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The equicontinuous weak™ topology
and semi-reflexivity *
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ROBERT F. WHEELER (Baton Rouge, La.)

Abstract. It is known that a Banach space B is reflexive if and only if B is
complete with respect to the relativization of the bounded weak* topology on the
second dual space B”. In this paper the equicontinuous weak* (ew*) topology on the
dual of a locally convex space FE is employed in order to extend this result to more
general spaces. A number of properties of the ew* topology on E’ are obtained: in
particular, that scalar multiplication is always jointly continuous.

1. Introduction. A Banach space B is reflesive if the canonical map
J of B into its second conjugate space B’ is surjective. Tt is well known
that reflexivity of B is equivalent to weak quasi-completeness: i.e., the
requirement that every bounded weakly closed subset of B be complete
under the relativization of the unique translation-invariant uniformity
which generates the weak topology [18, p. 16]. As Day [4] has observed,
we can obtain a characterization of reflexivity in terms of completeness
(rather than gquasi-completeness) as follows: Let the Tbw* topology be the
restriction to B (more precisely, to J(B)) of the bounded weak* (bw*)
topology on B”. The latter, the finest topology on B’ which agrees with
the weak™ topology on norm-bounded sets, is known to be a locally convex
linear topology; hence the rbw™ topology also has that property.

THEOREM-1.1. [4, p. 57]. A Banach space is reflexive if and only if
it is rbw*-complete.

In this paper we consider the problem of extending the stated result
to the setting of a general locally convex space (LCS). We refer the reader
to [18] for details of the construction of the second dual space B’ of a LOS
E, the concept of semi-reflexivity, and its equivalence to weak quasi-
completeness. The natural generalization of the bounded weak* topology
is the equicontinuous weak® (ew”) topology of Colling [2], referred to by
Day [4,p. 44] as the almost-weak” (aw®) topology. Let E* denote the strong
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dual of B [18, p. 141], the space B’ of continuous }inear functionals*endowgd
with the strong topology f(E', H). Then E', being the .duall of B, admits
a corresponding ew* topology. Referring to the relative topology of ¥
(more precisely, of J(E)) as the ew (or aw) topology, we can conjecture
a result which generalizes Theorem 1.1.

CONJECTURE 1.2. 4 locally convex space is semi-reflexive if and only
if it is ew-complete. . .

Indeed a proof of this has heen proposed [6, p. 74], but it relies on
an assertion [4,p. 46, (6)] which we believe to be €ITONeous: namely,
that if B is a LCS, then (B, ew") is complete. 11,1 Segtlf)n 3 we present
a class of spaces F for which the topological space (H', ew") is not compl'etely
regular, so that characterizing ew”" as corpple‘ne_ (or even to.pologma;lly
complete [10, p. 208]) does not seem to be, in general, appropriate.

A number of other results concerning the ew” topology are eo}lected
in Section 3. In particular, it is shown that scalar multiplication as
a function on K x (B, ew") to (B, ew") is (jointly) continuous (here B*T
is the real or complex field, with the usnal fopology). Cogsequenﬂy ew
is a linear (vector) topology if and only if addition is continuous. Oert.am
results of Kakutani and Klee [9] on the geometry of linear spaces yield
a large class of examples (spaces with weak topology and dual of un-
countable dimension) for which addition is not continuous. Such spaces
are (hereditarily) paracompact, hence topologically complete, but admit
no compatible, translation-invariant uniform structure. ; )

The more pathological features of the ew* topology make it evident
that a better-behaved (i.e., locally convex linear) topology is needed to
investigate the relationship between semi-reflexivity and eqmp‘le,tenes’f.
If B is a LOS, the family of all convex neighborhoods of 0 in (& ’,. ew )
is a base for a locally convex topology, the cew” topology [8]. By restr%c‘mng
cew” to J(E), we obtain a locally convex topology on E. In Section 4
-we show that this topology, the c¢bw topology, is the finest locally convex
topology which agrees with the weak topology on bounde.d sets. Semi-
reflexivity of 7 is quickly seen to be equivalent to cbw-quasi-completeness.
This leads to the following conjecture. .

CoNJECTURE 1.3. A locally convex space is semvi-veflexive if and only
of it is chw-complete.

