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Measurable uniform spaces
by
Anthony W. Hager (Middletown, Conn.)

This paper concerns the interpreting of the operator which assigns
to a topological space its o-field of Baire sets as a functor in the category
of separable uniform spaces. (We call a uniform space separable if it has
a basis of countable covers. In metric spaces, this corresponds o topo-
logical separability.) Accordingly, a measurable wuniform space is one
derived from a o-field 4 C 2% by taking as a basis the countable covers
with members from »; this uniform space is denoted £X. The ferminology
is justified by the Proposition: £X L oM (oM a metrie space) is uniformly
continuous iff f~*(B) ¢ 4 for each Baire set B of M, that is, f is measur-
able in the usual sense. There is a functor, b, coreflecting the category of
separable uniform spaces onto its subcategory of measurable spaces:
buX carries the coarsest measurable uniformity on X, finer than u.

A number of the results about b are routine analogs of well known
results about Baire sets and functions, e.g.: bu is associated with the
o-field generated by coz O (uX), the class of sets {x: f(z) # 0} for f ¢ O(uX)
(the uniformly continnous functions to R), and C(buX) is the least class
of functions containing C(uX) and closed under the taking of pointwise
limits of sequences.

Tt is shown that a measurable space £X is weak generated from
0(#X). Consequently, the result above on Baire functions completely
describes bu. The structures C(4X) also have a simple algebraic descrip-
tion, permitting this somewhat algebraic conmstruction of € (buX) (and
hence buX): O(buX) is the smallest uniformly closed regular ring con-
taining the vector lattice C(uX).

The operator b preserves subspaces, not topology, completeness, but
not completion. More exactly, buX is complete if uX is; and, with y de-
noting the completion functor, by = yb exactly on spaces which are
@;-dense in the completion. .

The completeness theorem mnecessitates consideration of another
functor m, coreflecting separable uniform spaces onto the “AG-fine”
spaces, treated in detail in [4(e)]. We have uC mu C bu = bmu. That is,
a meagurable space is JG-fine. The measurable spaces are characterized
4%
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in several ways among AG-fine ones, and the functions in O(muX) are
shown to be a special subclass of the first Baire class in U (bulX).

T am indebted to Z. Frolik for several conversations on the general
subject of this paper, to G. D. Reynolds and M. D. Rice — the proof
of 6.9 was worked out while [6] was being written — and to Rice for
various conversations in which we arrived at the view of “UG-O spaces”
described in § 6. )

1. Background. The uniform space uX i the set X with the collection
of (uniform) covers, u, satisfying the axioms to be found in [12(b)]. Not
much background will be required: for the most part, the first twenty-
four pages of [12(b)], and the following remarks, will suffice.

The F -weak uniformity on X is obtained from the family F of maps
to uniform spaces by taking for a subbasis the covers f~'(W), fe&F
and U uniform in the range of f.

The precompact reflection of uX, puX, has for basis the finite
p-covers. puX is weak generated by O*(uX), the bounded functions in
O (uX). The completion ypuX is the Samuel compactification, denoted suX.

TuX stands for the topological space underlying uX.

If X is a uniformizable topological space, eaX is the associated

" “Shirota” uniform space, whose uniformity has basis of 41l enumerable
normal covers of X. ea is weak generated by all continuous functions
to separable metric spaces. (ea is the “enumerable reflection” of the fine
uniformity a.) The uniformly continuous functions C(¢aX) are just O(X),
the real-valued continuous functions. (Shirota proved that TyeaX is
TycaX, where ca is weak generated by O(X); the latter space is Iewitt's
realcompactification, vX.) i

For a metrizable space M, with compatible metric g, we let oM de-

note the associated metric uniform space. This has basis {8,(s): ¢ > 0},
where §,(¢) (or just 8(e)) is the cover of all e-balls. In case I iy separable,
and D is countable dense, then {§7(e): &> 0} is a Dbasis for oM, where
87 (e) denotes the cover of all e-balls with centers in D. 8o oM iy “uni-
formly separable.”

Finally, the structures C(uX) will receive considerable attention.
As is checked readily, any C(uX) is a vecbor lattice in the pointwise
operations, and is “uniformly closed”, that is, contains lirnits of its se-
quences which converge uniformly on X,

_ 2. Measurable uniform spaces. Let 4 be a o-field of subsets of X
which separates points. (That is, 4 is closed under complementation and
countable union, and if # s y there is 4 ¢ % with z < 4, y ¢ A.) The pair
(X, #) is called & measurable space. A function (X, ./E)J;(Y, $B) between
measurable spaces is called measurable if f~Y(B) e & when B ¢ 3.
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From X and +, we construct a uniform space as follows. Call a cover
(respectively, partition) of X by countably many sets from 4, a count-
able #-cover (resp., s&-partition). One checks that the collection of such
covers, or partitions, satisfy the conditions for a basis (that is, the col-
lection containg WAV when it contains U, U, and each such cover
is *-refined by another — in the case of a partition, by itself.) The uniform
gpace 50 generated we denote 4X, and call measuradle. .

If AX 15»Y is & uniform isomorphism, then (clearly) f(+£) is a o-field
and » has basis of countable f(#£)-covers. Thus »¥ is measurable, and
meagurability is a uniform property.

In § 6, we shall see two uniform theoretic characterizations of measur-
ability of a uniform space, and in § 3, a characterization in terms of algebraic
properties of C(4X).

2.1. PROPOSITION. (X,:‘&)L(Y, B) is measurable iff AX 58T 18
uniformly continuous.

Proof. If f is measurable, then evidently f~*(U) is a countable
A-partition if W is a countable $-partition. So f is uniformly continuous.

Conversely, let f be uniformly continuous, and -let B e 3. Choose
a countable s-partition U refining - f~{B, ¥—B}. Then, f(B)
= |J{U e W: UCFB)} The latter is in £, so f is measurable.

From 2.1, it follows that the uniform isomorphisms between measur-
able uniform spaces are the same ag tle one-one onto bi-measurable maps
between the associated measurable spaces.

The (uniform) Baire spaces will occur periodically in the sequel.
For X a uniformizable topological space, let BaX be the o-field of Baire
sets, by definition, the least o-field containing coz C(X). The associated
Baire space is the measurable uniform space’ ($aX)X, which we ab-
‘breviate bX.

92.9. PROPOSITION. Let #X be measurable, oM separable metric, X iy
a function. These are equivalent.

(a) AX -LQM is uniformly continuous,

(b) #AX Lomr .is wniformly continuous,

() (X, A)> (M, Badl) is measurable,

(d) (@) e s whenever @ is open in M. -

For the proof of this, we need an induction involving the Baire
classification for the sets in BaM. We indicate the classification. (A full
proof of a generalization appears in 4.5.)

