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Spaces of ANR’s

by
B. J. Ball (Athens, Georgia) and Jo Ford (Auburn, Ala.)

1. Introduction. For o finite dimensional compactum X, let 25 de-
note the hyperspace of ANR’s lying in X, with the metric g, introduced
and studied by K. Borsuk [3]. Among many results estaplished by
Borsuk, we mention here that 2§ is complete and separable, and the
topology of 23 is characterized by homotopic convergence: 4 sequence {A}
converges to A in 2% if and only if (1) {4 converges to A in the Haus-
dortf sense and (2) for every e >0, there exists a 6> 0 such that for
each 4, every subset of 4, of diameter less than 8 is contractible to a point
in o subget of A; of diameter less than e Thus two ANR's in X which
are “close” relative to the metric g; have similar homotopy properties.
In particular, as was shown in [3], for each 4 « 2%, all ANR’s in X which
are sufficiently close to 4 in 2% are homotopically equivalent to 4.

The aim of the present paper is to investigate topotogical properties
of the space 2%, primarily for X = 8%

It is evident that the subspace Cx of 2¥ consisting of all connected
ANR’s in X is open and closed in 2%. Our attention will frequently be
directed to this (complete) subspace of 25 rather than to the whole space.
For notational convenience, Cg will be denoted simply by C.

We show that each pair of homotopically equivalent elements of C can
be joined by an arc in 2§, thus characterizing the components of C as
precisely the sets [0] = {4 25| A 22 (}, for (€. It is clear that 92 is
an isolated point of 25% since no ANR properly contained in 8? is homo-
topieally equivalent to §% bub there are no other isolated points in 25
In fact, 25 is infinite dimensional at every point of 28 {§%, and is not
locally compact at any point except 8%

As partial angwers t0 questions posed by Borsuk ([3], p. 201, [4],
P. 221), we show that the set of polyhedra properly contained in 8 is
dense in 2§* and is of the first (Baire) category. On the other hand, the
set of topological polyhedra in §* is of the second category (in fact,
residual) in 2§

3 — Fundamenta Mathematicae, T. LXXVIL
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Vhile 2 number of our results are given for spaces more general
“than §% most have severely limited applicability. It would appear that
the space 2% warrants much further study, and several specific questions
are posed in the final section of this paper. ~

2. Definitions and notation. Given a compactum X with metric o,
we will, following [3], denote the Hausdortf metric for the set of cloged
subsets of X by o, and will use ¢y for the “metric of homotopy” on the
set of ANR’s in X, as defined in [3]. For convenience, we will use ¢(4., 6, ¢)
to denote the statement “every subset of A of diameter less than ¢ is
contractible to a point in a subset of A of diameter less than ¢.” We remark
that of(4, B) < gi(4, B) whenever these distances are defined.

Convergence relative to one of the metries under discussion will be
indicated in some obvious manner; e.g., {4 e A will mean that

lim g,(4;, B) = 0. As remarked above, {Ai};:A if and only if the se-
>0

quence {4¢} converges homotopically to 4, in the sense that
1) {Ag}?:A and
(2) for every &> 0, there exists a 6> 0 such that s(dq, d, &) holds
for every <. ] .
(Tt is shown in [3] that condition (2) implies that A is an ANR.)
We use S to denote the closure of the set §, and BdS and IntS to
denote, respectively, the boundary and interior of 8 in the point seb
sense; i.e., BAS is the intersection of the closure of § and the closure of
the complement of §, and IntS = §—BdS. The e¢-neighborhood of
a point p will be denoted by N,(p), and N,(8) will denote the union of
the e-neighborhoods of the pointy of 8.
A subset X of a Euclidean space E" is called a polyhedron if X is
the union of a finite number of closed geometric simplexes of E"; any
" homeomorphic image of a polyhedron will be called a topological polyhedron.
We always consider §% (or 8™ to be a polyhedron in E* (H™*1).

3. Density and category. The set of all polyhedra properly contained
in 8* will be denoted by 7, the set of all topological polyhedra by &. By
an annulus in 8% we mean a continuum 4 C §* such that Bdd is the
union of a finite number of disjoint simple closed curves; in particular,
we consider 8 itself to be an annulus. The set of all polyhedral annuli
in 8% will be denoted by #, and the set of all annuli in 82 by .

The principal results of this section are that o is dense, 9 iy of the
first category, and & is residual in 2§". Several of the lemmas, particu-
larly 3.3, will have later applicability.

3.1. LemmA. If C is & locally conmected continuum im J® such that

B'— 0 is conmected, then there emists a sequence {Q )%, of polyhedral dishs
in B* such that
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(1) for each i, @, CQ,; and Q. ,C IntQ,;,
(2) 0=,
(3) for each i, BAQ: ~BAQ,,, is a finite set,

00
(4) there emists a sequence {e;}7., of positivenumbers such that 3 &< co
f=1
and, for each i, every component of Q,—Q,., has diameter less th:m S
Proof. It follows from a construction given by Borsuk ([4],
pp. 132-137) that there exist polyhedral disks P,, P, Py, ... in E* bounded
by simple closed (polygonal) curves oJy,dJ,, Js, ..., respectively, and a se-
quence {s;}0, of positive numbers, with e;—0, such that
(1) for each i, P, CP,,
2y €=\ Py
(8) for each 4, J;~ C is a finite set,
(4) for each i, J; nJ ., is the union of a finite number of disjoint arcs,
(5) if @b is a component of J; ~J,,,, then ab ~ € is a single point,
p, ditferent from a and b, and ab = ap v pb, where ap and pb are intervals
having only p in common; moreover, ab ~ J ;18 & component of J; N J .,
and is the union of two intervals ap and b, with o’ cap—{a} and
b e ﬁ — {8},
(6) for each. i, every component of P;— ¢ has diameter less than 3.
Since these properties hold for any subsequence of {P:}, it may be

