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identity map on X,,. We apply Lemma 4 for spaces P;, B;and isomorphisms
¢+ except for P, , By, and g:("l'"z) . Thus we obtain the spaee B> B,.
Sinee B, > X, and X,, is 1sometne to 12 the projection w,: B, - X,,
Il = 1 can be extended to a projection 7 B — X, of norm one. Thus
we apply Lemma 5 to obtain the space B, which containg X,., and
there is a projection =,,; of norm one from B,,, onto X,., and
Fns1lBn = m,. The space B, sabisfies (iv) in view of Lemma 2. This
completes the proof.

Remark. By the same method one may establish the following
statement:

For any finite set of separable preduals of Ly, Xy, ..., X, there exists
a space of unmiversal disposition Iy x, such that X,cIx 5,
i=1,2,...,k and there are projections of norm one from I'x  x onto X,
fori=1,2,...,k

References

[1] V. I. Gurarij, Space of universal disposition, isofopic spaces and the Maeur
problem on rotations of Bamach spaces, Sibirskij Mat. Zhurnal 7 (1966), pp.
1002-1013.

[2] ‘A. J. Lazar and J. Lindenstrauss, On Banach spaces whose duals are Ll
spaces, Israel J. Math. 4 (1966), pp. 205-207.

[8] — and — Banach spaces whose duals are L, spaces and their representing
matrices, Acta Math. 126: 3-4 (1971), pp. 165-195.

[4] J. Lindenstrauss and D. E. Wulbert, On the dassification of the Banach
spaces whose duals are L, spaces, J. of Funct. Analysis 4 (1969), pp. 332-850.

[5] A.Pelczyhskiand P. Wojtaszezyk, Finite dimensional expansions of identity
and the complementable universal basis of finite dimensional subspaces, Studia
Math. 40 (1971), pp. 91-108.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Recewed Janwuary 14, 1971 (285)

lm“ STUDIA MATHEMATICA T. XLI. (1972)

Construction of an orthonormal basis in ¢™(I% and W7 (I%)

by
Z. CIESIELSKI (Sopot) and J. DOMSTA (Sopot)

Abstract. The space 0™ (I%) is equipped in the natural scalar product induced
from I,(I%). A special orthonormal set of functions in O™ (I9) is constructed. This
set of functions turns out to be a basis for the Banach spaces C™(I%) and W (I5).

1. Intreduction. The sequence (,,7n =1,2,...) of elements of
a given Banach space X is called a basis Whenever each zeX has unique

expa.nsmn
o
€T = 2 a,, o,
n=1

convergent in the norm. It is known that the coefficients a, = a,(x)
are linear functionals over X.
In this paper we shall deal mainly with the following two real Banach
spaces:
The gpace O™ (I%), m > 0, d > 1, of m times continuously differentiable
functions on I¢, I = (0,1}, with the norm
IfIf™ = max max|D*f(2)],
Ikl<m tel
where k= (k;,..., k;), k;, and 1<f<d, being non-negative integers,
k| = k+ ... +7o,1 and D* is the differential operator corresponding
to E, ie.
'l
T od otk

The Sobolev space Wm(ld) with m >0, d>1 and 1 < p < oo, which
is the set of all feL,(I%) such that the gemeralized derivatives D*f are
functions and belong to L, (I%) for each E,|k|<<m. The norm is defined

as follows
171G = ( 3 10" fl) ™

{kj<m

where || ||, is the usual L,-norm over e
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In the space 0™ (1% the scalar product
(1) (f:9) = [f®g )i
I

is continuous in both variables.

We are going to construet a basis in O™(I% with m>0and d>1
Tt will be shown that this basis is also a basis in the corresponding Sobolev
space Wr(I%), where 1< p < oo,

The basis constructed in this paper is orthogonal with respect to
the scalar product (1). On the other hand the algebraic polynomials are
dense in C™(I%. Therefore by theorems of Olevskii [8] there exists an
orthogonal basis of polynomials in C™(I%).