For metrizable M, each open seb is cozero, 8o we set o, = all open
sets, o, = all G4'8, 0y = the (G,),’s. For imit ordinal g, let oy = U{o.: a< B},


Artur


54 A.W. Hager
and o, = (og)s. Then (theorem) BalM = o, , where w; is the first un-
countable ordinal. ‘

Proof of 2.2. (b) and (c) are equivalent by 2.1. (b) implies (a) hecause
bD o (as uniformities on M), since M is separable.

Assume (a). For each n, there is a basic cover W, < j’“l(sq(l/n)),
Then fYG) = J{U: UeUy, for some #, and UCf G} The latter
i the union of countably many sets in 4, and is itself in 4. So (d) holds.

Agsume (d). Then f*(B)es+ for Beo,. If Beoy, then B= B,
for Bne oy, and f7(B)= () f""(Bxs). Since each f™B,)edk, fYRB)e#
as well. Etc., by induction, through all classes o,. So (¢) holds.

2.3. CorROLLARY. O(AX) coincides with the collection of mcauwablé
functions (X, #£)— (R, BaR). ’

2.4. PROPOSITION. #£X is weak generated by C(4X), or by O(4X, alV).

Proof. Since aN = o« is a subspace of ok (or of bR), it suffices
to show that C(AX,«N) generates #£AX. So let {4,}» be a countable
#A-partition, and define f(z)=n iff e Ay, Then fe 0 (AX, aN), and
T ({n}n) = {4a}.

2.4 raises the possibility of describing the uniform spaces #X by
describing the algebraic structures C(+£X). We turn to this in succeeding
sections. .

For now, we consider uniform topology.

In general, if uX is weak generated by the family & of uniformly
continuous maps to uniform spaces Xy(f « &), then TuX is weak generated
by the (continuous) maps f: X TX, (feF); and, TuX is always weak
generated by C(uX) [12(b)] (whether C(uX) generates uX or not), and
this implies that the family cozC(uX) is an open basis.

2.5. PROPOSITION. coz(/(#X) = #, so TAX has & for open basis.
Thus TAX is a P-space (i.e., G5's are open)

Proof. If A ¢+, then the characteristic function x4t X~{0,1} is
measurable, or uniformly continuous (see 2.3 and the proof of 2.1). So
A = cozy, € cozC(AX).

If f e O(4X), then cozf=f~(R—{0}) and 2.2(d) applies.

For a converse of 2.5, it can be proved quickly that it X iy a P-space,
then coz € (X) = BaX, and thus X = TbX. “Usually” a P-space supports
several different measurable uniformities (or different o-algebras which
induce the same topology). For example, if X = discrete R, then 4 == 2%,
B = Bak (the usual Baire sets). Or (more generally) let ¥ he any topo-
logical space for which not every set is Borel: then diserete ¥ has the
topologically equivalent, but ditferent, o-algebras 2¥ and Borel Y. See §6

for the exact criterion that a P-space admit a unique compatible measur-
able uniformity.
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3. Real-valued functions, Samuel compactification, completion. We give
equivalent ways of viewing measurable spaces by characterizing measur-
ability, first, by algebraic properties of C'(4X), and second, by topological
properties of sAX. sAX is shown to be the Stone space of the Boolean
algebra #, and y#AX is described as a subspace of sAX.

3.1. THEOREM. (a) O (#£X) is a point-separating uniformly closed lattice
and algebra with 1, which is (von Neumann) reqular.

(by If £X and BX are distinct measurable uniformities on X (i.e.,
& £ B), then C(£AX) 5= C(BX).

(¢} If ACRX is a family of functions with the properties of (a), then
A weak-generates a measurable uniformity on X.

(Recall that a commutative ring is regular if given a there is b with
a*b = a.

The) one-to-one correspondence described by 3.1 can be made into
a categorical duality between complete measurable uniform ‘spaces and
the appropriate category of function algebras. We postpone any further
discussion of this. ' .

3.1 is closely related to [4(a), 2.3], and derives from results of
Anderson [22] and Brainerd [23].

Proof of (a). Any C(uX) is a point-separating uniformly closed
vector lattice, with the constant function 1. Using 2.3, that ¢'(#4X) is an
algebra is well known (e.g. [11]). For regularity, take f and define g(z)
= 1/f(z) if f(x) 0, g(z) =3 otherwise. Using, say, 2.2(d), g C(£X),
and clearly, fig=7f.

Proof of (b). By 2.4.
Proof of (c). Some simple lemmas are required.

3.2. LeMMA. The linear combinations of functions ya (4 € #) cow:pr'ise
the functions in C(AX) which have finitely many values. And C°(4X)
comsists of uniform limits of sequences of these.

Proof. Bach y4e C(AX), of course, hence a linear combination
f= ﬁ'm 24, € 0(4X). And range f is a subset of the set of sums of the
nurxizlers {reg 1=1, ..., n}. Conversely, if fe O; l(ch) takes - the values
{71, ..., 7a}, then each A;= f7(rs) e &, and f= Y rix4,.

i=1
Bach uniform limit of such functions is in (¥(4X), since C(4X)
and O%(#4X) are closed under uniform convergence. I feO%4AX), and
&> 0, cover range f by disjoint intervals (say, half-open) Iy, .., In of
length %e. By 2.2(c), each A;=f~*(Ii)e#. Pick r;ely, and note that

Ifl@)— Y riga@)| < & for all z.
=1
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3.3. LemmA. If A: X R is a regular ring of functions, with 1 ¢ A, then

(a) A is closed under inversion: fe A with f(w) # 0 for all a imply
that 1/f € A. '

(b) If feA, then the characteristic funetion of cozf is in A.

Proofs. For (a), choose g with f?g = f. Then f(fg—1) = 0 at each
zeX. It f(w)+ 0, then g(z)=1/f(). If each f(z)=£0, then g=1jf.

For 3.3(b), again take g with f2¢=f, and set ¢= (1—fy). Then
¢*=¢, 50 ¢ takes values 0 and 1, only. One checks that 1—e is the
characteristic function of cozf.

So now let A be an algebra with the properties listed. We set.

#=cozA, and shall prove that # is a o-field, and that 4 = CQ(4X).
Then 2.4 says that A generates AX.

I fi, foy ... € 4, then {Jecozfy = coz 3 27"(|fu|A1). And the latter is
n - n

in coz4. Next, if fe A, let y be the characteristic of cozf. By 3.3(b),
7z €A, Hence 1—y e 4, and coz(l— y) = X—cozf. So £ is a o-field.
Now, if fed, then f7(a,+oo)=coz(fva—a)ec+A Likewise,
JH— o0, b) e 4. Hence, f~(a, b) = f(a, 4 00) N f™—oo, b) e . It @ is
open, in R, then G= (JI,, each I, an open interval, and f &)

= UfNIn) € £ By 2.2(d), fe 0(4X).

 Conversely, first, take fe 0*(#4X).. Then fe 4, by 3.2, 3.3(b), and
the fact that 4 is uniformly closed. For general fe O(4X), write
F=UA+AUYA+2)] = filfs. Now, f, and f, are bounded, and are.
in 0(4#X) by 3.1(2) and 3.3(a). Hence, f;,f, 4. Since 4 is regular,
3.3(a) applies again, and fi/f, ¢ 4.
The proof of 3.1 is concluded.

