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An embedding theorem for commutative B-algebras

by
P. & DIXON (Cambridge)

Abstract. If 4 is a commutative Banach algebra with identity, then it may be
embedded in a commutative Bj-algebra 4’ such that: (i) the Jacobson radical of A’
intersects 4 in precisely the set of nilpotent elements of 4 ; and (ii) if .4 has no non-
zero nilpotent elements, then A’ is semisimple. An application of this result gives
an example of a By-algebra whose quotient by the closure of its radical is not semi-
simple.

1. Throughout this paper, the algebras considered will be commutative
algebras over the complex field, and will each possess an identity, denoted
by 1. The results proved will also hold for real algebras, by obvious modi-
fications to the proofs. The term radical will mean the Jacobson radical,
and an algebra will be called semisimple if it has zero radical. A B,-algebra
is a complete, metrizable, locally convex algebra.

In [5] Rolewicz proved that if 4 is a Banach algebra with a non-
nilpotent element z, then A can be embedded in a B,-algebra A’ whose
radical #Z(A’) does not contain . He then asked (Problem 1) whether
this would still be true if A were just a Bj-algebra. This question was
answered in the negative by Kitainik [3], who proved that such an em-
bedding is possible if and only if # is not ‘almost nilpotent’. Rolewicz
also asked (Problem 2) whether, if the Banach algebra A has no non-zero
nilpotent elements, it can be embedded in a semisimple By-algebra. In
the present paper we shall show that this is so. In fact, we shall prove
that every B,-algebra A can be embedded in a By-algebra 4’ such that
Z(A’') n A is precisely the set of almost nilpotent elements of 4, and
Z(A') =0 if A has no non-zero almost nilpotent elements. Using his
embedding theorem, Rolewicz found that not every B,-algebra has
a closed radical. His Problem 3 asked whether A/%(4) is semisimple
for every Bj-algebra 4. We shall use our stronger embedding theorem
to prove that this is not true.

2. In what follows we shall make essential use of the algebra L® [0, 1]
introduced by Arens [1]. The space L”[0, 1] is the space of those meas-
urable, complex-valued functions f on the unit interval such that
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with functions equal almost everywhere identified. Under pointwise muls-
iplication and the topology given by the seminorms ||+||, (»p =1,2,3,...),
it becomes a B,-algebra. We prove one technical lemma about L“’ [0, 11.

LumA. Let 8 be a subset of [0, 1] of positive measure, and let 4,, B,
(n =1,2,3,...) be sequences of positive numbers. Then there exists a function
feli[0,1] such that f(t) = 0 (¢¢8), f() =1 (tef), and

1 1
ff(t)“dt;An-|—anf(t)”"1dt (n=1,2,3,..).
0 0

Proof. It is clearly sufficient to prove the result for § = [0, 1].
For this, we shall choose sequences of positive numbers a,, 8, (n= 1),
with &, =1, 8,40, and we shall then define

@ (0 <I<< gy
) =ja,  (0<1<6,),
1 (t=0)
[0 =lm f,() (0<t<1).

i< n—1),

Put a, = A,+2B;+1. Suppose that, for 1< m <
been chosen so that:

D @ 21

(ii)y, I(m,r) <I@,nN+1-2"" (@A<L<r<m—1);

(i), Z(m,m) > Ap+By(I(m—1, m—1)+1);
where

n—1, @, 6, have

m-1

=D di(8—

q=1

61}-{-1)'{‘ a/rmam (77 mz 1),

1
= [ faltra
0
and I(0,0) =0. We put 6, = (a,—a,_
~enough so that:
(1) U, — By = [2a’n—1]2n7
(i) Gy @py > [Ap+ By ([(n—1, n—1)+1]J2. ,
Then (i),-; and (i) imply (@1),; (Dp_y, ()p.y and (i) imply (ii),;
whilst (iii), follows directly from (ii). Thus the sequence of functions

f, satisfies (i), and (iii), for every n. Letting n — oo in (ii),, we obtain
that feL“[0,1] and

O~ D and choose a, large

1
[fera<Iw,n+1,
0
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for all ». Substituting this in (iii), gives:

Jtueras 4,43, | jora.
0 0

The required inequality for f follows immediately.

