice on P. We have thus shown
that all free distributive latbices are, up to isomorphism, sublattices of .
We have also shown that an inequality 8§ < T holds in the completely
free distributive lattice on P iff {S} < T is necessary.

As in § 2, we can generalize Theorem 8 by permitting infinitary,
say x-ary, lattice operations. The required extension of the definition
of necessary is obvious; for example, (e) is replaced by

(e) {8} v I'< U is necessary for every i e I, then so is {V 83} o

tel
SR E IR .
We then have order-isomorphic embeddings of P into W such that,
i § and T are terms built up from P by applying the lattice operations
+to % or fewer terms atb a time, then § j T in W only if I8} < 7 is necessary.
Interpreting inequalities as above, we find that the necessary ones
are true for any embedding of P into a »*-complete lattice satistying
the generalized distributive law
(V8IAT <V (8iAT).
iel iel
(The converse inequality always holds.) Since W is Brouwerian, it satisfies
this generalized distributive law, and so do all its »™- complete sublattices.
It follows that, for any P and %, the completely free, %+ - complete,
generalized-distributive lattice on P can be »'-completely embedded
into W, and satisties § < T iff {8} < T is necessary.
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A geometric form of the axiom of choice

by
J. L. Bell (London) and D. H. Fremlin (Cambridge)

Consider the following well-known result from the theory of normed
linear spaces ([2], p. 80, 4(b)):

(%) the unit ball of the (continuous) dual of a normed linear space
over the reals has an extreme point.

The standard proof of («) uses the axiom of choice (AC); thus the impli-
cation AC—(x) can be proved in set theory. In this paper we show that
this. implication can be reversed, so that (%) is actually equivalent
to the axiom of choice. From this we derive various corollaries, - for
example: the conjunction of the Boolean prime ideal theorem and the
Krein-Milman theorem implies the axiom of choice, and the Krein-Milman
theorem is not derivable from the Boolean prime ideal theorem.

1. Prelimjnaries. Throughout this paper we shall assume that all
linear spaces we consider have the real number field, R, as their underlying
field of scalars.

DerrNtron. Let I be a linear topological space. A subset 4 of L is
said to be quasicompact if whenever ¥ is a family of closed convex sub-
sets. of L such thab {F ~ A: F ¢ 5} has the finife intersection property,
then N {FnA: FeF}£0. An element a ¢ A is called an extreme point
of 4 if z,yeA and a= }(e+y) imply a=2z=1y.

Now consider the following propositions:
(BPI) Every Boolean algebra contains a prime ideal.

(HB) Let M be a linear subspace of a linear space L and let p be
a sublinear functional on L (that is, p(#+¥y) < »(z)+p(y) for
all @,y eL and p(aw)= ap(s) for all 0 <aeR and all zel).
If f is a linear functional on M such that f(z) < p(e) for all
2 € M, then f can be extended to a linear functional g on L
such that g(z) < p(z) for all z <L
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(KM) A compact convex subset of a locally convex Haunsdorff linegr
topological space always has an extreme point.

{SKM) A quasicompact convex subset of a locally convex Hausdorff
linear topological space always has an extreme point.

{AL) For any normed linear spaée L, the unit ball of the continuous
dual L* of L is quasicompact in the weak *-topology for L*,

BPI is the well-known Boolean prime ideal theorem. HB is the
Hahn-Banach theorem. KM and SKM are versions of the Krein- Milman
theorem. Finally, AL is a weak version of Alaoglu’s theorem, see [4].

For any propqsitions P and @, we write P=@Q (vesp. P == Q) for
“the implication P—@ is provable (resp. iy not provable) in Zermelo-
Fraenkel set theory without the axiom of choice”. We also write Pe=q
for (P=@Q and Q= P).

THEOREM 1.1. [4] HB <= AL.

TEEOREM 1.2, BPI & KM = (*).

Proof. By [5], BPI is equivalent to the Tychonoff theorem for
compact Hausdorff spaces. But this latter result implies in the usual
way that the unit ball of the dual of a normed space is weak™-compact
and KM implies that it has an extreme point. (*) follows.

THEOREM 1.3. AL & SKM = (*. :

Proof. By AL the unit ball of the dual of a normed space is quasi-
compact; SKM then implies that it has an extreme point. Hence (*).

COROLLARY 1.4. HB & SKM = *

Proof. By 1.1 and 1.3.