' T‘he Samuel compactification sAX has the property that the 1:e-
strictions O (s4X)[X = O*(£X). Since O*(#X) determines ¢ (4X) (by in-
version, as at the end of the proof of 3.1(c), and O(4X) determines £4X

(in a strong sense, by 2.4, or in the weaker sense that coz 0 (#4X) = ),
we have: :

3.4. PROPOSITION. The correspondence +#4X > sAX 45  one-to-one
between measwurable uniformities on X and their Samuel compactifications.

Thus, deseribing measurable uniformities is egsentially the same as
describing their Samuel compactifications. We congider this.

Given a compact space K, let clop K stand for the Boolean algebra
of. clopen’ subsets. X is called Boolean if clop K separates the points.
Given a Boolean algebra 3%, there is an essentially unique Boolean space K

(the Stone representation space) such that B is isomorphic to clop K.
(For background, see [7(b), §21].)
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Observe that ¥ CK, the map clopK>GF>GnYe(clopK)nY is
a Boolean algebra homomorphism, which has kernel {@} (i.e., is an iso-
morphism) if ¥ is dense.

3.5. THEOREM. sAX is Boolean, and clops#AX > GG ~ X is a Boolean
isomorphism onfo #&. Thus s#AX is the Stone space of .

Proof. We are to show that clopsAX separates points of sAX
(whence s#4X is Boolean, and the Stone space of its clopen algebra), and
that (clops#X) X = 4. _

‘We do the latter first. If A eclopsAX, then y4e C(sAX), and
141X € O0%(#X). 8o coz(ya|X) e, and clearly 4 n X = coz(yalX). And,
it A e, then g4 e O%(#X), 50 g4 extends to f e C(s4X). Evidently, range
f={0,1}, so cozfeclopsAX; and cozf X = 4.

If ps£q in sAX, choose fe O(s£X) with f(p) =0 and f(g)=1.
Then f|X ¢ O*(#4X), so f| X can be approximated within } by a function
g e C(#X) with finitely many values, by 3.3. Extending over s#X, to f
and ¢°, we preserve the approximation within %, and ¢° has the same
finitely many values. So ¢°(p) < } and g%(g) > %, and (¢°){g(p), (¢")(#°(2))
are the desired separating clopen sets.

This theorem implies 3.6 below, and will be useful in studying the
completion of an AX.

A compact space is called basically disconnected if each open F, has
open closure. (For normal X, the open ¥, make up exactly coz 0(X) [14].)
Tt is well known that these spaces arise exactly as the Stone spaces of
o-complete Boolean algebras [7(b), §20]. Thus:

3.6. THEOREM. sAX is o basically disconnected compactification of
the P-space TAX.

Here is a short direct proof of 3.6 (from [4(a}, 2.1]) hased on regularity
of the ring C(4X). If @ is an open F, in sAX, then @ = cozh for an
b e O(s#AX). Then f= h|X ¢ C(4X), so there is g e O(£X) with f2g=f.
Now (fg)? = fg, so range fg C{0,1}, fye *(4X) and has the extension
e ¢ 0(s#4X). Bvidently, range(e) = range(fg); and one checks that coze is

the closure of cozh. N
We now discuss how to produce measurable uniformities from com-

pact basically disconnected spaces. The result (3.8) below)- includes
2 converse of 3.6. We require a lemma, essentially a reformulation of 3.2.

3.7. LEMMA. pAX has for basis the finite £ - partitions.

Proof. Evidently, finite #-partitions are in p+. On the other hand,
p# has the basis of covers f7(S(e))(f e O*(#X)), and the proof of 3.2
shows that each of these is refined by a finite s-partition T}y
in the proof of 3.2).
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3.8. TaEoREM. Let K be compact and basically disconnected, and let X
be a subset of K which is a P-space in the relative itopology. Then
A= (clopK) ~ X is a o-field and sAX = X~

Proof. Let G eclopK. Then
X—-G@nX=(K-G)nZX.
Let G4, G, ... e clop K, and let G = O—E‘T Since K is basically disconnect-
ed, @eclopK. Since X is a P-space, every F, is closed. Thus,
U nX)= U@ = (UG n = JE X =6nX.

8o (clopK) ~ X is a o-field.

To show that sAX = X% is the same as showing that pAX = «K|X
(o being the unique uniformity on X). Since K is Boolean, the finite
clop K -partitions form a basis for oK. If W is one of these, then W ~ X is
a finite #4-partition, evidently in pAX. On the other hand, by 3.7, the
finite #-partitions form a basis for pAX, If {44, ..., 44} is one of these,

- n
then each 4; = 4;~ X for 4] e clopK. Then W= {4, ..., 4., K~ ) A}
i=1
oK, and W~ X = {4,,.., Az} ‘

3.9. CorOLLARY. The spaces sAX are ewactly the compact basically
disconnected spaces which have dense P -subspaces. .

Thus, if K is the Samuel compactification of & measurable uniform
_8pace, the set of P-points of K is dense: call it X. And K = s4X, with
# = clop KL ~ X. Evidently, if ¥ = sB3Y, also, then ¥ CX (because Y is
a P-space) and BY = AX|Y (from 3.8). We shall see  shortly that £X
(as here) is complete, so that #X = yBY. '
We now describe the completions y#AX by applying preceding theorems.
(This is indirect, but avoids all annoying computation.) The first result
.shows yAX is measurable using regularity of C(#£X).
Recall that uX Ly uniformly continuous implies the existence of
& unique extension yuX gva.

3.10. LmmmA. Let & be a family of maps to wniform spaces which weak-
generates uX. Then the family F of extension weak-generates yuX.

Proof. Complete the range spaces for all fe F, and construct the
uniform embedding % into the uniform product »P of these spaces. »I* is
complete, the F-maps hecome the projections restricted to h(X), yuX
becomes &(X), and the F”-maps become the projections on h(X).
Evidently, these projections weak-genérate »P[h(X) = yuX.

3.11. LemMA. O(uX)> f—>f"e O(yuX) is onto, and an isomorphism
-of all existing pointwise operations.
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Proof. First, we have extensions f”: yuX->ypR = gR; and if
g e O(yuX), evidently, g = (g|X)". Second, that f—f” preserves pointwise
operations is an easy consequence of density of X and continuity of the
functions. )

3.12. THEOREM. yAX is measurable; so TyAX is a P-space.

Proof. By 3.11, C(y+X) is a regular algebra, and by 2.4 and 3.10,
O (y#X) weak-generates AX. By 3.1, y£X is measurable.

That TyAX is a P-space now follows from 2.5.

Recall that for any uniform space we have syuX = suX, and TyuX
C suX. The following is essentially a corollary of 3.5 and 3.10.

3.13. THEOREM. TyAX is the space P of all P-points in sAX, and
y# is the measurable uniformity derived from the o-field (clopsAX) ~ P.