agsumed that ») e < oo.
i=1

Lot J, ~ O = {1, Doy -, Pz} and let ad,, ..., azb; be the components
of J, ~J,, with ab; = a;p; v p;b; for 1 <j < k. Since each of the inter-
vals a;p; and p;b; lies on the boundary of some component of P,—C and .
therefore has diameter less than }e,, diagb; < & for j=1,..., k Hence
there exist disjoint polygonal arcs a, ..., ax Such that for each j, 1 <j <k,
a7 is an are from a; to by, dj— {a;, b} C B>~ Py, and dia(e; v ashy) < &.
For j=1, ...,k let D; denote the disk bounded by o;w a;b; and note

L k . .
that diaD; < . Let K;= (Jy— U abs) v (\J ay). Then K, is a simple
j=1 j=1
k O R
closed curve and hounds the disk @, = Py u |J Dy. Sinee J;»CC iU1 azb;
j=1 =

k .
and |Ja; does not intersect ¢, K; ~C=0. Since each component of
=1

: E
P,—C has diameter less than &, P; C N, (C), and since Q= P1v U Dy

. §=1
and each D; has diameter less than &, @, C . o(Pa);, and it follows that
Q1 C NV, (0). Tt is clear that Ky 0 Jy= {ay, by, Gs, Dy, wey Gy br}y 80 Ky,
~Jy=@ and hence P, CInt@,. If D is a component of @,—P,, then

3*
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either D is one of the disks Dy, ..., Dk, or else D is a subget of a component
of P,— C. Hence every component of @,— P, has diameter less thau g,
Suppose disks @y, ..., @1, With boundaries K, ..., K, respectively,
have been defined so that
(a) @411 C Qs for i =1, ..,1—1,
(b) K; ~ K,,, is finite, for ¢ =1, ..., [—1,
(¢) K;Kyyo=0, for i=1,..,1—2,
(d) every component of @, —@Qu., has diameter less than e, for
i=1,..,1—1,
e) KinC=0, for i=1,..,1,
) QiC N, (0), for i=1,..., 1,
g) P;:CQ, and P, CInt@,
h)y K, ~dy,, is finite,
i) every component of ¢,— Py, has diameter less than e

(
(
(
(
(

sponding components of Ji,, NJip. A simple closed curve I, may
be, constructed from J,,, in virtually the same way I, was obtained
from J,, the only essential difference being that the arcs a; should be
chosen so that for each j, ay— {as, b;} is a subset of a component of
Q,— Py,,; this is possible since a;b; C P, CInt@, and hence ab; iy on
the boundary of some component of @—Pp..,. If Iy, is constructed
in this way and @, denotes the disk bounded by I, it is easy to
verify that conditions (a)—(i) are satisfied with I replaced by I--1 through-
out. Thus by induction we obtain sequences {@,}5., and {I,},, satisfying
(a)~(f) for every integer 4. Condition (c) implies that @,., C IntQ; for
every i, and (f) shows that € = () @;. Thus the sequence {Q,}7., satisfies
all the required conditions.

3.2. COROLLARY. If U is a comnected ANR properly contained in S
then there exists o sequence {A:} of polyhedral annuli in S* such that

(1) for each i, A;,, C A, and A, ,CIntd,,

(2) O=1 4y,

(3) for each i, Bdd;~Bd4,, is e finite set,

‘ o
(4) there ewisis a sequence {g;}s, of positive numbers such that ) eq< co

] i1
and, for each i, every component of A,— A, has diameter less than e
Proof. Since ¢'is an ANR, 82— ¢ has only a finite number of com-
ponents. Let Dy, ..., Dy be the components of 8*— ¢ and, for j = 1, ..., n,
let 05 = 8°—D;. Then C; is a locally connected continumm, S2— (; + @,
and C; does not separate 8. It therefore follows from TLewmma 3.1 that
ffor ?ch Jy L<j < m, there exist a sequence {Q1}%; of polyhedral disks
in 8% and a sequence {/}2, of positive numbers satisfying, with respect
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to Oy, all the conditions of that lemma. If for each 7, 4;= ﬁ Qi, it is

. 7=1
evident that A4, is an annulus and that conditions (1)~(3) are satisfied
by the sequence {A;}%,. -

n o
Tor each 4, let e;= > e. Then Y& < oo and, moreover, if D is

J=1 i=1
a component of 4,— A, ;, then DC 8-, hence D is contained in
some Dy and therefore in some component of Qi— @7, so diaD < &f < ¢;.

"Hence condition (4) is satisfied.

Our usage of the terms homotopy, deformation, isotopy, ete. is standard
except that we find it convenient not to insist that the interval used be
always [0, 1]; for example, by a deformation retraction of A onto B we
mean a mapping h: 4 X [a, b]— A, for some interval [a, 4] of real numbers,
such that h, is the identity map on A and %, is a retraction of A onto B.
(We adhere, of course, to the standard notation h; for k|4 x {I}, and
alternate as convenient between the notations h(z,?) and k«(z).)

A mapping h: A X [a, b]>X is called a pseudo-isotopy if ks is a homeo-
morphism for £ e[a,b). We will say that a mapping h: AX[a,b]>X is
strongly contracting if a < w < v < b implies h,R,(A) Chy(4) C hy(4).