In Section 5 it is shown that this statement is valid for several classes
of spaces (e.g., metrizable, (DF)-, and (LF)-spaces) and that cbw-comple-
teness is preserved under locally convex direct sums and products and
inherited by closed bornological subspaces.

Finally in Section 6 we present a possible example (depending on
" the existence of a certain type of topological space) to show that cbw-
completeness need not, in general, be implied by semi-reflexivity.
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2. Notation, definiiions, and preliminary results. We assume the
basic results of general topology [5], [10]. If @ and 4" are two topologies
for a set S such that every d-open set is d’-open, we write d < @’ (d<d
if @ is strictly finer than d). The notation for topological vector spaces
is taken primarily from [18], but we adopt the langunage of nets rather
than filters, and employ the definition of polarity found in [12, p. 141].

Most results given hold for vector spaces over the real or complex
field; in this case the scalar field will be denoted by K and will have the

usual topology. The dimension of a veckor space B, dim B, is the cardinal
of a Hamel basis for B. The functions

a(#,y) = vty
mt, z) =tz

on BxXE into E,
on K xFE into E

are the addition and scalar multiplication functions, respectively. A topo-
logy d on E is semi-linear if a and m are separately continuous. In this
case (B, d)’ = B’ is that subspace of the algebraic dual B* which consists
of all d-continuous linear functionals. ’

The phrase “locally convex space” means locally convex Hausdorff
topological vector space. If B and F are vector spaces in duality, then
o(E, F), (B, F), and 8(E,F) denote, respectively, the weak, Mackey,
and strong topologies on E with respect to F.

A uniformity on a vector space E is translation-invariant if it has
‘a base of subsets W of ExFB satisfying W+ 4 < W, where 4 = {(z, 2):
z<F}. The statement “a topological vector space F is complete” means
that FE, endowed with the unique translation-invariant uniformity which
generates the topology, is complete. On the other hand, a topological
space (8, d) is topologically complete if there is a compatible uniformity
on § under which § is complete.

The definition of the ew* topology is due to Colling [2, p. 259].

DeriNreioN 2.1 If EF is a LCS, the equicontinuous weak™ (ew™)
topology on B’ is the family of all subsets W of B’ with the property :
corresponding to each equicontinuous subset D of E', there is a o(F', B)-
open set ¥ with Wn D =V nD.

If % is a neighborhood base at 0 for B, then a subset B of B’ is ew*-open
(resp., ew*-closed) if and only if for each Ue%, B n U° ig relatively
a(E', E)-open in U° (resp., o(F', B)-compact). Clearly the ew™ topology
is the finest en E’ which coincides with o(F', F) on equicontinuous sets. *

Basic results about ew™ may be found in [2], [4], [8]; we list several
for future reference.

Facrs 2.2 (i) If F is a dense linear subspace of a LCS B, with i: F -1
the natural inclusion, then the adjoint i* is a homeomorphism of (B, ew*)
onto (F', ew™).
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(ii) The ew* topology is Hausdorff omd semi-linear.
(iii) (Banach-Dieudonné) If F is metrizable LOS, then ew® is the
topology of uniform convergence on totally bounded subsets of T, hence a locally
convex linear topology.

DEFINITION 2.3 [4, p. 47]. If B is a LCS, the ew topology on ¥ is
the restriction to B (more precisely, to J(HE)) of the ew" topology on
B =F" =B, pE, B).

3. Topological and uniform properties of ew". If (8, d) is a Hausdorff
space, and € is a non-empty collection of compact subsets of 8, then the
family

d(%) = {U < S:for each C %, thereisa d-openset V with U n ¢ = V n C}

is a (Hausdortf) topology for §, evidently the finest which agrees with
d on each member of # [8, p. 59]. We shall refer to d(%) as the #-extension
of d. If @ = d(%), then S is often said to have the weak topology with
respect to € [5, p. 131]. However, to avoid confusion with other uses of
“weak”, we shall say, in this case, that the topology d is #-saturated.

Remark 3.1. A function on (S , d(‘ﬁ)) to another topological space
is eontinuous if its restriction to each set in ¥ is continuous. If ¥, and %,
are two collections of compact subsets of (§,d) such that €; = %, and
for each D%, there is D' e%, with D = D', then d(%,) = d(%s).