Proof. Let T be TyAX, #Ar= (clopsAX)~T and #, likewise.
Since pAX is measurable, with sy#AX = sAX, we have yAX = #¢T,
by 3.5. Now 3.12 says that TC P, and 3.9 says that #p is a o-field.
Bvidently, #r = £, ~ T, and hence #¢T C 4, P, as uniform subspaces.
But a complete space is a proper dense subspace of no other uniform

‘space; 50 ArT = 4, P, as desived.

Various other descriptions of Ty#AX can be derived. For example:

(1) TyAX is the Gy-closure of X in sAX (the points p such that if
G is a G, with p € @, then G meets X). This has routine topological proof,
using 3.13 and the open basis clops#AX.

(2) With 3.6 and the fact that the Stone space of the Boolean
algebra B consists of the $H-ultrafilbers with the hull-kernel topology,
TyAX consists of the B-ultrafiliers with the countable initersection property
(for “cip” meany P-point).

(3) TyAX is the largest subspace S of s#X for which (clopsAX)n~ S
48 & o-field (countable supremum has to be union). Again, use 4.4 and
this easy lemma (a sort of converse of 3.6): if K is Boolean, and (cloP K)n8
is a o-field, then § is a P-space in the relative topology. When 8 is dense,
this makes SCP. o

We note explicity the criteria for completeness implicit in (2) above,

3.14. PROPOSITION. These conditions on #X are equivalent.

(a) AX 4s complete. )

(b) Bach s&-ultrafilter with the countable intersection property s of
the form {4 e #: we A} for (unique) #eX. o

(¢) Each countably additive {0, 1}-valued measure on A which is mot
identically 0 is a point mass.

Proof. The equivalence of (a) and (b) follows from (2), or it fo]l_ows
from the corresponding result in the more general clags of “JG-fine”
uniform spaces [4(e), §-8]. (See § 6, here.)
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The equivalence of (b) and (e) follows from. this. If m is a measure
ag in (c), then {4 es: m(4)= 1} is an ultrafilter as in (b). If & is an
ultrafilter as in (b), then m(4) = 1 iff 4 ¢ F defines a measure as in (c).

Completeness of Baire spaces is discussed in 6.13. Completeness of
(analogously defined) Borel spaces is treated in [6].

With attention to computational detail, one can give a proof of 3.12

which is conceptually completely straightforward, like this.

For a general uniform space uX, and for Wey, set U
= {int T: U e U} (interior and closure in yuX). Then W ¢ yu, and if $ is
a2 basis for u, B = {U¥: W e B} is a basis for yu. Now, given AX, one
proves that A = {int4: 4 e #} is a o-field of subsets of yAX; and with %
the defining basis for AX, B consists of the countable #-covers, Thus
y#AX is measurable.

4. Measurable coreflection. We discuss the operator b, assigning to
a separable uniform space uX a minimal measurable one, buX.

TFor §C 2% let o(S) be the least o-field in 2° containing 8. Given
geparable uX, buX is the measurable uniform space associated with
o{coz O(uX)).

4.1. PROPOSITION. bu s the coarsest measurable wuniformity om X
which is finer than u. :

Proof. Being separable, x has a basis of (some, probably not all)
countable coz C(uX)-covers. Bach such cover is a basic bu-cover (since
coz 0 (uX) C ofcoz 0 (uX)), s0 puChp.

If the measurable uniformity of 4X is finer than u, then C(4X)
D0(uX), so £ = coz((£X)D coz((uX), and hence £ o(cozC(uX)). So
the uniformity of #£X is finer than bu.

Note that if X is a Shirota space (i.é., of the form ¢aX) then O(uX)
= 0(X), o(coz C(uX)) consists of the Baire sets of TuX, and buX is what
we called a Baire space in § 1. But buX can be Baire for various u's;
see § 6. .

The first thing we do is consider the functorial nature of the
operator b. ‘

Now, a subcategory 3 of a category WU is coreflective if to each object T
of U is fassociated an object bT of B and a map bUST guch that any
map BT (B in $) factors, f= 4oy, for unique BLbU. This readily
N 1
implies that maps U,>U, have unique “lifts” bUlli);bU2 (with fod,
=4y 0 bf). Thus b is functorial; we call it the coreflection.

We are in this situation with b the “measurable” operator.

+.2. THEOREM. b coreflects the category of separable uniform spaces
onto dls subcategory of measurable uniform spaces.
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We prove this shortly.

That the category of measurable uniform spaces is coretlective can
be derived from general theorems of Kennison and or Isbell [15], [12(a)],
[9], by showing that meagurability is additive and divisible. Resulting
from this, and an analysis of the proofs (as explained to me by M. D. Rice),
ig 4.1. While here, 4.1 is essentially all there is to say about bu (though
we shall go on at some length), in other cases the analogous deseription
is not incisive; see § 6, here, for an example. )

To rveturn to 4.2, of course, the required map buX-»>puX is the
identity 1,. Uniform continuity is asserted by 4.1. The factorization
property is the following. '

4,3. PROPOSITION. If AY —L,uX is wniformly continuous, with AY
measurable, then JEY—f>be is uniformly continuous.

To prove this, it is required (by 2.2) that f~%(E)e+ whenever
E e ofcozl (uX)). We shall proceed by an easy transfinite induetion,
ut for this it is necessary that we indicate a Baire classification for the
sets in o(coz C(uX)). Tt will be useful to do this in somewhat more
generality. Henceforth, A will denote an arbitrary vector lattice of
functions: X->R, with 1 ¢A. We shall consider cozA and its derived
o-field. .

4.4, LEMMA. cozA is closed under finite intersection. If fe A, then
fHa,Db) ecozA.

Proof. ﬁ cozfy = coz(|fulA oAl fal)

FHa, +o0)= cOZ((f—— “)VO) ’ f’l(—co, b) = COZ((f_b)/\O) 3

and e
fHa, b) = fHa, +o00) N fTH(—o0,b) .

- Let o_, = cozd, o= (cozd), (all countable unions), o; = (0y); (all

countable intersections of o,-sets), ete.; at a limit ordinal 8, set dp Z.H; Oy

and then og, = (op)s- Let w, be the first uncountable ordinal.

4.5. PROPOSITION. o(cozA)= 0,

(For Baire sets, this is well known.) ‘

Prootf. Clearly, o, C o(cozd), and o, = (04)0- .So it suffu?es., th.at
o, be closed under complementation. We prove this Dy transfinite in-
duction, by showing (*) it B eo, then X—F € 0oy

Fir,st, if fed then X—cozf=/) FH(—1/n, 1/n) e (cozA); C (0o)s-

n
(Here we used 4.2.) Next, let f > 0, let (*) be true for all a < B, and let
Beo, If g is limit, then Feo, for an e < f8, and X—Eef!a+2C a5
If f is not limit, then o; is either (Op-1)s OF (Gp_1)s- If the first case,
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E=JBs with Byeopy, 50 X—EF = ) (X—En) ¢ (0p_1)12)s = (051,),
= 0y,,. The second case is similar.