3.3. LeMMA, Suppose O, {42, and {e}7, satisfy the conditions of
Corollary 3.2, and let {t,}5., be an increasing sequence of real numbers con-
verging to 1, with t, = 0. Then there exists a map h: A, x[0,1]>4, such that

(1) h is a strong deformation retraction of Ay onto C,
(2) b is strongly coniracting,

~ (8) for each 4, hld; X [0,1,.,] is a strong deformation retraction of A;
onto Ay,

(4) for each i, h|lA;X [t;, ts4q] 18 @ strongly coniracting pseudo-isotopy

of Ai onto A, ,.

Proof. If 4 is a positive integer and D, ..., Dm are the components
of Ai—A,,,, then for each j, 1<j<m, Dyis a disk, of diameter less
than ¢, bounded by the union of an arc a; C Bd.4; and an arc p;CBdA,,,,
with o; and B, intersecting only in their endpoints. Tt is easily seen that
for each j, there is a strongly contracting pseudo-isotopy of D; onto ;.
Hence there is a strongly contracting psendo-isotopy @' Ay X [tey trpq]—>As
of A; onto A4, , such that forj =1, ..., m, @i(Ds) C Dy for every ¢ € [i;, 8y,
and such that ¢(s, 1) = o for every # ¢ Az, t € [L) tina]- Since diaD; < ez
for every §, 1 < j < m, it follows that ofz, ¢(x, 1)) < e for every = edi,
te [ty tiyal

For telt,t), let hy=¢@} and for 1>1 and ¢ e[te, t0q), leb he
=gfo <Pi‘f‘1 ooy oqy,. It h(w,1)= he(w) for z e A; and te [0,. 1?, then.
% is a continuous function from A, x [0,1) into 4,. Tt is not difficult to
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see that for each positive integer k, if ¢ > ¢’ > tz, then g(h(x 1), bz, t’))
o] el

‘< Y& for every e d,. Since Y ei->0 as k—>oo, it follows that A is
i=k =k

uniformly continuous on 4,x[0,1) and hence (e.g., [12], p. 28)

a continuous extension h: 4;x[0,1]-4,. It can be shown that

all the desired properties. ’

h has
7 hasg

3.4. LeMMA. Suppose X is a finite dimensional compactum, A and B
are ANR’s in X and h: AxI->A is a sirongly coniracting, strong defor-
mation retraction of A onto B. If {t:} is an increasing sequence of numbers
in I converging to 1 and for each i, Ay = hy(A) is an ANR, then {A¢}-e—; B.

Proof. Since it is evident that {4:}-> B, it will be sufficient to show

that for every positive number e, there is a positive number § such
that s(4i,d,e) holds for each 4. (Recall that s(4.,d,¢) denotes the
statement “every subset of A of diameter less than & is confractible
to a point in a subset of A of diameter less than &.”) Since each 4 is
an ANR, it is clearly enough to prove that s(4,d, ¢) holds for all
sufficiently large 4. : ,

It will first be shown that for every § > 0, there is an integer n such
that g(z, hs(s)) < 6 for every & e A, t ¢, The supposition that for some
6 > 0 there is no such » implies the existence of a sequence {z;} of points
of 4 and a sequence {s;} of numbers in I such that {z,} >z e 4, {s}>sel,
and for each 4, ;e A; and o(wi, hy(®:)) = 6. Since b is continuous,
{hs(1)} > hs(@). Since z; € A; for every i, # ¢ B and therefore, since  is
& strong deformation retraction, hs(¢)= . Thus both '{is(z;)} and
{w:} converge to », contrary to the supposition -that g(wt, hs @) = 6
for all 4 ‘

. Next we observe that for each 4, h(4;x I)C 4;. This follows from
the fact that b is strongly contracting, sinee if 0 <t < ty, hu(dy) = hehe(A)
C hg‘(A.) = A; and if #; <<, hy(dy) C hi{A) C hzi(A) = Ay.

Now suppose ¢ > 0. Since B is an ANR, there exists a positive number
n < 3e such that s(B, 7, fe) is true. Let § = ¥y and chooge an integer
such that o2, hie)) < 6 for every w ¢ Ay, t e I. Suppose i > n and let M
be a subset of 4; with diameter less than 6. Let f==h|M x I; then f is
& homotopy of M onto M’ = f,(M) = hy(M) C B, and since h{A,x I) C‘.A,{,
f(M X I)C 4;. Since o(#, hi(w)) < 6 for every @ ¢ Ay, t I, it follows that
diaf(M x I) < dia M 426 < 36 = 5 < }e. Hence in particular, dial’ < g
and since M’'C B and s(B, 7, k) is true, there is a homotopy g: M’ x[1, 2]
—B guch that diag(M’'x[1,2]) < 4s and ¢,(M') is a point. Cleaxly f
fg]lowed by g is a homotopy taking M to a point in a subset of A of
diameter less than e, so s(dy, 8, ¢) is true. Tt follows that {4} > B, as
required.. ) h
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3.5. TumorEM. Hvery connected ANR properly contained in §* is the
homotopic limit of a sequence {Bi} of polyhedral ammuli, with B, CInt By
for every 4.

Proof. Suppose € is a connected ANR properly contained in e
and let {4}, {t:} and h: A; X I-»A4; be as in Lemma 3.3. Tt follows from
Lemma 3.4 that {Ai}—Q:B. Since 4,,, CIntA; for every i, if for each i,

B;= A,;, then {Bi}zO and for each i, By, CIntBy.