Tf d is %-saturated, where % is the family of all compact subsets,
then (8, d) is called a k-space [5, p. 248]. The following theorem. is a genera-
lization of a well-known result for k-spaces due to D. E. Cohen [5, p. 263].
Since a proof can be obtained by simple modifications of an argument
due to Bagley and Yang [1, Th. 1], we omit it.

THEOREM 3.2. Let- (X, d) and (X, t) be Hausdorff spaces with X locally
compact. Tel % be the family of all compact subsets of X, and let & be a family
of compact subsets of ¥, covering Y, for which ¢ is G-saturated. Then the
product topology dxt om XxY is € xZ-saturated, where €XD
={0xD: Ce¥,DeD}.

This result has immediate consequences for the ew” topology.

TEHEOREM 3.3. Let B and T be locally convew spaces with B finile--

dimensional. If G = B X F, then the notural map T': B’ XF' — @' is a homeo-
morphism of (B, ew*) X (F', ew™) onto (&, ew").

Proof. Choose 0-neighborhood bases # and 7" for B and F, respecti-
vely. Since {U'xV°: Ue#%, Ve ¥} is a fundamental family of equi-
continuous sets in @ (using the map T), (G, ew™) is the % X Z-extension
of o(@, @), where ¥ = {U: Ue¥} and @ = {V%: Ve ¥}. But o(G, )
= o(E', B)xo(F', F), so that the product of the ew" topologies on E’
and F' agrees with ¢(G', @) on each set in ¥ x 2. Thus T is an open map.
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Conversely let ¢’ = {0 = B': ¢ is o(F', E)-compact}. Since E is
finite-dimensional, the topologies o(E’; B) and ew”™ coincide on B’ and
are locally compact, while (F',ew”) is Z-saturated. Now (3.2) shows
that (B, ew") X (F', ew") is ¢’ x Z-saturated; hence by (3.1) it is € x2-
saturated. This completes the proof.

COROLLARY 3.4. If F'is a LCS, then scalar multiplication on K x (¥, ew*)
to (B, ew™) is continmous.

Proof. Let F be a locally convex space of dimension one over K.
Then K x (F', ew*) can be identified with (B, ew") x (F”, ew®). By virtue
of (3.3) and (3.1), m is continuous if its restriction to each set of the form
{aeK: |a] <n}xXV° (n a positive integer, ¥ a neighborhood of 0 in F)
is continuous. Since the image of each such set is equicontinuous in F”,
the assertion follows from the continuity of m for the vector topology
o(B', F).

Arguments similar to those given in (3.4) show that if F is a LCS,
and V a fixed neighborhood of 0 in E, then addition on (&', ew*)x
X (B, ew*) to (&', ew") is continuous when restricted to V°x B’

' THEOREM 3.5. Let B be a LOS. If the natural map T: (B, ew*)x
X (B, ew*) — ((ExE)', ew®) is a homeomorphism, then the ew* topology
on E' is a vector topology. The space (E', ew™) is a topological vector space
if and only if there is & compatible, translation-invariant uniformity on E'.

Proof. If T is a homeomorphism, then (B, ew")x (B, ew") is
¥-saturated, where ¥ = {U'xV: U, Ve#}, % a neighborhood base
at 0 for . Applying (3.1), the continuity of addition is a consequence
of its continuity on each set in %. Thus (3.4) shows that ew™ is a vector
topology on E'. )

Only the sufficiency of the second criterion requires proof. Suppose
there is 2 uniformity on E’ with a base ¥~ of subsets ¥V of B’ x B satisfying
(*) (Z,9)eV, 2eB' = (n+z,y+2)eV
and suppose that ew® coincides with the umiform topology. If U is
a neighborhood of 0 in E’, there is Ve ¥ with ¥[0] = U, and there is
Ve with VoV’ < V (notation as in [10]). Let W = V'[0]; then W
is an ew*-neighborhood of 0, and (*) yields W4+W < U. Thus addition
is continuous.

Komura [13] gave an example showing that ew® is not, in general,
a vector topology. We prove the following generalization of this result.