2. The main result and its consequences. We now prove
THEOREM 2.1. (*)= AC.

) Proof. Let {4;: 1 € I} be a family of non-empty sets; we may assume
without loss of generality that the Ay are disjoint. Let A = J 44,

and define id
E={zcR*: sup [ (1)] <1},
iel fed;
L= {stA; sup 3 o ()| <oo},
iel tedy

E={neR4: Ve >O0[{t e A: |o(t) > &} is finite]

andZsup |#(t)] < oo}.

i€l tedy

e ©
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Then I and ¥ are normed linear spaces with norms defined by:

lell, = sup Y la(t)l for wel,

iel fed4;

lylle =D sup ly(®)] for yeB.
Tel teds

Also K is the unit ball of L. Bub L is isometrically isomorphic to the
dual B* of E (see, e.g., [2], p. 31, 11(b)), and therefore K may be regarded
as the unit ball of B* By (*), K has an extreme point ¢. We claim that
for each 4 e I there is a unique t ¢ A; for which e(t) # 0.

Tor suppose first that there is 4 e I such that ¢(f) = 0 for all t e 4.
Choose v e A, and define y,z¢ K by

yw)=1, =z(v)=-—1,
y(t) = 2(t) = e(t) for all t e A\{v}.

Then clearly e = %(y-+2) and ¥ = ¢ # #, contradicting the extremeness of e.
Now suppose that there is 4, « I and two distinct members %, v of 4,
such that e(u) = 0 and e(v) 0. Define ¥, 2 ¢ R4 by

y(u) = e(u)(1+e(v)l),
y(v) = e(@)(1 —le(w)]),
2(u) = e(u)(L—le(v)]),
2(v) = e(v)(L+le(w)]),
2(t) = y(t) = e(t) for all te A\{u,v}.

Ttis easy tosee thaty, ze K,y # ¢ # 2 and ¢ = 3(y +2), again contradicting
the assumption that ¢ is an extreme point of K.

Thus the claim is proved. We can now define a choice function g for
the family {A:: i e I} by letting g (i) be the unique t A; for which e(?) 5 0.
The axiom of choice follows.

COROLLARY 2.2. (*) <= AC.

CoroLLARY 2.3. BPL & KM = AC.

Proof. By 2.2 and 1.2.

COROLLARY 2.4. If ZF is consistent, then BPT => KM.

Proof. This follows from 2.3 and the fact [3] that, if ZF is congistent,
then BPI = AC.

COROLLARY 2.5. HIB & SKM = AC.

Proof. By 2.2 and 1.4.
Corollary 2.4 improves a result of [1], where it was shown th
HB & SKM = BPI.

at
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We conclude the paper with some open problems. Is it true that
HB = BPIY, or

KM = BPI?, or

SEM < KM?

Postseript (January 12, 1972). After this paper was submitted, we received
& preprint of a review of [1] by W. A. J. Luxemburg in which the results of the present
paper are arrived at independently. Corollary 2.3 has also been proved independently
by Peter Renz. We have also been informed by Professor Luxemburg that D. Pincus
has recently answered the first two of our open problems in the negative.
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Extending maps from dense subspaces

by
L. Rudolf (Gdansk)

The main result of the present paper is a generalization of the
Tajmanov theorem, which claims that a continuous map f: X—Y of
a space X into a compact Hausdortt space Y can be extended by a continu-
ons map *f: *X —»Y onto an extension X of X iff for each pair of closed
disjoint -subsets A and A’ of ¥ we have Clixf™(4) A CLxfH4)=0
(see [3]). Certain results generalizing this theorem were obtained in [2]
and [11]. The main theorem of [2] affords a description of the greatest
subset X, lying between X and *X, onto which a given continuous
map f: X—+Y can be continuously extended, which however is external
and rather complicated and needs complete regularity of all spaces in
question. Meanwhile, the generalization of the Tajmanov theorem
given in [11], which depends on replacing the compact space Y
in it by an H - cloged Urysohn space, the closed sets 4 and A’ by regularly
closed ones and the continuity of *f by 6-continuity, is an immediate
consequence of the Tajmanov theorem since H -closed Urysohn spaces
are known to be exactly those which have a compact minimalization [6]
(the minimalization of a Hausdorfl topology T on X is the Hausdorff
topology u% on X generated by regularly open sets of B; the identity
(X, §8)—>(X,B) is 6-continuous). Besides, the cardinal disadvantage
of the quoted results (and so far as I know, these are the strongest ones
towards generalization of the Tajmanov theorem) ig that they are useless
in the theory of H-closed spaces, since genuine difficulties appear in
this theory when the spaces are not only non-regular (a regular H -closed
space is compact [1]) but also non-Urysohn ones since just then they do
not admit a contraction to a compact Hausdorff space [6].

In looking for a generalization of the Majmanov theorem, it seems
simplest to give an answer to the following question: under which con-
ditions has a map f: XY a continuous extension #f: xX —Y on a certain
extension *X of X? Tt is, however, hopeless to expect the existence of
a continuons extension *f in this general situation, particularly in the
case where *X is compach and Clyf(X) is not compact, which may happen
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