3.6. COROLLARY. The set of polyhedra in 8% is dense in 25,

Proof. Suppose O e 25— (8% and let (i, ..., Cx be the components
of 0. For j=1,..,n, let {4}, be a sequence of polyhedral anmuli

i=1
converging homotopically to Cj. Since C;= () A%, it follows that
i=1
AL, A%, ..., A" are disjoint for ¢ sufficiently large, and hence it may be
agvumed that Al, 43, .., A? are disjoint. :

Suppose & > 0 and for j =1, ..., n, let é; be a positive number such
that s(47, 87, &) holds for all 4. Let 7= min{p (A}, A5} 1 <j <k < n}
and let 6 = min (7, 8y, ey 0n). I M C A; and dia M < 6, then M C Al for
gome j, 1< j < n, and hence M is contractible to a point in a subset
of Al of diameter less than e. Tt follows that s(44, 8, &) is true for all 4,
and hence that {d¢>C.

We mnext consider the Baire category in 2% of the set Tx of sub-
polyhedra of the polyhedron X, and show, in effect, that 9z is a first
category set in all instances in which it is not trivially of. the .secon.d
category. In particular, the set I of polyhedra properly contained in Sz is
a first category subset of 925, 'Perhaps surprisingly, the corresPonéung
_get’ T of "topological polyhedra is a second category subset of 25 .

3,7. LEMMA. Szwpﬁose X is a finite dimensional compactum, A € 2%,
and {43, is a sequence of elements of 2% such that {Ai};;A. If {B}%.
is a null sequence (i.e., diaBi>0) of absolute retracts in X such that for
each i, Ay~ B; is a non-empty absolute retract, then {A¢w Bf};;A.

Proof. Suppose e > 0. Since {Ai}ZA’ there exists a positive number
8 < e such that s(Aq, 20, be) is true for every .

B %;Since diaB¢—>(§, fn,heré %ex)ists an integer i, such that diqB; < é for
every i > 4,. Suppose ¢ is an integer greater than i a.nd M is a‘subset
of AU B; with dia M < 4. If M~ B;=0, then M is contractible to
a point in a subset of 4 of diameter less than e, so suppose M~ By #0.

Since 4; ~ By C B; and 4; ~ Bi and B; are absolute retract§, Ay By
is & strong deformation retract of Bs (e.g., [6], p- 33). Hencg Ais a strPng
deformation retract of A, By, and it follows that M is com';raemble
in Mo Bito M= (As ~ By)u (M~ Ay). Since dia M < 6 and diaB; <6
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and M ~B; # @, dia(M U By) < 28. Hence, in particular, dia M’ < 26
and therefore, since s(4i, 24, 4¢) is true, M’ is contractible to a point
in a subset of 4; of diameter less than %e. Since M is contractible to M’ in
Mo B; and dia(M v B;) < 26 < }¢, it follows that M is contractible to
a point in a.subset of A; v B; of diameter less than ¢. Hence s(A; v By, 6, ¢)
holds for all ¢ > 4y, from which it easily follows that {4,v B{};’::.A..

3.8. THEOREM. If X is a connected polyhedron with no 1-dimensional
open subset, then the set Tx of all polyhedra properly contained in X is o first
category subset of 2.

Proof. For each positive integer m, let &, denote the set of all
elements of Jx which can be expressed as the union of m or fewer geo-
metric simplexes.

Suppose A ezf and {4} is a sequence of elements of Fx such that
{A,};;,A. Since each A4 is a proper subset of X and X has no 1-dimensional

open subset, it follows that for each 4, there is a 2-simplex ¢; C X such
that o; ~ A is a vertex, pi, of ;. For each 4, let B; be an arc in o; such
that p; is an endpoint of By, diaB; < 1/i, and B; contains an arc of
a circle. Since 4; ~ By = {p;} and diaB;—0 it follows from Lemma 3.7
that {4;v B;}—JA. Since B; contains a circular are, for no integer m is
there a sequence of elements of ¥, converging to B;.

It follows that every open subset of 2F which intersects Fx contains
an element of 2¥ which is not in §y, for any m. Hence each Oy, is nowhere

oo
dense in 27, and since §x= {JSm, Tx is a first category subset of 2%.
m=1

Remarks. (1) If X is not connected, then 2¥ may have isolated
points different from X. In this case, Tx would be of the second category
in 2%, but for a trivial reason. Clearly (in view of Lemma 3.7), every
isolated point of 25 must be a component of X , and hence the requirement
in Theorem 3.8 that X be connected could he deleted if Tx were replaced
by the set 9% of all polyhedra in X which contain no component of X.

_ (2) If X has a 1-dimensional open subset, then there is an interval
ab C X such that U = ab— {a, b} is open in X. Tf U, is the set of all cloged
intervals lying in U, then W is open in 2% and hence Us is topologically
complete. Since U C Tx, it follows that Ty is of the second category

in 2. Hence the requirement that X have no 1-dimensional open subset
is essential in Theorem 3.8.

3.9. LeMwmA. Suppose X is o finite dimensional compactum and
{Ai}_eiA’ where each A; is a connected ANR in X. I f ais.an arc in A with

endpoints p and g, and for each i, p; and g are points of Ay such that {2)1} -

and {gi}—+q, then there exists, for each iy, an are o from g to qy in A such
that {u}ra
£
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Proof. Buppose ¢ > 0 and let § be a positive number less than %e
such that s(A4:,30, ye) is true for all 4. Let a,a,, a,a,, ..., 4,0,., be a finite
sequence of subares of a, with a, = p and a,,, = ¢, such that diaa;a,,; < 8
for j=0,1,..,n. There exists an integer 4, such that for ¢> 4,
o(pe, ») <6, olqi,q) <9, and for j=1,...,m, A;n Nya;)3. For
j=1,..,m, let r; be a point of 4;~ Nya;) and let vy = p;, 1, = ;.
Then for 0 <j<<ny 07y, 7441) < 0(ry, 65)+ 0(ay, G10) + (@415 T144) < 36
and hence, since $(4¢, 33, 4¢) is true, there is an are r;r;,; C 4; with
diar,r;p, < 3e. Bince for each j, 0 <j<<n, olay, ) <6< i, it follows

. " .
that 7,7, C N(a). Since clearly [ J#;7;,, contains an arc from p; to g,
=0

it follows that for every open set U containing «, there is an integer i,
such that for ¢ > ¢,, U n A, contains an arc from p; to g;.