Proof of 4.3. Taking A = O(uX), 4.5 shows that a(coz(}’(,uX))
= J d,, where o¢_, = o, because C(uX) is uniformly closed.

a<owy

For cozg e oy, [ (cozg) = coz(g o f) e coz O(4Y) = #, because f, and
[ o g, are uniformly continuous. For B, B,, ... € dq,f“’(ﬂ By) =M f~4B);
thus f(B) e 4 if B e o,. Bte., by induction.

We consider the topology of buX. Of course, for any measurable
#X, T4X is a P-space, with the o-field 4 being an open basis. For by,
this can be sharpened.

4.6. THEOREM. ThuX carries the coarsest P-space topology on X which
contains coz C (uX); and the complementary family 5(0"( ux )) 18 an open basis.

Proof. Of course, Thu is a P-space topology, and it containg coz 0 (uX)
because O(uX)C 0(TouX).

It B is any P-space topology on X, then coz((BX) is a o-field
(because any cozf is closed, as well as open, hence a zero-set). Thus, if
BDcoz0(uX) then coz0(BX)D o(cozC(uX)). So 6 contains the basis
for Thu, and 6D Thu. )

To show that 3(C(uX)) is an open basis, we show by induction,
using 4.5, that whenever p e E ¢ o{coz O(uX)) there is Z ¢3(0(uX)) with
PeZCE. I Beoy= cozC(uX), say B = cozf, then with 0 < a < [f(p)],
Z = |f|7[a, +o0) works. (Z e3(C(uX)) by 4.4.) Suppose H ¢ oy, and the
_assertion holds for all sets in o,, a < B. This is trivial, if # is limit, and
i 05 = (d54),. In case o, = (0p.,);, then B =) By with Hy, € g,_,. Since
» < By for each n, there is Z, ¢ 3(C(uX)) with p ¢ Z, C E,. Let Z = Z,

n

80 Z ¢3(C (X)), = 3(C(nX)).
"The topology of a Baire space beaX will be called the Baire topology

associated with the topological space X. This topology has been studied
by Lorch [16] (and called the i-iopology).

- 47 COROLLARY. TbuX carries the coarsest P-space topology on X
which is finer than Tu. Hence, this topology is the Baire topology associated
with TpX, and in particular, if TuX = TvX then ThuX == ThyX.

Proof. buD u, hence ThuD Tu. Use 4.6.

We return to descriptions of bpu.

l?vy 2.4, measurable #4X is weak generated by O (X ). Thus, deseribing
buX is essentially the same asg describing C(buX). '

At little expense, we proceed more generally with a vector lattice
A: X R, with 1 ¢A. The results which follow apply to describe a O (buX)
by taking 4 = C(uX), whence o(cozAd) generates bu.

4.8. COROLLARY. A C C'(a(cozA)X).
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Proof. We are to show that f~*(H) e ¢(cozd), if fe A and E ¢ HaR.
By 4.4, it is true if ¥ = (a,b). I G is open, @ = | J I, with each I, an
(@,b), and f7(@)eo(cozd). Now proceed by transfinite induction,
using 4.5 with 4 = C(R) (so BaR = [Jq,).

a<o

We now have an analog of 4.1. '

4.9. THEOREM. ¢ (cozA)X carries the coarsest measurably uniformity
on X which 4s finer than the A-weak uniformity, and C{o(cozd)X) is the
smallest uniformly closed and regular algebra of fumctions on X which
‘contains A. )

Proof. Let p4 be the 4-weak uniformity. By 4.8, the uniformity
of o(cozA)X is finer than us If B is a o-field, and the uniformity of
BX is finer than ua, then O(BX)D O(usX)D A, hence cozl(BX)
D eoz (0 (paX) D cozd. But by 2.5, cozC(BX)= B. Thus B2 o(cozd),
and therefore the uniformity of $X is finer than that of o(cozAd)X.

By 3.1 and 4.8, C(o(coz4)X) is a uniformly closed and regular
algebra containing 4. Let B, and B, be uniformly closed regular algebras,
and let up, and wp, be the measurable uniformities which correspond
via 3.1. The proof of 3.1 shows that us,X = (cozB;)X; hence B,D B,
iff g, i¢ finer than pg,. The desired result now follows.

This theorem does not yield an explicit construction of G(a(eozA)X)
from 4. We describe such a construction, generalizing the well known
generation of Baire measurable functions using pointwise limits. Some
notation is helpful.

Given F: X—>R, let pF he those f: X—R for which there are
firfay e € F with fo—>f (pointwise). Let Ro= 4, Ri=pRe; ..y Rz
=p Ry, ... Set R=\{F: FDOA,pF =F}. Evidently, we have

a<p .

R=JR,. '
a<wf

4.10. THEOREM. C (o'(cozA)X) is the smallest family of functions on X
which contains A, and is closed under formation of pointwise limits (that is, R).

Before the proof, we interject a corollary of 4.10 and 4.6.

4.11 TuroREM. With A = C(uX): Thu is the weak topology generated
by R,.

Proof. By 4.10, the R,-topology C Thu. So, it suffices to show that
the sets in 3(C/(uX)) arve open in the R;-topology, and apply 4.6.

For feC(uX), 1—n(|fIAljn)—>xzp- Thus yzp e R and Z(f) is
R,-open.

4.11 is perhaps surprising, since &, is really quite far from R, e.g.,
in case uX = gR. Then, R, _¢_ R, whenever a < B, a result of Lebesgue [18].
Actually, 4.11 i related to another theorem of Lebesgue, that for uX
= gR, feR, iff f~4@) is F,, for open G. See 6.4.
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We prove 4.10. Half is immediate from the following.
412. For any o-field #, p0(#£X) = O(£X). Thus R C O(a(cozA)X).

Proof. This is easy, and well known. See [11, 11.14].

The other half of 4.10 requires more work.

4.13. R is @ uniformly closed vector lattice.

Proof. Since pR = R, R is uniformly closed. That R is a vector
lattice follows by an easy transfinite induction using the R,’s; one starts
with 4, and uses the lemma: if & is a vector lattice so iy p&F.

4.14. o(cozA)C{H: yze R} = cozR.

Proof. First, {#: yzeR}C cozR, obviously. For the opposite con-
clusion: if fe R, then fu = n(|f|Al/n) e R (by 4.13); and fo—> ye0;-

So call the collection o. Evidently, cozA Co. And o is a o-field:
If Feo then yzeR, s0 1—yze R (by 413) but 1—yy = 3x_p. Thus
X—Feo. If B, F,,..co, then all yz ¢ R, and hence f= 3 2 %5 <« R
(by 4.13). And |J ;= cozfeo.