3. We shall also use the projective tensor product construction.
We recall that if 4, B are B,-algebras with seminorms {p,}, {g;} respectively,
then the projective tensor product 4 & B is the completion of A® B
in the topology defined by the seminorms

1] Y puls

n=1

- Saou),

The space 4 & B'becomes a B,-algebra in the natural way. If B = L*[0, 1],
then it follows as in [2], p. 59, that 4 & B can be identified with an algebra
4570, 1] defined as follows. Let C,[0, 1] be the space of all continuous
maps from [0,1] into 4. Then A%[0,1] is the completion of C,[0,1]
in the topology given by the seminorms

(P:®g)(w) = ) @ (Yn):

ot =[] e

We .i'all think of 4%[0,1] as an algebra of measurable functions from
[0, 1] into 4 (modulo equality almost everywhere).

Let L*(N) denote the sernigroup algebra of the semigroup N of all
non-negative integers (i.e. L*(N) is the Banach algebra of all absolutely
summable sequences of complex numbers, with convolution multipli-
cation and the I* norm). Then A4 &IL*(N) can be identified with the
algebra of sequences @ = (@, @s, By, ...) (#;e.4) such that

o

Pi(@) = Z Py(@,) < 00,

n=1
for all i; the topology being given by the seminorms p;.

4. DEFinmrioN (Kitainik [3]). An element = of a Bg-algebra 4 is
said to be almost nilpotent if, for every continuous seminorm p on A4,
there exists a number » such that p(2") = 0.

TrmoreM. Let A be a Byalgebra. Then there exists a By-algebra A’
containing A, such that R(A') N A s precisely the set of almost nilpotent
elements of A, and R(A') =0 if A has no mon-zero almost nilpotent
elements.
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Proof. Let 4" = AQL"[0, 11QLY(N), and identify 4 with its
image in A’ under the mapping # -2 ®1®1. As explained above, we
shall view A’ as an algebra of sequences of elements of 4%[0, 1]. Suppoge
5= (21, 22, ...) 4’ I8 such a sequence, and #;e445[0,1] is such that the
set of te[0, 1] for which 2, (f) is not almost nilpotent is of non-zero measure.
We'suppose 7 (A"), and work to obtain a contradiction. Then, for every
’l/eA 2y iy quasi-regular. Take ¥ = (0,9, 0,0,...), (y EA:“ [Oj]) and let
% = (g, Uy, Us, ...) e the quasi-inverse of #J. Then o --2y +us] = 0,

and so
y =0,
Uy = —21Y,
2,0
Up = 21Y" —RY,

—Ay 2285 — 2y,
u, = 24y* — 3232, 9° + (20,4 +2) Y’ — 2,9,

Ug =

and an easy induction shows that the general expression for u, is of the

form .
U, = (‘31?/)”'5'27%,..,,”:8%17 s 2 Y
with

Dy <2715

the summations being over all s-tuples {i,, ...
1<s<n—1. Hence

ydgp for Lsldy, oy d, < m,

() Pyluy) = py(a1y™) — (2" —1)max {p; (2, ... 2,9°):

; 1<y, oty <0, 1< n—1}

for all 4, j,n
The et of ¢¢[0, 1] for which #,(t) is not almost nilpotent is of positive
measure. Therefore, there iy some set § < [0,1] of positive measure,
and some index 4, such that p, (zl( ") # 0 for all te§ and all n. In fact,
we can choose § so that there is a sequence of positive numbers ¢, such
that p; (2, (1)" ) > ¢, for all te8 and all n. We can also (decreaging § again,
if necessary), arrange that there is a sequence of positive nurnbers X,
such that p,(e; (1) ... 2, (1) < K, (teS, 1<byy .0, ty<m, 1< s<n—1,
n=123,. ) We now define y = 1®f, where feL”[0,1] is chosen,
by the lemma, above, 8o that f(t) =0 (1¢8), f(t) = 1 (¢¢8), and
1
Jfras>
0

1
+ET =0t [ ar,
0
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for all #. Then
1 1

Paldy") = [ pile ) F () A > e, [ F1) a8

0 0

1
>1+@ 1)K, [ o) at
0

2, (1)) F(0)° @

=14+ =1)pu (5, ... 2,7,

for 1<ay,...,5,<m, lgsgn—l,' n=1,2,3,... Hence, with this
choice of 4, y, (*) implies that p; (u,) > 1 for all #n. But then

>142"=1) [ pile @) ...

yPu(“ = 00,

which is the desired contra,djcblon. Therefore Z¢Z%(A'). The first assertion
of the theorem follows immediately.