Let Uy = X and for { > 0, let U; = N,,(a). There exists an increasing
§eqUence 4, 4, ... of positive integers such that, for each j, if ¢ > 4;, then
U; ~ A, conbaing an arc from p; to ¢;. Let ¢,= 0 and for each positive
integer 4, let a; be an arc from p; to ¢; in A; ~ Uy, where 45 <4 § Tjyr-
If K = limay, it is clear that K C a, p and g belong to K, and K is con-

2

nected. Hence K = a, s0 {a,}z a.

Remark. It is not difficult to modify the above argument to show
that if {4:}—>A and a is an arc in 4, then there exigts a sequence {as} of
ares with aihC 4; and {o;}>a. The analogous proposition with « and

h
the a’s replaced by arbitrary ANR's is false, however, as may be seen
by considering in E® a sequence {4} of irreducible Z-dimenmogal AR’s
(see [2]) converging homotopically to a planar disk 4 and choosing a to
be any 2-dimensional AR properly contained in A.

3.10. LEMMA. If X is a finite dimensional compacium and J\, is the
set of all conmected ANR’s in X which have o local cut point, then X is an F,
subset of 2. :

Proof. Tt is easily seen that if p iy a local cut point of a locally
connected continnum K, then there exists a positive pumber- ¢ such ﬂ:.?f‘t
if U is an open subset of X containing p and having diameter <e and € is
the component of K ~ U containing p, then there are at le?ust two com-
ponents of U—{p} which intersect BdU. A local cut poinb of K for
which this condition is satisfied for a given >0 will be said to have

agnitude e. o
" gnguppose &> 0 and let X, denote the set of. all elements of J\,__wm;]} :
have a local cut point of magnitude e We wish to s‘hov?r that J{,,,]C i
80 suppose {Kz};:K with each K;eX,, and for -each i, let pi be a loca

cut point of K; of magnitude e It may be assumed that pi—>p ¢ K.

v
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Since K is locally connected, there exists an open subset U of X such
_ that p e UC N,o(p) and such that K'= K~ T is a locally connected
continuum. Assume that p; e U for each 4, and let C; denote the com-
ponent of K; ~ N,(p) which contains p;. Since p; has magnitude e, there
are at least two components of Ci— {ps} which intersect Bd.N,(p), and
hence there exist points @, by e K; nBAU such that p: separates ay
from b; in O;. It may be assumed that a;—a, by->b; then a, b e K'— {p}.
Suppose « is an gre (possibly degenerate) from « to b in K’, By Lemma 3.9,
for each i, there is an arc o; from ay to by in K, such that a;— a. Sinee

a C N (p), there is an integer 4, such that a; C N (p) for all ¢ > 4,. Tt follows,

. since p; separates a; from b; in C;, that p;e o for all i >> i, and hence
9 € a. Thus every are from « to b in K’ containg p, and since K’ is a locally
connected continuum, this implies that p separates  from b in K'. There-
fore p is a local cut point of K, so K ¢ K.

(=]
Hence for every &> 0, X,C X. Since ¥ = {J X, it follows that
: n=1
X ig an F, in 2%
3.11. LemMA. Bvery connecied ANR in 8 which has no local cut point
is an annulus.

Proof. If A is a connected ANR in S* which has no local cut point,
then A is a locally connected continuum with at most a finite number
of complementary domains; since A hag no cut point, every complementary
domain of A is bounded by a simple closed curve ([9], p. 199, Th, 46)
and since 4 has no local cut point, no two boundaries of complementary

domains of A can intersect ([11], p. 308, Th. 6). It follows that A is an
annulus. o ‘

3.12. TEBOREM. The set § of all topological polyhedra-in S is a residual
set (ie., a dense G;) in 25

Proof. Let C denote the set of connected ANR’s in §2 and let %
= {K ¢ C|K has a local eut point}. It is clear that &, the set of all annuli
in &% is a subset of C— X% and by Lemma 3.11, C— X C &, 80 C— X% = .
By Theorem 3.5, # is dense in € and therefore, since I is an F, by
Lemma 3.10, it follows that X = C—4& is a first category subset of C,
50 /% is a residual get in C.

For k> 1, let G denote the set of all ANR’s in & which have ex-
actly k components and let & denote the set of all elements A of Cy sueh
that every component of 4 i3 an annulus. It follows from the proof of
Corollary 3.6 that A is dense in -Gy, and obvious modifications of Lem-
mas 3.10 and 3.11 then suffice to show, as above, that Az is a residual

subset of Cy. Since each Gy iy open and closed in 25°, it follows that § is
a residual subset of 25", -
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4. Arcs in 2%, The existence or non-existence of an arc joining two
elements A, B of 2% would seem to be of some topological significance.
In order that such an arc should exist, it is obviously necessary that A
and B be homotopically equivalent, but this is not sufficient. On the
other hand, it is sufficient that A and B be isotopic in X, but of course
this is not necessary. And while it is easy to find examples of ANR’s
which are homotopic in X but cannot be joined by an are in 2F, the con-
verse question is more elusive. . .