Finally, consider C(o(cozd)X)= 0. Rvidently, p0*D ¢ (because
(fAm)V(—mn)->f), so it suffices that 0* C R. Let fe C*. By 3.2, there is
a sequence s,—f, each s, being a linear combination of functions yg,
Eeo(cozd) By 4.14 and 4.13, each s, e R. Hence fe K.

4.15, Remarks. The above- proof of 4.10 is based on the sketch m
[11, 11.41] for continuous, and Baire, functions.

Mauldin [18] has recently discussed the Baire system derived from .

“a vector lattice, and his results imply' 4.10. In § 6, we discuss further
Mauldin’s results and the class R,.

5. b on subspaces and completion. We shall show that b preserves
subspaces. (Products are treated briefly and incompletely at the end of
the section.) It will follow quickly that ybuX is a subspace of byuX,
if we know the latter is complete. It is, but this is a difficult theorem
whose proof we postpone to § 6. Assuming this, we deseribe the subspace,
and show that by = yb exactly on spaces which are ,-dense in their
completion.

Let uX|Y stand for the uniform space obtained by relativizing u to
Y(CX); the uniformity consists of the covers {W ~ ¥: U ey} (where
SNY={8~T: Se8}, for any 8C2%). Comparing b(uX|Y) with

buX|Y is the same as comparing o(coz 0(uX|¥)) with o(coz0(uX)) A Y.

5.1. LemMA. c0zC(uX|Y) = (coz 0 (uX)) ~ Y.

5.2. LEMMA. ofcoz((uX|Y)) = o(coz 0'(uX)) ~ 7.

5.3. THEOREM. b(uX|Y) = buX|Y

Proof of 5.1. We have O(yXIY)DO(,uX)IY "(generally without

equality), so that 0z 0 (uX|T) D (coz O (uX) )~ Y. For the opposite
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inclusion, if- ¥ ecozC(uX|Y), then (by truncating) F = cozf for
fe 0% (uX|Y). By Katetov’s theorem [18], [12(D)], f extends to f’ e C(uX).
So cozf = (cozf') n X. ’

Proof of 5.2. In general, ¢(S~ ¥)= o(8) n ¥, by [7(a), p. 25].
Apply this and 5.1.

Proof of 53. If U is b(uX|¥)-basie, then U is a countable
(cozG(,uX (X))-covér, say {Bu}s. By 5.2, each E,=E,~ Y for B,
eolecoz0(yX)). Let B=X—{JE,, and W = (E},w{B. So WY

= WebuX|Y. Thus the uniformity of »(uX|Y) is contained in that
of buX|¥Y

For the opposite inclusion: If U is buX|Y -basic, then W = {Fyls
with each By e ocozC(uX)). By 5.2, each B~ Y e o(coz ' (uX|T))
WY ed(uX|Y).

(A topological version of the equality in 5.3 would read “$a¥
= (BaX) ~ ¥Y.” This generally fails, because the topological version
of 5.1, “cozC(Y)=(cozC(X))nY,” generally fails. An uncountable
digerete Y in its one-point compactification X is an example for each.
See [1(a)] and [5].)

Since uX is a subspace of yuX, it is immediate that b,uX is a sub-
space of byulX, from 5.3.

, 80

5.4. TarOoREM. If vY is complete, then byY is complete.

Ags mentioned, we prove this later. That 5.4 is at least somewhat
subtle can be seen from the compact space 2¥. By 5.4, the Baire space
ba2¥ is complete. But, the Borel space (B o 2825 i not [6].

5.5. COROLLARY. T'ybulX is the closure of X in TbyuX, and ybu is the
relativization of byu.

Proof. Completion is obtained by closing in any complete super-
space. We use byuX, by 5.4 and the remark preceding 5.4.

5.5 is to be read with care: the closure refers to the topology Thyp.
This has basis the o-field ofcozC(yuX)), or by 4.6, 3(C(yuX)). Using
this, the description in 5.5 can be simplified. When 4 CB (topological
fpaces), the G-closure of A in B is {p e B: each @; around p hits 4}.
(This operation seems to have been studied first by Mréwka.)

5.6. COROLLARY. The set on which ybuX lives is the Gy-closure of X
n yuX.

Proof. From the preceding remarks, all there is to show is this:
for p ¢ yuX, each G, around p hits X iff each Z e3(C(yuX)) around p
hits X. Since Z’s are Gy’s, the implication = is immediate. Conversely,
it @= 6, is a G, around p, then p € each@,, and there is fn € C{yuX)

" ,

5 — Fundamenta Mathematicae, T. LXXVII
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with fu(p)= 0 and fu(X—Gn)=1 [12(b)]. Then peZ= ) Z(fs)C@,
and Z e 3(0(ypuX)). Since Z hits X, so does (.
A iy G4-dense in B if the G,-closure of 4 is B.

5.7. THEOREM. ybuX = byuX iff X is Gy-dense in yuX.

Proof. By 5.5, ybuX CbyuX (as a uniform subspace); so equality
holds iff ybuX lives on all of yuX. G,-density is the exact criterion,
by 5.6.

(A similar result holds for the AG-fine operator m [4(e), § 6]; that
result is more difficult.)

‘We consider briefly products, and confine attention to products of
just two spaces. The main questiony (which we do not resolve) are thege:
When is the product of two measurable spaces measurable? When does
b(uX x vY) = buX x brY hold? The questions do not seem totally inac-

cessible, based on the related treatments of fine spaces in [12(b), Ch. VII], '

[4(d)] and the references given there; but we settle nmow for a. few
comments. ’

The uniform space wX is said to “admit &, if each sequence
Uy, Wy, ... € # hag a common refinement U e u. The condition is quite
restrictive, implying that TuX is P; indeed, from [12(b), Ch. VII], it
can be shown that a fine space aX admits ¥, iff X is P, and that a Shirota
space eaX admits §, iff X is pseudo-w, -compact P. (X is psendo -y, -com-
pact means oX is separable.)

Now, a measurable space is subfine (because measurable = A.-fine
(§ 6) and separable G- fine = subfine [4 (e)]), and [12 (b), Ch. VI, §§ 22 & 28}

imply that a product of two separable subfine spaces is subfine iff each
admits ¥,. Hence: :

5.8. If AX X BY is measurable, then each of #AX and BY admits .

I suspect the converse holds. In any event, we need to know when
a measurable space AX admits §,. I suspect this oceurs it T#4X is pseudo-
s;-compact (but the converse fails, by 5.9(c)).

5.9. ExaMPrES. (a) Let o= 27, 5o 4D = eaD (D discrete). Theny
#£D x #D is measurable iff ity uniformity is ea(D x D), which occurs if
ID| < 8, (ie., iff discrete D is pseudo-w,-compact). This can be derived
from [4(d)].

(b) Let X be the uncountable discrete set D, with an additional
point adjoined whose neighborhoods have countable complement, and
let #£X = oX (the latter being measurable because X is a Lindelof
P-space). Then #X X 4X = (X x X), and is' measurable (because X X X
is Lindelof P). Again, TAX is pseudo-y,-compact.