The question of existence of a basis in C(I%) was raised already
by Banach in [1], p. 238. Only recently one of the authors [5] and inde-
pendently Schonefeld [14] exhibited a basis in €*(I%). The extension to
the case of C*(I%) with d > 1 is immediate. The solution of the problem
for arbitrary m > 0 and 3> 1 requires a new approach. The solution
proposed here is suggested by the investigations of the Franklin ortho-
normal system in [3] and [4]. Different construction of a basis in o™ (1%
with d > 1 and 0 < m < 4, and also in C™(T% for m = 0 and d > 1, where
T% is the d-dimensional torus, was communicated to the authors by S.
Schonefeld [15].

The relation between Schonefeld’s construction and the one presented
here is more or less like the relation between Schauder and orthonormal
Franklin bases in ¢°(I). Our system is a basis in W7 (I?%) like the Franklin
system is a basis in L, (I). The Schonefeld functions do not form a basis
in Wm(I% like the Schauder functions do not form a basis in L, (I).

The idea of the construction presented here was announced at the
Conferences on Construetive Function Theory in Budapest, August—
September 1969, and in Varna, May 1970. There will appear notes in
the Proceedings of these Conferences.

ATl the proofs given here depend essentlally on the result established
by one of the authors in [7].

2. The B-splines. Let S denote the partition of (—oco, +oc) given

by the sequence
(2) <5< 8 <,

and let I, = <s;_,,s>, j =0, +1,... The function feC™(—o0, +oc0) ig
called a spline of degree m—+1 with respect to the partition (2) if it is in
each interval I; a polynomial of degree at most m-1. We accept this
definition for m =0,1,...

The divided difference of the function f taken at the points s;_;, ...,
i4mer 1S denoted by [8;.1y ..y Siumer; F(8)). Now, let #, = max(0,1).
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It is clear that the functions (s; —t)7* are splines of degree m--1. Linear
combinations of splines are again splines. Thus, the functions
(3) NO(t) =

(Sipmer =80 [8im1s oy Sipmer s (8 — 1),

where ¢ is the independent variable, are splines of degree m 1. They are
called B-splines (basic).

The B-splines were introduced by Schoenberg [11] and they have
the following properties (cf. [6], [12] and [13]):
(P.1) N(t)> 0 for te(—oo, +00), 4 =0, +1,...
(P.2) supp NV (1) = {851y Siymea> fOr ¢ =0, £1,...

(P.3) We have the following identities
DNt =1 for te(—oo0, +o0)
and
‘m) ’L m S'L-— .
f.N” = +,;bl+2 L ofor 4=0,+1,...
(P.4) TFor m=>1 and for arbitrary reals £ we have

N(m—l) ,

— 3‘]‘_

D ZEN’") = (m+1) 2

i=—00 i=—o0

where Df is the derivative of f.

(P.5) The system of functions {N{™, suppN{™ N (a,b) O} is
a basis in the finite dimensional space of splines restricted to
{a, by, —o0 < a < b < +oo. In particular if s,= o and s, = b, then the
system {N(™, i = —m, ..., n} is a Dbasis in the space #;'(S) of splines
of degree m-1 corresponding to the partition S and restricted to
{80 8p>-

3. The sequence of special partitions. For n = 1 we define s, ; =4,
i=0,+1,... Now, every #>1 can be written in unique way in the
form n = 2*4», where y and » are integers such that 4 > 0 and 1 <» <24
For n >1 the partition is defined as follows

[

“z‘m‘ for /b‘=..., —1,0,1,...721’,

(4) Sni = .
—9

2!‘

for 4 =2+1,294+2,...
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Notice that s,, = 0 and 8,,, =1 for all #. Thus for each n > 1 we
have the partition
(5) ’Sln={sn,in7::0’ :lZ]-’"'} »
such that ... <8, ;1 <80 =0<8; <. o. <&, =1 <S8y <...

4. The sequence of finite dimensional spaces. Let [, ..., g,]
denote the linear subspace spanned by the elements #,,...,#, of C°(I). For
any n> —m, m >0, we define the subspace Cp'(I) of C°(I) as follows

[1y8, oey €777 for

—mLn< 0,
(6) o =071 =

[N, 4= —m,...,n] for
where N, i = 0, £1, ..., are the B-gplines of degree m + 1 corresponding
to the partition 8, defined in (4) and (5). Notice that C7(I) = 7 (8,)
for » >0 and dimCy} =m+n+1 for n= —m, m > 0. It is clear that
Oy = O,. Moreover, for each m > 0 the set

7n > 0;