It is shown below that two connected ANR's in §* can be joined
by an arc in 2§ if and only if they are homotopically equivalent. This
result fails for non-connected ANR’s in S and also for connected AR’s
in an arbitrary AR. We do not know whether it holds for conneeted
ANRs in 8.

41. LemMA, If X is a finite dimensional compactum, {A}—A in 25
and for each 4, gi is an &;-homeomorphism of A, onto o subset Bs of X, where
£i—>0 as i—>oo, then {Bg}';;' A. '

Proof. Since it is clear that {B:}>4, it is sufficient to show that
for each & > 0, there is a 8 > 0 such that s(Bs, 6, &) holds for almost all 4.

Since {4:} > 4, for every ¢ > 0 there is & 6 > 0 such that s(4:, 20, &)

h .

is true for all 4. Let 4, be a positive integer such that e; < min(d , %e)
for all >4, Suppose i>i, and M C By, with dia M < 6. Since
o[z, gi(@)) < & for every = Ay, it follows that diag (M) < 6+ 20 < 26,
and hence ¢g~*(M) is contractible to a point in a subset K o’i. A;Z with
dia K < Ye. Tt readily follows that M is contractible to a point in the
subset g{XK) of B;. Since diaK < i}, diag(K) < 3e+28: < g al}d hence
s(By, 8, &) holds for every i > 4. It follows that {Bi}?;A.

4.2, LEMMA. Supf}ose X is a finite dimensional compactum, A er
and f: AxI—>X is an isotopy. If for each tel, p(t) = fi(A), then ¢ is
a continuous mapping of I into 2%,

Proof. For each u, v eI, let guo=fuofy* Then fu JS a homeomor-
phism of f,(4) onto fu(A), and it follows from the continul’cy: of f that for
each &> 0, there is a 6 > 0 such that gu, is an ¢-homeomorphism whenever
|u—nv| < 8. Henee if {s;}->syel and &= max {o(#, gs,5(@))| * efg‘!(A)} ,
then gs,s, 18 an &;-homeomorphism of fa,(4) onto fs(4), and &0 asi—occ.
Hence by Lemma 4.1, { fst(A)};: fs,(A). Thus {qo(si)}g—: @(8y) Whenever
{si}—8,, 0 @ is continuous at each s, l.

4.3. CororLARY. If X is a finite dimensional compactum and A and B
are elements of 25 which are isotopic in X, then there is an arc from A to B

in 2.
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Proof. By Lemma 4.2, there is a mapping ¢: I+2F with ¢(0)= 4
and ¢(1) = B; since ¢(I) is a locally connected continuum, it follows
~ that there is an arc from A to B in 2%,

4.4. THEOREM. Every two homotopically equivaleni commected ANR’s
in &2 are joined by an arc in 2.

Proof. Suppose O is a connected ANR properly contained in S
Let {4}, {t:} and h: 4, X I—~A, satisfy the conditions of Lemma 3.3
with respect to O, and for each i e, let ¢(t) = hid,).

For each n, h}4, X [t,, §,4,] i8 a strongly contracting pseudo-isotopy
and a strong deformation retraction of A4, onto 4,.,. Since for each
b€ By tyyaly @) = hi(Ay) = hs(An), it follows from Lemma 4.2 that ¢ is
continuous at each t €[4, t,,,) and from Lemma 3.4 that ¢ is continunous
at 1,,;. Since & is itself a strongly contracting, strong deformation re-
traction, it follows from Lemma 3.4 that ¢ is continuous at ¢ = 1. Hence
@ is continuous on I, and therefore there is an arc from 4; to ¢ in 25'.

Now suppose C and ¢’ are any two homotopically equivalent con-
nected ANR’s in &% By the argument above, there exist annuli A and 4’
in 8 and ares 4 and A4’ in 2§ joining A to ¢ and 4’ to €', respectively.
Since 4 and A’ are homotopically equivalent and each iy an annulus,
A and A’ are isotopic in 8% Thus by Corollary 4.3, there is an arc B
from 4 to A’ in 2°; cleatly £ B A’ contains an are from ¢ to ',
a3 desired.

4.5. THEOREM. If n is a positive integer, A € 25" and P and Q are
continua lying in 8"— A, then there is a neighborhood U of A in 25" such

that either every element of s separates P from Q in 8" or no element of W
does so. ~ ' ;

Proof. If A does not separate P from @ in 87, there is a continuum K
containing P and ¢ and lying in §"— 4. If U= §"— K and U = {B ¢ 2"|
gC Ug, then W is open in 25" and no element of U separates P from

in 8™

Conversely, suppose 4 separates P from @ in S Tt is easy to show
that. there is a positive number e such that every subset of §* which is
the image of A under an e-map is homotopic to 4 in §— (Pwv @), and
hence (e.g. [7], p. 473, Th. 2) every such et separates P from @ in 8™
There is a neighborhood U of 4 in 25" such that for each B € U, gy(A, B)
<e a.n(.l Bn(Pu@)=0.If Be U, it follows from the definition of op
(given in [3]) that there is an e-map f: A->B; then f(A) separates P
from ¢ in 8™ and therefore, since f(A) CBCS"—(PuQ), so does B.

4.6. COR‘OLL:;RY. Suppose A e 25 and p and g are points of S*— A.
_'If {1214}—>A wn 2h' and {pi}—>p, {q}—>q in 8, then A separates p from q
in 8 if and only if for almost all i, A, separates Py from q¢; in S
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Proof. Let P and ¢ be topological disks such that p e Int P, ¢ e Int@
and Pu Q C 8°—A. Then A separates p from q if and only if it sepa-
rates P from @ and since p; e P and g¢; @ for almost all 4, the conclusion
follows immediately from Theorem 4.5.