{e) Let #4X Dbe ag in (b), and consider £X|D = $D, where 3 is the
o-field of countable and cocountable gubsets of D. Then $BDx BD
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= (#AX X 4#X)|D X D, and is measurable (as a subspace of a measurable
space). Here, T®D is discrete and uncountable, hence not pseudo-
N; - compact.

6. So-fine spaces. X is called M-fine (or, fine relative to the class Mo
) . 1 . . .
of metric spaces) if uX oM uniformly continuous, with ¢M metric,

. . - 7
implies uniform continuity of uX->aTeM (where « denotes the fine
uniformity). Separable AG-fine spaces are studied in detail in [4(e)]. We
shall indicate here the facts necessary to establish the connection with
meagsurable spaces.

The 4(-fine spaces form a coreflective subcategory of uniform spaces,
and in separable spaces, the coreflecting functor m has this deseription:
mu has basis of all countable coz 0(uX)- covers. It results that Tmu = Ty,
and that muX —j>gM (metric) is uniformly continuous iff f~(&) e coz C(uX)
for all open G. ’

Evidently, uC mu Cbu = bmu. Comparing the criterion in 2.2 for
uniform continuity of a ‘map b,u—LQM indicates the closé connection of,
say, C(muX) with the functions of the first Baire class in C{buX). We
discuss this more carefully below.

6.1. THEOREM. [4(e), 10.1] The measurable spaces are exactly the
separable hereditarily M-fine ones.

Part of the proof can be indicated. From 5.3, measurability is
hereditary; so we show that a measurable space is AG-fine. For £X to
be Jb-fine requires mAX = AX. Since coz((#AX)= A, this is clear.
(The result also follows from mu C bu.)

Another characterization of measurable spaces among JG-fine ones
comes about as follows. In [4(e), § 6] is proved this analogue of 3.1: it
uX is Ao-fine, then C(uX) is a uniformly closed algebra, closed under
inversion (see 3.3), and wX->C(uX) is a one-to-one correspondence
between all separable JG-fine uniformities on X and the point-geparating
algebras of functions with the properties mentioned (but here, C(pX)
does not weak-generate uX, in contrast to the situation for measurable
spaces). Since a regular ring is closed under inversion (3.3), and sinee
measurable spaces are JAG-fine, we find:

6.2. TuzoreM, Let uX be separable and A-fine. Then, pX is measur-
able iff C(uX) is regulasr.

What’s involved in thit proof of 6.2 is essentially just the obser-
vation that regularity of ¢(uX) forces cozC(uX) to be a o-field (see the
proof of 3.1), 80 u = mu = bu. )

It is shown in [4(e), § 5] and [5] that uniformizable X has a unique
compatible A6-fine uniformity iff X is either almost compact or Lindelot.
5* .
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(Almost compact means a unique uniformity, or, of each pair of disjoint
zevo-sets, one is compact.) It follows that for such spaces, buX = bX
(the Baire space) for each compatible u. The exact topological condition
for this uniqueness comes quickly from a result of Frolik [1(a)].

Call uniformizable X almost Lindelof if of each pair of disjoing
zero-sets, one is Lindelof {5, 4.3].

6.3. TuEorEM. For uniformizable X, these are equivalent.

(a) X is almost Lindeldf.

(b) buX = bX for each compatible p.

(c) If A s any wvector laftice of comtinuous functions on X which '

generates X°s topology, then the smallest uniformly closed and regular algebra
containing A is the algebra of all Buwire functions.

Proof. (b) is clearly equivalent to this: o(coz0(uX)) = BaX for
each compatible u. It is not hard to prove that this is equivalent to:
BaX is the smallest o-field containing & base for the topology in X.
Frolik [1(a)] has shown the equivalence of this with (a).

The equivalence of (b) and (c) follows from 4.9.

[1(a)] contains some other equivalences of 6.3 (a), involving functions
of the first Baire class. :

We turn to a more careful description of ¢ (mud) in O (buX).

There are two explicit constructions of C(muX) from C(uX), in
[4(c)] and [4(e), 6.3]. The former relates closely to the first Baire class,
via recent results of Mauldin [18]. It is convenient to describe this in
glightly more generality. Let 4 be a uniformly closed vector lattice of
functions on X, so that cozd = (cozd),. Let R,(4) be the first Baire
class derived from A (ie., p4, in the notation of § 4), let LS (A) be those f
which are limits of increasing sequences from. 4, and when & is a class
of functions, let ulF be the “uniform closure” of F. Let mAX and bAX
be respectively the JG-fine and measurable coreflections of the A-weak
uniformity on X. Se, from § 4, C(bAX) is the Baire nystem of functions
derived from A; and A C C(mdX)C Ry(4)C C(bAX). Let 3(4), stand
for the collection of countable unions of the zero-sets from. 4. Since

cozf = Lnj {w: |f@)=1n}, cozd C3(A), (Co(cozd)).

6.4. THEOREM. (a) fe O(mAX) (respectively, R,(4), O(DbAX) iff for
each open G C R, f~Y(G) e coz.d (respectively, 3(A),, o(coz A)).
R(b) fe(LS(A)* #ff 7 is bounded amid {z: f(») < a} € (conA), for each
acR.
(e) If feC(mAX), and f is bounded below, then feLS(A). Since
f=(fvO)—((—F)v0), O(mAX)C LS(A)—LS(4).
(d) Ry(A) = ul{LS(4)—LS(A4)). ‘
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(b), (d), and the assertion about ®,(4)in (a), are due to Mauldin [18].
Note that the latter generalizes the Lebesgue theorem for 4 = O(R),
whenee 3(4), is the collection of F's. ([18] contains the more general
result describing R,(4).) The rest of (a) is from [4(e)], and § 2, here (c) is
from [4(d)]. _

In thig connection, it would seem at least of passing interest to
consider the function algebra R, ~ 0(TuX) derived from C(pX). This
is inverse-cloged, since both R, and C(TuX) are, and so there is an as-
sociated AG-fine space, say m,uX, with Tm,u = Tu. The operator m, is
probably a coreflection. Whether this process is of serious interest, I don’t
know. (Also, it can be shown that for each countable ordinal a > 0, R, is
inverse-closed, so there is related A--fine space m, uX — with Tm,u = Ty,
usually. Evidently, bu = | m,u.)

We consider for a moment the form of the definition of J.-fine
spaces. What is given is a class G of spaces (metric) and an operator 0
(here, o) defined initially just on 6, and behaving like a coreflection
in that there is a map OM 1—"illf[, say such that each map Ml-f> M, has

anique 1ift, 0M;Z0M, (such that sy, Of = fods). In this rough
generality, call a space uX (separable, if you will) an Mo-O0 space if
uX IMes implies unique factorization f=goiy (uX 50M). Then
(with: a little attention to detail), the J6-O spaces form a coreflective
subcategory, whose functor, say ¢, extends O over the category U of
uniform spaces, or separable uniform spaces.