(1) ™) = O° o)

is dense in C°(I).
It is convenient at this place to introduce the following notation

(8) Iy ={—-m, —m+1,...,n0}.
5. Special orthonormal sets in C°(I). We define for each m > 0 the
sequence (f{™, j = —m, —m+1,...) in the following way: f™ =1,

and for j > —m, f™ is one of the different from zero elements in OF whieh
are orthogonal with respect to the scalar product (1), d = 1, to the space
7 .. The functions fi™ are normalized in such a way that

(9) (f, f;;(m)) = 0;; for
In the case of m = 0 this orthonormal set is known, it is called

Franklin system, and it is a basis in C°(I) (for a-simple proof of this fact
we refer to [3]).

6. The main inequality. According to (P. 5) for each n > 0 the system
(MM, 4eJ™) is a basis in the space Y (I). Now, let

(10) G, = (NM N for

%Y n,J

i,j = —m, —m+1,...

b e m=0,n>0.

The matrix GI = (G,),,__,. . is the Gram matrix for this
bagis. There exists the inverse
(11) Agn) = (A%?,j)i,j=~m,...,n = (G(:Ln))_l'

The Dirichlet kernel of the orthonormal set (f™,j = —m, —m-+1...)
can be written as follows

n

D @ fm(s) = 3

J=—m t,J=—m

(12)  EP@,s) = AL NN NGHs).
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To. see this notice that fi™e07(I) for jeJ2*. Consequently, the kernel
K{M(t, s) can be written in the form (12). The integral operator with..
the kernel K{”(}, s) is an orthogonal projection of ¢°(I) onto 0 (I) and
therefore

[ B, ) N@) (s)ds = NOL(5)  for  tel, ke ™
I

whence by (12)

n
D AMGm N = N () for  tel, ked™.
ij=—m

Using the linear independence of the B-splines we get (11).

Now we are ready to state the basic result which was proved for
m =0 in [4] and for arbitrary m >0 in [7].

THEOREM 1. For each m > 0 there exist constants G and g, 0 < q,, <1
independent of n, such that '

?

TAG25] <m0, g™
holds for n >0 and 4, j = —m, ..., n.
For the sake of completeness we are going to prove the following
well-known lemma. :
Let (¥, 0y, M;) and (E,, o5, M,> be measure spaces with o-algebras
01, 0y and measures M,, I, respectively. Let L,(E,) denote the space

of real functions integrable over E, with respect to M, with the exponent
p and with the norm

( [iF@raam)™  for 1<p< o,
(13) Ifllp =1 2

esssup{|f(¥)|: teH;} for' p = oo,
for ¢ =1, 2.

Leyma 1. Let the dntegral operator W: L,(B,) - L,(B,) with the
measurable Lernel )

(W) = [wlin, t)f(t)AM,(t), treBy,
Ey

satisfy the inequalities

(14) [ lolty, ) aMy(t) < N ae. on B,
By
and
(15) [ 1w(ts, )M, () < N ae on B,
By
Then W is bounded and
(16) W, <¥  for 1<p< oo.

Studia Mathematica XLL2 ) T
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Proof. We use the argument given e.g. in [9], pp. 12-13. Leti ¢ denote
the conjugate to p, ie. ¢=p/(p—1). Applying Holder’s inequality
we obtain

IWAIE = [| [ ity t)f (1) @M (t) " AM (1)
Hy By

< [ ([ twltay t) 0 (1, 1)/ | F ()] M (13) " A (1)

B, By
< prlq f|,w(t'1’tn)[[f(tz)]i"dMg(tg)dﬂl(t1)
B By

< NPl f @ [ 10 (6, ta)] A2 (1) M5 (t)
El

< N"Hfllp,
and

W flks = esssup{| [ w(ts, t)f () A2 () |2 e
Hy
esssup{f]w by o) | (Fa)] A M5 (85) : tleE}

By
< flle ¥

7. Uniform isomorphism of some finite dimensional spaces. Let us
denote by (¥U™, jeJ™) the dual basis in C,(I) to the basis (N, ied7) —
dual with respect to the sealar product (1) with d = 1. It is easy to see
that

(17) Nm — Z AM N™  for  jeJ,

i=—m
where 4™ is defined in (11). Let ¢f) denote the unique integer solution
of the inequalities