4.7. ExXAMPLE. There exist two homotopically equivalent. ANR’s in §
which camnot be joimed by an arc in 2§ .

Proof. Let ¢ denote the union of a circle J in 8 and two points p, ¢
in different components of §*—J, and let ' be the unien of J and two
points p’, ¢ in the same component of 8*—J. Suppose ¢ is a homeo-
morphism of [0, 1] into 2§° with ¢(0)= C and @(1) = ', and for each
t eI, let 05 = (). Then for each %, since C; 52 0, U is the union of three
disjoint continua A;, P;,@; such that A; has the homotopy type of
a circle and P; and Q; are AR’s. If U denotes the set of all ¢ e I such that 4.
separates Py from @, and V = I—T, it follows easily from Corollary 4.6
that U and V are open in I, which is a contradiction since U and V are
non-empty. Hence there is no arc from ¢ to ¢’ in 25" even though € = ¢
and, indeed, C is homotopically deformable onto ¢’ in 8. Thus the
requirement that ¢ and O’ be connected is essential in Theorem 4.4,

Remark. It was shown in [3] that for any finite dimensional com-
pactum X and any O 2%, the set [0z = {4 25| A 52 C} is open and
closed in 2. Theorem 4.4 implies that if C'e 25" and ¢ is connected, so
is [ 0]; minor modifications of the argument for Example 4.7 show that [C]
need not be connected if C is not. For the set of that example, (] has
precisely two components, but in general the component structure .of
[0] is quite complicated.

4.8. BXAMPLE. There exists in E® a 2-dimensional absolute retract X
such that 2% is not locally connected.

Proof. It was shown by Borsuk [2] that there is a 2-dimensional
AR in B® which is irreducible in the sense that no proper 2 - dimensional

subset of it is an AR. .
Let X,, X;, ... be a sequence of irreducible 2-dimensional AR’ in E®

such that {X:}->{p}, for some p « F*, and such that for each 4, X; n Xy,
M . »
is a single point and X; » X;= @ if [i—jl > 1. It is easily seen that the

o0
set X = {p}u |JX; is an AR.
i=1 . _

Tor each n, let U, denote the set of all AR’s in' X which contain Xy.
Suppose 4 ¢ U, and {4d—>4 in 2§. Tt is not difficult to show that
{4¢ ~ Xp} > X, and hence for almost all i, A; ~ Xy is a 2- dimensional AR.

4 ) .
Since X, is irreducible, this implies that 4; ~ Xy = X f‘or almost all 4.
Tt follows that W, is open in 27, and if is evident that Uy is closed. Hence
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since {Xi}—é:{p}, no neighborhood of {p} in 25 is connected. Thus 2% iy
not locally connected at {p}.

Remarks. (1) For the space X of Example 4.8 (or, indeed, for X
a single irreducible. 2-dimensional AR and p ¢ X), there is no arc in 2%
from X to {p} even though X and {p} are homotopically equivalent and
connected and, in fact, {p} is a strong deformation retract of X. Hence
Theorem 4.4 cannot be generalized by replacing §2 by an arbitrary 2-di-
mensional ANR, or even AR.

(2) Tt seems intuitively clear that if X is a 2-dimensional torug
and ¢ and O’ are simple closed curves in X such that ¢ is nullhomotopic
and (' is not, then there is no arc from ¢ to 0" in 2§. Hence it appears
that Theorem 4.4 fails also for connected ANR's in a 2-manifold.

5. Dimension and compactness. We show in this section that, for X
a finite dimensional ANR, 2¥ is usually infinite dimensional and not
locally compact; more exactly, 2% is locally compact if and only if
dim X <1 and is infinite dimensional whenever dim X > 1. In particular,
if X is an n-manifold (n > 1), then 2§ is infinite dimensional at each
non-isolated point and fails to be locally compact at each such point.

5.1. TerorEM. If X is a finite dimensional ANR, then 23 is locally
compact if and only if AimX < 1. ‘

Proof. Suppose X is an ANR and dim X < 1. Since no simple closed
curve iy contractible to a point in a 1-dimensional set, there is a positive
number d such that X contains no simple closed curve of diameter less
than d. ‘

Let A be an element of 2. It is easily shown that there exist
a neighborhood U of 4 in 2§ and a positive number # such that s (B, 7, {d)
is true for every B in . Suppose ¢ is a positive number less than d; it
will be shown that there is a positive number ¢ such that s(B, 8, ) is
true for every B in U, and it will follow ([3], p. 198, Corollary 6) that

U is compact. : :

Since X is compact and locally connected, there ig a positive number y
gu.eh that every two points of X at a distance apart less than y can be
joined by a fe-are in X. Let 6= min(y,») and suppose B ¢ and
M is a subset of B of diameter less than 8. It p and ¢ are points of B,
then .since o(p, q) <7 and s(B, 5, }d) is true, there is a {d-arc o from p
t(_) gin B, and since o(p, q) < y, there is a' Ls-arc B from p to q in X.
Since }s < 1d and no two points of X can belong to more than one arc
of diameter less than id, it follows that o= B. Hence every two points
of M can be joined by a j¢-arc in B, and hence M is contained in a sub-
continuum K of B with diaK < & Since X containg no simple closed
curve of diameter less than d, X ‘does not contain infinitely many simple
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closed curves [13] and hence every component of X is a regular curve [10]
and therefore is hereditarily locally connected ([12], p. 99). Since dia K < d,
K is an acyclic locally connected continuum and hence is contractible.
Thus M can Dbe contracted to a point in the subset K of B of diameter
less than ¢, and it follows that s(B, d, ¢) is true.