ToeorEM 3.6. If (B, d) is a LCS with d = o(E, E') and dim B’ > ¥,,
then the ew™ topology is not a vector topology.

A finite-dimensional vector space admits a unique Hausdorff vector
topology [18, p. 21]. Following [9], this topology is called the natural
topology of the space. Then the finite topology on a vector space E is the
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family of all sets § with the property : If F is a finite- dimensional subspace
of B, then § n F is open in the natural topology of F. In view of a result
of Kakutani and Klee [9], (3.6) is an immediate consequence of the
following proposition.

PrOPOSITION 3.7. If (E,d) is a LOS with d = (B, E’), then the
ew™ topology and the finite topology on ' coincide.

Proof. Sinee equicontinuous sets in E have finite-dimensional

linear span, it is immediate that sets open in the finite topology are

ew'-open.
Conversely let U be ew”-open and fix a finite-dimensional subspace
H of F. There is a family {4,: neZ} of natumlly open subsets of H which

are equicontinuous in B and satisfy H = U A,. For each % there is
n=1

aa(F’ By-openset V, with Un 4, =V, n4, Thus UnH = U UnAd,

n=1

= U (V, N H) n 4, is naturally open.

If E is metrizable, (', ew") i o-compact regular, hence paracompact
[10, p. 172]. Spaces with weak topologies also have this property.

TarorsM 3.8. If (B, d) is a LOS with d = o(H,E"), then the ew*
topology on B’ is hereditarily paracompact and s perfectly normal (normal,
and every closed subset is a Gy).

Proof. That a real vector space with finite topology is paracompact
and perfectly normal is proved in [16, p. 87]. Moreover, since every open
subset is an F,, the hereditary paracompactness is a consequence of
[5, p. 1651

The result is now immediate from (3.7) and the following observa-
tion, whose proof is routine and therefore omitted: If F is a complex
vector space, then the finite topologies determined by F' and the associ-
ated real vector space ¥ coincide on the point-set F.

We now give the promised example of a situation in which ew™ is
not completely regular. Let w denote the finest locally convex topology
on a given vector space [18, p. 56].

TragoreM 3.9. If the LOS (B, w) has uncountable dimension, then
(B, ew®) is mot completely regular.

Proof. I {&,: acA} is a Hamel basis for F, then (&, o(Z', B)) is
topologically isomorphic to K4, endowed with the product topology d.

. Since (¥, o) is barrelled, the family of all compact subsets of (K<, d,)
corresponds to a fundamental family of equicontinuous subsets of E'.
Thus (E', ew*) is homeomorphic to the set K endowed with the #-ex-
tension d, (%) of the product topology, where % is the family of all
d4-compact sets. It is known [10, p. 240] that d,(¥) > d, when
card A > 8.
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‘We now reduce the argument to the case: card4d =¥,. Indeed if
B c A with card B = 8, and if F is the linear span of {®,: aeB}, then

(F', ew") is homeomorphic to (EZ, dz(%)). A routine verification shows
that the natural embedding of (K%, dp) in (K, d) remains a homeomor-
phism for the topologies dz(%) and d,(%). Thus if (K5, d5(%)) is not com-
pletely regular, neither is (K4, d,(%)).

Suppose, then, that card 4 = §,, and let f be any real-valued d,(%)-
continuous function on K<. Then f is d -sequentially continuous; a result
of Magzur [17, p. 237] shows that f is d,-continuous.

Since d (%) is strictly finer than d,, yet determines the same con-
tinuous real-valued functions on K%, it cannot be completely re-
gular.

COROLLARY 3.10. If dim B > 8,, the ew* topology on (E )’ s not
locally comvex.

Proof. If it were, it would be a vector topology, hence completely
regular.

This extends a result of Co]lms [2,p. 272].

Bxamere 3.11. If card 4 > R,, then K2 is a reflexive LCS which is

not ew-topologically complete.

Proof. The space K is reflexive [18, p. 146]. Also since K4 is the
entire algebraic dual of (K1Y, it is easy to see that the strong topology
on (K4) coincides with «. But dim((K4)’) = card 4, hence by (3.9) the
ew topology on K4 (= ew” topology on the dual of (K“)') is not completely
regular. Thus there is no uniformity (complete or not) compatlble with
(K4, ew).