Trivially, if ¢ is any coreflection on W, then ¢ (or its range, ¢U, the
associated coreflective subcategory) can be given this form: ¢?Us eonsists
exactly of the Ub-c¢ spaces. !

Now, this trivial representation is uninteresting, but in most of the
few special cases which have been studied, non-trivial and useful re-
presentations can be found. For example, for Isbell’s subfine coreflection
1,19 = yMo— T (complete-A-fine), when U is separable spaces, and
where y.6 denotes complete metric spaces. This result is essentially due
to Isbell, Gingberg, and Corson, is explicitly noted in [4(e), § 9], and is
uged to derive much of what (little) is known about I [12(b), Ch. VIII.

We shall represent b in this way. :

6.5. THEOREM. For separable pX, these are equivalent.

(a) uX 18 measurable.

(b) pX L oM uniformly - continuous, with oM (separable) metric,
implies that uX —ngM s uniformly continuous. .

(e) puX LQR uniformly continuous implies that uX >boR is uniformly
continuous (R being the reals).
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Note that (b) implies that uX is J6-fine: beM is finer than aTeM,
so uniform continuity of uX —fé-aT,gM follows.

The reduction in (c), to measurable = A6-0, with A the singleton
{oR}, seems unusually drastic.

Proof of 6.5. That (a) = (b) is part of 2.1, and (b) = (¢) is obvious,

Assume (¢). We show  that bu=u, i.e., that each countable
o(coz 0 (uX))-partition is actually in u. ~

First, if fe C(uX), then by (¢), uX ~j>bgR is uniformly continuous;
with y the characteristic function of the Baire set B—{0}, y of e O (uX)
and cozy o f = Z(f). Thus, cozC(uX) is closed under complementation,
and o(coz 0 (uX)) = coz O (uX) follows.

Next, if {An}s is a basic bu-cover, i.e., a countable coz ('(uX) - parti-
tion, then each y,, the characteristic function of Ay, is in C'(uX), and sois
f = 32", by uniform convergence., :Thus, fe C(uX, boR), so that
S {Bu}n € 4 whenever {Bu}n iy a basic bg-cover. Take B,=R—
—‘{2—n: n = 1, 2, ...}, and Bn = {2‘”}; then {.A.n}rn, = f—l{Bn}n € U.

In application of 6.5, we reprove 3.12. We shall need to know that
boR is complete, a special case of 5.4, or from [10]; further comments
appear below. .

6.6. CoROLLARY. The completion of a measurable space is measurable.

Proof. Let yAX Q@R be uniformly continuous. Then X X oR is,
and by 6.5(c), 8o is AX ﬂ}EsbgR. Since boR is complete, f|X hag the uni-

formly continuous extension over yAX into boR; this must be f. By 6.5(c),
y#AX is measurable. )

Finally, we prove the completeness theorem
6.7. THEOREM. bmuX is complete iff muX is complete.

Since muX 1—’>/4X is a uniformly continuwous homeomorphism (Tmu
= Tu), mpX is complete if uX is [4(e), 4.10]. Thus 5.4 follows from 6.7.

To prove 6.7, we require the following.

6.8. LEMMA. [4(e), 8.4] muX is complete iff each 3(C(uX))-ultrafilter
with the countable intersection property s fized.

6.8 applies fo a measurable space #4X, because mAX == 4X, and
reads: AX is complete iff each s -ultrafilter with cip iy fixed (because
3(0(4X)) = #). This is 3.14 (whose explicit proof we omitted).

From now on, all hypothesized families &, §, ... C 2% are to be closed
under countable intersection.

To prove 6.7, we take 3 = 3(C(uX)) in the following.

6.9. TerorEM. Let 3C2% have the property: if Z e3, there are
ZiyZyy ... €3 with X—% = || Zy,. Then, F—>F N3 is a one-to-one corre-
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spondence of the o(3)-ultrafilters with cip with the 3-ulirafiliers with eip,
and F 18 fized iff F ~3 is.

6.9 can be derived from either of the more general results of [1(b)]
or [8]. We sketch a short and direct proof, somewhat resembling [8].

6.10. PROPOSTTION. Let 3 be as in 6.9, and let 95D 8 3. If F is an
§-ultrafilier ‘with cip, then F ~73 is a 3-ultrafilter with cip.

Proof. § n3 is always a 3-filter with cip. For maximality, let

Ze3 with ZAF £@ for each FeF 3. Wiite X—2Z = | Zy; since

each Z nZn =10, Zy¢ F. and there is F, e F with Z, ~F, =@. Then
ZDO( Fany 80 ZeF N3

6.10 shows that the map F-+F 3 of 6.9 goes into the 3-ultrafilters
with cip. For the rest, we need the following.

6.11. PrROPOSITION. Let 3C 2%, and let F be a 3-ultrafilter with cip.
Let 8(F) = {8 e¢2%: 8 ecither contains, or misses, some F e F}.

(a) 8(F) is a o-field containing 3.

(b) * = {S e8(F): 8 contains an F e F} is an S(F)-ultrafilier with
cip, with §* A3 = F, and F* is fived iff F is.

6.11 is an exact analogue of the development in [20, Ch. 12] on ex-
tending pre-measures to measures, obtained by specializing to {0, 1}-
valued set functions (which stand in natural correspondence with the
ultrafilters in question, per 3.14). The proof of 6.11 is short and routine,
and we can omit it.

The next result is immediate from 6.10 and 6.11.

6.12. PropOSITION. Let 3C WC §(F), with W having the property
of 6.9 (e.g., W a-o-field). Then, F* A W 38 a W-ultrafilter with cip, is the
only W-filter containing F, and is fized iff & is.

6.9 now follows from 6.12, using 3Co(3)C Q §(F).

6.13. Remarks. Gordon has recently defined and discussed what
he calls “zero-set spaces” [3]. It can be shown that these are in one-one
correspondence with separable J6-fine uniform spaces. In this context,
he discusses the Bairve system derived from a zero-set space, and shows
how it can be viewed as a zero-set space; this is a version of the theorem
“meagurable = J6-fine”. He defines a realcompact zero-set space: Trans-
lated to JG-fine spaces, his definition is the condition in 68 He tht.m
proves that a zero-set space is realcompact iff the derived Baire system is.
This is, then, a version of 6.7. ) )

Something resembling a first version of 6.7, is (]:'lle to Marczewski
and Sikorgki [17]: for metric M, bM is complete iff | M| is nonmeasurable.
The latter was somewhat later shown to be equivalent to completeness
of eaM (whence 6.7, for metric spaces), with results of Hewitt, Katetov,
and Shirotu.


Artur


72 A.'W. Hager

A little later, Hewitt showed that for uniformizable X, b.X is complete
iff X is realcompact [10]. With Shirota’s theorem [2, 12(h)], the latter
is equivalent to completeness of eaX. In [16], Lorch reproved half this
theorem for compact X. ’

More recently, Hayes [8] and Frolik [1(b)] have given new set-
theoretic proofs of results a bit more general than 6.9.
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