To prove the second assertion, suppose A has no non-zero almost
nilpotent elements. Then we have shown that every z eZ(A') must have
2, = 0. Now suppose 2, = ... =z,_, =0, 2, = 0. Again, let 7 = (0, y,
0,0, ...), for some yeA%[0, 1], and let % be the quasi-inverse of Zj. Then
in place of (*) we have:

pu (unk) pu(z n)__ x)nk !

p‘l.l (u)

—max {p;(z; ... 2 ¥°):

k<, ...,i,<nk, L<s<<n—1};

a suitable choice of y, i gives. p;,(u,;) = 1, for all n, and a contradiction
follows. Therefore z¢Z(A’) implies z = 0; i.e. A’ is semisimple.

5. It is, perhaps, worth noting that this provides an example where
the tensor product of two locally convex algebras is semisimple, even
though one of the algebras is not. The apparent diserepancy between
this and the results of Mallios [4] is merely due to his rather unusual-
use of the word ‘semisimple’.

6. Our theorem also gives an example of a Bg-algebra A’ such that
A’|Z(A") is not semisimple; as follows. Let A be the Banach algebra

of all continuous, complex-valued functions on [0, 1], with the supremum
norm:

IF = sup{|f()

and convolution multiplication:

SI<1} (fed),

i
= [ft—s)gls)as  (f,ged,0<1<1).
4
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Tt follows from a theorem of Titchmarsh ([6], Theorem VII) that the

" set ¥ of all nilpotent elements of A consists of just those feA for_ which
there exists ¢ > 0 such that f(f) =0 (0<<t< &). So the closure N of N
is the set of fed such that f(0) = 0, and we observe that for all ged,
gre V.

Now let 4, = A@C.1 be the algebra obtained by adjoining an
identity to A4, and let 4" = 4, QL"[0,1] ®m1(~N), a8 above. Since the
set of all nilpotent elements of 4, is N,_Every 2ed(A’) has 2, (¢)eN a.e.
(almogb everywhere). So, for every e (A"), # (t) eN a.e. Thus, if s = 2Q
®1®1, with seA\N, then &¢#(4"). However, (7)*=a'®1®1 is in the
closure of the get of nilpotent elements of 4', and hence is in #(4’). Thus
A'|#(4A) has non-zero nilpotent elements. Since it is commutative, it
cannot be semigimple.
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An application of interpolation theory
to Fourjer series

by

YORAM SAGHER* (Rehovot)

Abstract. In this note we introduce a generalization of the weak interpolation
theory of Lions and Peetre. With the help of this generalization we present a unified
account of some theorems in the theory of Fourier series with positive coefficients.

The generalization consists in considering interpolation not of subspaces of
a topological vector space, but of what we call quasi-cones of it (see Definition I.1).
‘We ghall in this note present only the minimal amount of interpolation theory of
quasi-cones needed for the application to the problem at hand, and hope to return
to the general theory in a subsequent paper. We shall agsume familiarity with the
notion of L(p, g) spaces, as well as with the terminology of the Lions-Peetre inter-
polation theory.

I. Interpolation of quasi-cones.

DErFINITION 1. Let V be a (real or complex) vector space. A subset @
of V will be called a quasi-cone (QC) iff @ +¢ < Q. @ is a cone iff we also
have AQ < @ for all 0 < A. We shall apply our results to cones, but since

no additional work is involved, we shall state the results for quasi-cones.
Two cones which will be important in the -applications we give are:

Ql = {{'Tn.}clnl &, io} and Q2 = {{mn}({oi for some 13’ "—ﬁmn ‘L 0}'
DErFINITION 2. Let B be a vector space over C. A quasi-norm on B
is a funetion || ||: B — R* satisfying:
(a) (Bl =0 iff b = 0.
(b) For all 2¢C, beB: ||Ab] = [A][jb]|.
(¢) A number k& = k(B) exists, so that
1B+ sl < B([1baf] +1Dafl),  for all By, byeB.

A quasi-normed space is a topological vector space, whose topology is
given by a quasi-norm.

* Research supported by the Multinational Program in Mathematics of the
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