4. Locally convex topologies associated with ew®. As the results
of Section 3 illustrate, the ew™ topology frequently exhibits pathological
properties which make it difficult to apply the usual techniques of duality
theory. However, the situation improves considerably if we restrict
attention to convex meighborhoods of 0 [2, p. 266].

DErFINITION 4.1. The convex ew” (cew®) topology on the dual of
a, LCS # is the unique locally convex topology with a base at 0 consisting
of all convex neighborhoods of 0 in the ew” topology.

The term “cew*” is used by Husain [8]. In view of (2.2i), any dense
subspace F of E determines the same cew” topology when E’ and F’
are identified. We shall also need the following observation due to
Kelley [11, p. 246].

Ficr 4.2. If B is a LCS, then cew™ on B' is the topology of uniform
convergence on compact subsets of the completion of E.

The restriction to J(E) of the cew” topology on B’ (considered
as the dual of E¥) yields a corresponding reew” topology on B.
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[

DEFINITION 4.3. [4, p. 41]. If F is a LCS, the ‘Dbounded weak (bw)
topology on  is the collection of all subsets U of B satisfying: for each
pounded subset B of B, there is a o(H, E')-open set V with UnB
=V nB.

Thus the bw topology is the finest which agrees with the weak fopo-
logy on bounded sets. In (4.8) we will show that the bw topology on
a Banach space need not coincide with the rbw* topology mentioned
in Sedtion 1, and, indeed, need not be locally convex.

The ew and bw topologies on F are semi-linear, as follows from
(2.2ii) and [2, p. 265]. A general result of Collins [2, p. 266], which can be
extended to the complex case, makes the following definitions
valid. .
DEFINITIONS 4.4. The convex ew (cew) topology (resp., the convex

bw (cbw) topology) on & LCS T is the unique locally conves topology with .

a Dbase of all convex neighborhoods of 0 in the ew (resp., bw) topology.
Having now defined locally convex topologies cbw, cew, and reew”
on a LCS F, we show that this apparent variety is illusory.
LemumA 4.5. If B ds a LCS, let (B, cbw) = TF. Then F* is the comple-
tion of E*. :

Proof. A straightforward application of [2, p. 266, Th. 8 (2)] reveals

that
P = {feB*: [ is o(H, B')-continuous on each bounded subset of B},

Then F, endowed with the topology of uniform convergence on o (E, E')-
bounded subsets of E, is the completion of E* [18, p. 149]. A subset of
B is o(E, B')-bounded if and only if it is o(F, F')-bounded. The con-
clusion follows. .

THEOREM 4.6. If E is a LGS, the topologies cbw, cew, and reew*
coincide on H.

Proof. Since cew* < ew* on B, recew” < ew on E. But cew is the
finest locally convex topology on B which is coarser than ew; hence
reew* < cew. If B is bounded in F, then ew* agrees with o(E, B') on
J(B). Thus ew agrees with o(#, B') on B, so that ew < bw on H. In view
of (4.4), cew << cbw. Hence it remains to show that cbw < reew*. By
virtue of (4.2) and (4.5), it suffices to prove that any o(F’, F)-closed
equicontinuous subset § of F' is (L, F)-compact.

Let B be bounded in F. Since S8° (here polariby is with respect to the
duality (F, F">) is a cbw-neighborhood of 0, there is a finite subset D
of B' = F' with 8° > (2B,) N D°, where B, = B™. Then §* ¢ (2B, n D)
< (1/2) B2 4D, There is a finite subset D, of I’ with DY = D,+ (2B,)".
Thus 8 <« 8 = D, + B} = D,+ B', so that 8 is §(F’, F)-totally bounded.
Since I™ is complete (4.5), the result follows.
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CoROLLARY 4.7. If B is a LCS, the finest locally conver topology which
agrees with o (B, E') on bounded sets is that of uniform convergence on compact
subsets of the completion of E™.

An application of (4.6) leads to a counter-example to a remark of
Day [4, p- 42].

ExAMPLE 4.8. The bw topology on the Banach space ¢, is strictly finer
than the rbw™ topology (= ew topology) and is not locally convex.