(18) Say—1 ST < 8¢y, tel.
Now, the dual functions can be estimated with the help of properties
(P.1)—(P.3) and Theorem 1 in the following way
@

(19) NI < 2 Cungi I N (1) < 0, gl < gl

te=—m = () —m~—1
for  jedy,tel,
where

(20) 1 =min{i—jl: i = & —m—1,..., B} > [t —jl~

n
2—5 [t—s8;| —m—2.
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Combining (19) and (20) we obtain
(21) _]Ng"}(t)[ < Dt for jeJP,tel and >0,

where D,, is a suitable constant depending on m only. Using (21) we check
easily that for some constant N,, we have

(22) [IFm@@< N, for jeJp and n>0,
I - .
and
(m, < ;
23) n+m+1 Z N ()| < N,, for tel and n>0.

Now, leb us consider the spaces L,(E;) with B, = J,' and with the
corresponding measure M; equal to the uniform mass distribution on
J™ie. My (f) = 1/(m-+n-+1)forall jeJ7, and L, (B,) with B, = I and M,
equal to the Lebesgue measure. In order to apply Lemma 1 we put
w(j,t) = N (t). Notice that (22) and (23) correspond to (14) and (15),
respectively. Consequently, Lemma 1 gives

1 T ) ‘
(24) (m,;_; @), 13P)"” < alfl

for feL,(I) and 1<p <
It is convenient to mtroduee the following notation

Ppf = 2 (X, [N,

j=-m

Since (N{™,jed7n) is a partition of unity (cf. (P.3)) it follows from
Jensen’s inequality that for suitable constant M,,, dependent on m only,
we have

(25) erfip = | Y @, Ham o) a
I

J=—m

< 3 oe Jo

j=—m

< S“ I, P,

m+n- mrn+l
Using (24) and (25) we get

(26)  [PRfll, < (Mu N Ifl, for feLp(I),1<p<co and n>0.
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LEMMA 2. Let >0, m >0 and feCp(I) and let
n
f= D &N,
i=—m

Then there ewist constants A, and B, which depend on m only such
that

Bl < Il < Al
holds for 1 < p < oo, where :
g = [1sora, g = —ﬂ%ﬁ > e

I

For the proof notice that for feCy'(I) we have P"f = f and therefore
the lemma is a consequence of (24) and (25).

8. Bernstein’s inequality.

Lmma 3. Let m > 0. Then there ewists constant K,
n and p such that for each feCi(I) the inequality
@7) Dl < Epe 075 1fly, % =0,...
holds with 8, = inf{(s,;— 8, 1)
1/2n) < é, < 1/n
@ tProof It is sufficient to show the existence of such constant I,
tha

(28) 1Dfll, <
To see this let

independent of

ym+1,m>0,1<p< o0

i=1,..,n} =2"6+)  for  hich

<L 5"Ilfllp, FeO™MI), n>0,1<p< oo

f= 2”7 Eq,N,(,ZL,z

T=—m

Applying the formula given in (P.4) and Lemma 2 we obtain (28).

9. Exponential estimates for the Dirichlet kernel. To state the main

result of this section we need the following notation

1
(29) = f fle)ds  for eI,
(30) @) f 18 for  tel.
It follows immediately that
(s—t)! (s—u)=?
(31) *(ZZT)!:I WK%”’(t,u)du

= EOVEP) (8, 8)— (- 1)¢VEE (1, 5)
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holds for I =1, ..., m. The upper index (0, 1) means that the I-th power
of the correspondmg operator acts on E{™(¢, s) as on a functions of the
second variable. This convention applies to the operator D too. Thus,
applying D%® to both sides of (31) we obtain

(32) T (DO FED R (1, 6) = (—1)HDEOGOIE) (1, 8)
for t,s8el,0<I<EkSm

LEyma 4. For each m > 0 there exist constants L,, and r,, independent
of m, 0 <1, <1, such that

(33) |(D%9 B (¢, 8)] < Ly,

holds for n >0, 0< k< m and t,s¢l.
Proof. The Bernstein’s inequality (cf. Lemma 3) gives

L+1,,.n|t—s;