.Conversely, suppose X is a finite dimensional ANR with dimX > 2,
and let X’ be a component of X with dim X’ > 2. Since X’ is not a regular
curve, it contains infinitely many simple closed curves and hence contains
arbitrarily small ones, so there iy a null sequence {0} of simple closed
curves in X and a point p of X such that {Ot}z{p}. It follows from

Lemma 3.7 that if AU is a neighborhood of {p} in 2%, there is a positive

number & such that every e-arc in X with one endpoint p is an element

of U. Since X is locally connected at p, there exist a positive integer j

and an arc a (possibly degenerate) irreducible from p to C; such that

dia(av Cj) < e. There iy a sequence {As} of arcs in ¢w C; such that
00

each A; hags one endpoint p, 4;C 4, for every 4, and |Jdi= av 0.
i=1 _

Since each A; ¢ U and no subsequence of {4;} converges in 2X, AL, is not

compact.

5.2. COROLLARY. If X is an n-manifold, n > 2, then 23 is not locally
compact at any non-isolated point.

Proof. Tf 4 is a non-isolated point of 2%, then A is not a component
of X and hence some point of 4 is the (Hausdorff) limit of a null sequence
of simple cloged curves in X— A. It follows as above that no neighbor-
hood of 4 in 2% has a compact closure. :

Remark. The arguments given above can easily Dbe modified to
show that, for any finite dimensional locally connected compactum X,
the space 2¥ is compact if and only if X contains no simple closed curve
and is locally compact if and only if X contains at most a finite number
of simple closed curves.

5.3. TamoreM. If X is a finite dimensional ANR, D is a disk lying
in X and A s an element of 2% which intersects but does not contain D,
then 2 is infinite dimensional ot A.

Proof. Let U be any neighborhood of 4 in 2%, and let p be a point
of A that is accessible from D— A. There is, for each positive integer z,
an n-od P, in (D— A) v {p} emanating from p and having . diameter less
than 1/n. Tt follows from Lemma 3.7 that there isapositive integer k such
that if » > % and @ is an n-od contained in Pa, then Av@eU. It
will be shown that for each n, the set Kn= {4 v Q| @ isan n-od in ny}
iz an n-cube in 2%, and since Ky C W for n > k, it will follow thaﬁ A is

infinite dimensional.
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R n
Denote by oy, as, --.; an the arcs in Py such that Pp = (J e, p is an
: =1

endpoint of each a;, and a;n oy = {p} for 1L <{é<j<n. For each 4
there is a homeomorphism ¢; from ¢ onto [0, 1] such that gi(p)= 0,
i=1,2,..,n For each n-od @ lying in P,, denote by @(¢) the end-
point of @, other than p, that lies in a;. The function f from Ky into the
unit n-cube that takes 4w @ to the n-tuple [p(@(1)), .., ¢u(Q(w))] is
one-to-one and onto, and f is continuous since the homotopy metric and
the Hausdorff metric are equivalent on 2f".

5.4. COROLLARY. If X is an n-manifold, n = 2, then 23 is infinite
dimensional at every non-isolated point.

Proof. If 4 is a non-isolated point of 2%, then 4 is not & component
of X and it follows that there is a disk D in X such that 4 ~D = @
and D ¢ A. Hence by Theorem 5.3, 2 is infinite dimensional at 4.

Remark. It follows from the argument for Theorem 5.3 that if X is
-any eompactum which contains an - od, then 2F is at least % - dimensional.
If X is a locally connected continuum which has Menger order at least n
at some point, then X containg an n-od [8] and therefore dim2i > n;
in particular, if dimX > 2, then 2 is infinite dimensional.

6. Questions. The result that the set of polyhedra in 8% is dense
in 25" answers a minor case of an important problem posed by Borsuk:
If X is a polyhedron, is the set of subpolyhedra of X dense in 27 An
-affirmative answer for X = §" (all ) would imply that every finite di-
mensional -ANR has the homotopy type of a polyhedron. This latter
result would also follow from an affirmative answer to the fellowing
weaker form of Borsuk’s question.

6.1. Is every ANR in B the homotopic limit of @ sequence of polyhedra
in B for some k9

It was shown by R. H. Bing ([1], Th. 10) that every topological
polyhedron in B® is the homeomorphic limit of a sequence of polyhedra
in B°, and it follows from a result recently announced by J. L. Bryant [5]
that this is true in E" for topological polyhedra of dimension = n—3.
Homeomorphic approximation, of course, is much stronger than approxi-
mation relative to the metric g;, which suggests the next question.

6.2. Is every topological polyhedron in E" the homotopic limit of a se-
-quence of polyhedra in E™?

For X = 8" n > 2, the set of proper subpolyhedra of X is of the
first eategory in 27, but for n = 2, this is not true of the set of topological
polyhedra properly contained in X. Our proof of this latter result 'depends
on the fact that every connected ANR in §* which has no local ¢t point
is a topological polyhedron, and thus there is little chance of modifying
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this argument to apply to higher dimensional spaces. Indeed, it seems
likely that no such extension is possible.

6.3. For n =3, is the set of topological polyhedra properly contained
in 8" a first category subset of 257

There are many natural questions concerning the existence of ares
in 2%, of which we mention but two.

6.4. If X is a finite dimensional compactum and A and B are ANR’s
in X which can be joined by an arc in 2%, must A be homotopically deformable
onto B in X%

6.5. For which compacta X is 2 locally arewise connected? In particular,
is this true for X = 8", n> 2}
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