Proof. Since ew” = cew® on ¢, (2.2iii), ew = reew" = cbw follows
from (4.6). Thus we need only find a bw-closed set which is not ew-closed.

Let {¢,: neZ} be the usual unit vectors in ¢,, and define

A = {2, n, keZ},

n
where @, ; = ) (1/k)e;+ke,,,. For fixed %, the sequence {z,: neZ}

i=1
is o(I*, I')-convergent to (1/k)a,, where z, = (1,1,1,...)el™. Tt follows
that A is bw-closed. Now the ew-closure of A in ¢, is 4 N ¢y, where 4
is the ew*-closure of 4 in 1. Since 0e 4, A is not ew-closed. Thus bw is
strictly finer than cbw; hence by (4.4) it cannot be locally convex.

THEOREM 4.9. Let B be a LCS, and let F' = (B, cbw). Then the following
are equivalent.

(i) B is semi-reflexive.

(i) F is semi-reflexive.

(iil) F 4s quasi-complete.

Proof. The equivalence of (i) and (ii) follows from (4.5), since B
and F* have the same dual, and it is well known [18, p. 144] that
(i) = (iii). Finally let ¥ be quasi-complete and let {z,: acA} be a Caunchy
net in (B, ¢(B, B'), with range in a o(¥, E')-closed, convex, cirded,
bounded set B. If W is a ebw-neighborhood of 0, there is a finite subset
D of E with ((1/2) W) n B> (2D)* n B. For some aed,a,f> g
= g, — 5D In this case (1/2)(z,—xp)e(2D)° N B, so that @, —azze W.
Thus {x,: ced} is a cbw-Cauchy net in B (cbw-bounded and closed),
hence there is 2,¢B with cbw-limz, = x,. Since this holds for the coarser
topology o(B, E’), E is weakly quasi-complete and therefore semi-reflexive.

5. Strong semi-reflexivity. Theorem (4.9) reassures us that the cbw
topology does indeed bear a relation to semi-reflexivity. In particular,
it shows that a cbw-complete space is semi-reflexive. However, it is the
converse of this implieation which is of interest; we introduce it as
a definition.

DEFINITION 5.1. A LCS E is strongly semi-reflexive if the space (¥, cbw)
is complete.

Thus a strongly semi-reflexive LCS is semi-reflexive.
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The remainder of this section is devoted to establishing certain per-
manence properties of strongly semi-reflexive spaces, and to demon-
strating that in several well-known classes of spaces, the concepts of
semi-reflexivity and strong semi- -reflexivity are equivalent.

Levma B.2. If B is a complete bornological LOS, then (H', cew®) is
complete.

Proof. Let fe B¥, and suppose that the restriction of f to each compact
subset of B is continuous. Then f is sequentially contmuous, and so feB'
[18, p. 62]. In view of (4.2) and [18, p. 149], (F', cew *) is complete.

THROREM 53.3. A /semi-veflexive space B of any of the following types
is strongly semi-veflexive.

(i) Metrizable locally conves spaces [14,p. 3921

(ii) (DF)-spaces.

(iii) (LF)-spaces.

(iv) Spaces of couniable dimension.

Proof. (i) B is both bornological and reflexive; thus E* is both
complete and bornological [18, p. 153]. Lemma (5.2) proves that (#, chw)
= (B", cew”) is complete.

(ii) The space B* is metrizable, so that (H,cbw) = (B, cew")
= (B, ew*). The result now follows from (2.2iii) and [18, p. 149].

(iii) If B is a semi-reflexive (LF)-space [18, p. 58], then & i3 the union
of an increasing sequence {F,: neZ} of closed subspaces, each of which,
with the induced topology, is a reflexive Fréchet space. We recall that

(1) B* is complete [18, p. 62, p. 148].

(2) ¥ B is a bounded subset of HE, then, for some neZ, B < En
[18, p. 591.

To prove that (B, cbw) is complete, we need to show that, given
LeF'* and supposing the restriction of L to each compact subset of r
to be continuous, there is ¢ B with L(f) = f(«) for each feE'.