(34) [D*NIM(1) < Kn2n)  for  tel,iedy, 0<Ek<Sm,n>0.
Notice that (11), (12) and (17) give
n <
(D@ EG) (8, 8) = Z DENGIO N, (5) = DENGHONG (5),
i=—m i=(ly—m-1

whence by (21) and (34) we obtain (33).
THEEOREM 2. Let m be given. Then there exist constamis M, and tp,,
0 < 7, <1, such that

(35) (HODDEOE) (8, 8)] < Mpn™ 1Tt
holds for n>0, m>k>=1>0 and 1, sel. .
Proof. Denoting by R{™(t, s) the right-hand side of (33) and agsuming
that 1>s8>1t> 0 we obtain by Lemma 4
[HOO DIV (1, 5)| < (HDRI) (¢, 8) <
Similarly, for 0 <s << 1 we have
(@D DO EG) (¢, 8)| < (n[logry|)”
Combining these inequalities with (32) we obtain (35).
It can be proved with the help of Theorem 2 and Lemma 1 the
following '

LEMMA 5. Let us define for given m and &, 0<
PR g5 follows

(36)  (PTRR)()

(n|logr,|) BV (2, 8).

LRI (¢, s).

k < m, the operator

=fE§{"’"')(t,s)f(s)ds for tel,nz=k—m,
i
where

(87) Kgn,k)‘ — _g(ﬂ:k) D0 Kgn) .
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Then there exist constants P,, depending on m only such that

|PmB < P, for 0< 1<p< o
where [P{™B, is the' L, norm of the operator P{™M: I,(I) - L,(I).

10. The special basis in (°(I) and L, (I). In Section 5 we have intro-
duced the orthonormal sets (f%, j = —m, —m-+1,...), m> 0. The aim
of thig section is to show that the system ( f‘”‘ 1, = Ic—m, I—m - 1 )

where
(38)  fmP =DM, 0

E<m,n=k—m and

Sk<m,j =k—m,k—m-+1,...

is & bagis in C°(I) and L, (I) for 1< p < co.
Let us introduce the new system of functions (g{™¥, j = k—m,

k—m+1,...), where gi™" = Hf{", H is given as in (29). Integrating
by parts we check
(39) (g™, Dif) = (ff",f)  for  j=lk—m, feC*(I)

In particular (39) give;s

(40) (g™h, fimiy = 0; for 4, j =lk—m,k—m+1,

Thus the system (g{™¥, f™9, i, j = k—m, k—m--1, .
gonal.

TEEOREM 3. Let the integers m, by, 0 < & <
be fimed. Then (f{™9, j = k—m, k—m+1,.
in C°(I) and L,(I) and in each of these spaces

..) is biortho-

< m, and the real p, 1 < p < oo,
..) 18 a basis simultaneously

(41) f — E (g;,m,k)’ f)fj(m'k)-

i=k—~m

Proof. First of all notice the operator PU®: ¢°(I) - (°(I) defined
in (36) is a projection onto C7*~*(I). This is a consequence of (40) and the
formula (cf. (12) and (36)—(39))

n

\
— Z (g&"""),f)fy""”)-

F=k--m

_Pg:L,k)f
Thus
PeRf=f for  feOphI),
and therefore in a dense subset of O°(I) we have
lim P{=0f — f,
—>co

whence by Lemma 5.we get (41).

Theorem. 3 was established for m = 0 in [3] and for m = 1 in [10].
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11. Tensor product of the special basis. Let N = Nj X ... X Ny,
fork = (ky, ..., kg), k; =0, d > 1, where N, = {k+1,k+2,...} for k>0

and N = N,. For each multi-index k = (k,, ..., k;), a one-to-one mapping-
v: Np— N is defined as follows:

For d =1 v(i) =1, t<N,y, and for d =2
(3, —1)2 41, for

1
(42)
i5(tg—1)+4, for 1

2% (415 1) =

For d>2
Vo (lyy +vs Bg) = ”0(”0(’;11 ey bg1)y Vo(q:d))y

where the index 0 in (4, ...,4), 1 <f<d, is the zero element of the
corresponding space R’. , ‘

Now, let

.
vi(il, vy tg) = {1y s da) eNpt o(Jay oovy Ja) Soo(Bny o0y 9)}

for any (iy,...,%;)eNy, where J#F denotes the number of elements of
the set H.