Tet , denote the map f —f| B, of B onto E,. We claim there is
neZ such that whenever z,(f) =0, L(f) = 0. Suppose not. Then for

each n there is g,<® with =, (¢,) =0 but L(g,) =1. If s, = }g,c, an

=]

application of (1) and (2) shows that {s,: neZ} converges to some s, .

This is a contradiction, since L(s,) = limI(s,). Thus there must De
meZ such that =, (f) =0 implies L(f) = 0.

Define ¢ on B, by ¢(f) = L(g), where g is a member of E' such that

7,(g) =f Then ¢ is a well-defined member of ¥, and L = @om,.

Since B, is bornological (see (5.31)), it now suffices to show that

if D is p(®,,, B,)-bounded, then p(D) is bounded. There is a S(&’, B)-

bounded subset € of B’ with =,,(0) = D [18, p. 133]. Now L, being bounded

icm

Bguicontinuous weak® topology and semi-reflexivity 253

on compact subsets of ¥, is easily seen, by a sequential argument, to
be bounded on bounded sets.: Thus @(D) = L(C) is bounded, so that
pek,, = H,. This completes the proof.

(iv) If dAimE = 8,, it follows from [18, p. 63] that bounded sets
have finite-dimensional linear span, so that B(E', ¥) = ¢(E', E). Thus
the completion of E* is (E¥, o(BY, B)), and (E, cbw) = (E, ©(B, B¥)
= (#, o) is complete.

We remark that a large class of such spaces has been introduced by
Kothe [15, p. 378].

BxAMPLE 5.4. The positive results of the preceding theorem hold
for certain spaces of continunous functions. I E = (C(8), co-op) denotes
the real-valued continuous functions on a completely regular Hausdorff
space §, endowed with the compact-open topology, then semi-reflexivity
of E is equivalent to discreteness of S [19, p. 274]. In this case  is iso-
morphic to BY; the chw topology of RS coincides with the produet topology,
using (4.7), and therefore is complete.

Collins [3] has shown that the space F = (07(S), ), the bounded
continuous complex-valued functions on a locally compact space 8 with
the strict topology, is semi-reflexive if and only if § is discrete. In this case
F* is the Banach space I*(S), and F = F" =1"(8) (algebraically). Then
(¥, cbw) is (I*(8)) with the topology of compact convergence, hence is
complete.

Tf X is a Banach space and & is a norm-closed total subspace of X',
then the strong dual of (X, 7(X, &) is & with its norm topelogy [6, (2.6)].
This leads to a proof of the following variant of [6, (3.2)]: A Banach space
X is quasi-reflexive of order » if and only if there is a subspace @ of X',
norm-closed, total, and of co-dimension n, for which (X (X, G) is
strongly semi-reflexive. In this case the characterization of aw(X, &)
mentioned on page 76 of [6] is valid.

We now obtain several permanence properties of strong semi-re-
flexivity.

Levva 5.5, Let {B,: acA} be a collection of locally convex spaces with
locally convex direct sum F and product G. Then the natural maps

8: (F, cew”) = IT,( By, cew”),
and
T (@, cow™) — @u( B, cow™)
are topological isomorphisms. -
Proof. Let the completion of each E, be denoted by H,,, then @, H,
and /I, H, are the completions of F and @, respectively. In view of the

remark following (4.1), for the purpose of verifying the claims eoncermng
8 and T we may assume that each E, is complete. Then the cew™ topology
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on E, is the topology of compact convergence, with the game holding
for F' and @'. The assertions concerning § and T' are now a consequence
of [18, p. 136].

TEEOREM 5.6. If {E,: acA} is a family of strongly semi-reflexive
spaces, then II. B, and @B, are strongly semi-reflemive.

Proof. We prove only that the product is strongly semi-reflexive,
the argument for the locally convex direct sum being similar. Let
7, = (B, (B, B,)); then (B, cbw) = (¥., cew™) is complete for each
a, by hypothesis. Let & = I, E,. Then @ is semi-reflexive [18, p. 146],
so that (@,cbw) = (G, cew™). Also (&, 8(&, @) = @ulFa, B(Fay B}
[18, p. 192, Problem 8]. The preceding lemma now shows that (G, cew"}
is isomorphie to IT, (¥}, cew™); thus (&, cbw) is isomorphic to IT,(E,, cbw),
hence is complete.