Tt should be clear that the restriction v, of v}, to Ny, i.e. v,: Ny — N,

V(e ovey bg) = 93 (41, « .., 4g), 18 -one-to-one and onto.
For given d>=>1, k = (ky, ..., k3), 1< k;<<m and neN, we define
1 = ® ... effe
and
gh{l,k) = g(."'=k1) R... ® g("’(’kd)
where 1 = v (6, ..., ta), i1 b = [mny 950 = ggm(;lfl) fork =0,...,m,
and
(f1® ... ®F) 1y oesta) = fi(t) ... -falla).
It is important to estimate the kernels
» .
KR (s, 5) = D) [ )giR(s), n>1,

i=1

where 7 = (t;,...,1%), $ = (81, ..+
for any d, m and k.
Notice that »(n) = vj[»"(n)] approaches infinity as n — oo and

DO gom K,‘:;'tf’ _ K%)k&

, 82)- It is convenient to put E{%™ =0

(43)

Conversely, for n<N we have
(44) K(ml) _D(l- D)H(O L)Km)o‘)“
where

8(n) = v (vg* (n)).
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LEA 6. Let d=1, m>0 and k= (b, ..., k), 0< k; < my be
given. Then there exists a constant Py, such that :
i B9, )| di < Ppyq  for mz1.
I
Proof. We use the induction argument with respect to the dimension d.
For d =1 Lemma 6 follows from Theorem 2. Now, let us assume that
Temma 6 holds for d—1, d > 2. For given seN let s, and s, be defined by
the equality s = #,(sy, 85). According to (42) there are two cases to be
considered. The first case corresponds t0 § = (s;—1)* -8, with 1 < 8, < 84,
and then we have the following decomposition
(45) K0 = K, @K, + (K, — KG9, 1) @ K.
In the second case s = 32(3271)»|-31 with 1< 8, < 85, and then we
have :

(46) K" = K, @ KG9, + KO, © (R — K(%).

In each case we apply the operator D™ HO®® to hoth sides of (45)
and (46), respectively. To complete the proof it is sufficient then to use
relations (43), (44) and the inductive assumption. .

Now, like in the preceding section, it is. not hard to prove with the
help .of Lemmas 1 and 6

THEOREM 4. Let m> 0, d>1, 1<p < oo, k = (ky,..., kg) with
0<k<Sm fori=1,2,...,d be given. Then (fi3M, n=1,2,...) is o basis
simultaneously in C°(I%) and L,(I% and ’

(41) §= 3t g
nz ’ ] n;d
holds for f in C°(I%) and IL,(I% respectively.

12.. Construction of the basis in C™(I% and W2(I%. It is important
to not}ee that the Sobolev space W;”»(I") described in Section 1 can also
be defined as the completion of ¢™(I%) with respect to the norm || [,
1< p < o (cf. the introduetion in [2]). Thus, 0™(I% is dense in Wi (I%.

LeMyvA 7. Let a1, m>0 and 1< p < co. Then
(48) (g™, Df) = (f55", f)
holds whenever k = (ky, ..., k), 0 < k| < m and f s in O™(I%) or WI(I%.

. Pdr o.of. Si.nce bo’o_h sides of (48) are continuous linear functionals on
Wp. (I in Wh;ch 0™ (I% is dense it remains to check (48) for feC"(I%).
This follows from the definitions of ¢, fim* and formula (39).

Now we are ready to prove the main result.
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THEOREM 5. Let m >0, d>1 and p, 1< p < oo, be given. Then
(fim9, j =1,2,...) is an orthogonal basis, with respect to the scalar product
(@), simultancously in C™(I%) and Wm(I% id.e. for each f in C™(I%) and
W)

f= 0 N

= .
where the series is convergent in the norms | |™ and || |57, respectively.
Proof. Let
) n
Pf = 30l D5
st

It is sufficient to show that

[D®(f—POf)l, >0 for  feWHI%,
and
|D*(f—PEsONI© -0 for  feC™(I7)

a8 m -> oo, |k| < m. To see this notice that Lemyma 7 gives

D*PEOf(t) = D* fd EP(t, 5)f(s)ds
I

| = DS, DDA (@)
j=1
(n)
= D' (gim™, DNFG ()
j=1
= PUa D*f (1),

where r(n) is given as in (43). Sinee n — o implies that r(n) — oo We
obtain from Theorem 4 the required result.
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