THEOREM 5.7. If B is strongly semi-veflexive and M is a closed subspace,
which, with the relative topology of H, is bornological, then M 13 strongly
semi-reflexive. .

Proof. Ifi: M — P is the natural embedding, then the adjoint 5* is
a eontinuous map of B* onto M*. Since M*is complete, +* has a continuous
extension T to the completion of E*. Hence (4.5) shows that (with
F = (B, cbw)) T is a continuous map of I'* onto M*; moreover, if ¢ is
interpreted as the natural (algebraic) embedding of M in F, then T
coincides with the restriction of its (algebraic) adjoint to F.

Since ¢ (B, B') < cbw on B, M is closed, hence complete in the relative
topology of F. Denote this topology on M by yi, in order to distinguish
it from y,, the ¢bw topology which M has in its own right. Since y, agrees
with (M, M’') on bounded subsets of M, y; < y,. '

We have (M, y,) = M’ from (4.5). Thus it suffices to show that
(M, y,) = M, since an application of [18, p. 18] will then complete the
proof. .

Now (M, y,) has the topology of uniform convergence on {I'(C): ¢
a compact, convex, circled subset of F*}, as follows from (4.7). In view
of the strong continuity of 7 and [18, p. 131], (M, y,) = M".

COROLLARY B5.8. A complete bornological muclear space is strongly
semi-reflexive.

Proof. Such a space is isomorphic to a closed subspace of a product
of reflexive Banach spaces [18, p. 101]. Now apply (5.3i), (5.6),
ands(5.7).

.Rema.rk 5.9. According to (5.“31) and [18, p. 195], a Hausdortf
quotient of a strongly semi-reflexive space need not even be semi-reflexive.

TreorREM 5.10. Let (B, d) be a bornological LCS.

() If B s strongly semi-reflexive, then E is complete.
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(i) If B is complete and o Montel space, then B is strongly semi-
reflexive.

Proof. (i) The topology d is the Mackey topology for the pairing
(E,EB", while (F, cbw) = E' since E* is complete.

(iiy Tn this case E* is also a complete Montel space [18, p. 147].
Since closed bounded subsets of E* are compact, cbw = g(E, E') = d.

The preceding result need not hold it  is not bornological.

- EXAMPLE 5.11. Komura [13] has obtained an example of a reflexive
L.CS which is not complete. The space can be interpreted as follows: For
each positive integer n, let o, be a certain product of copies of B. A sub-
space B, of o, X, is selected (the subtlety of the example lies of course
in this choice). Then B = II,®, is not given the product topology but
rather o(H, F), where F is a certain total subspace of @,E,. It is shown
that {/I,B,: B, bounded with finite-dimensional linear span in E,}
is a fundamental family of bounded subsets of B. Thus B* = (F, §(F, B)
is topologically embedded as a dense subspace of @B,y o( By, By))-
Consequently the completion of E* is @, (E¥, (B, B,), so that (B, cbw)
= II,,(By,, v(By, BY)) = I,(By, ). Thus B is strongly semi-reflexive.
but not complete. )

6. A possible counter-example. We are unable to establish with
certainty whether there is a semi-reflexive LCS which is not strongly semi-
reflexive. One possibility is the following: Suppose 8 is a completely
regular Hausdorff space such that (1) no closed discrete subspace has
measurable cardinal [7]; (2) S is a k-space; (3) S is not realcompact and
(4) if T is a closed non-compact subspace of 8, there is a real-valued
continuous function on S whose restriction to T is unbounded. (To date
we have not succeeded in constructing such a space.) Then, using results
from [19] and [7, p. 229], it can be shown that the dual of (0 (8), co-0p) .
(notation as in (4.5)), endowed with the weak* topology, is a semi-reflexive
space which is not strongly semi-reflexive.
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§ 1. Introduction. In this paper Brudno-Mazur—Orlicz famous con-
—_—— sistency theorem stating that if A and B are regular matrices such that
the bounded convergence figld of A includes that of B, then A and B are
consistent for bounded sequemces (See [2, p. 198], also Mazur and Orlicz
[B, Theorem 67 and [6] and Zeller [7, Theorem 6.4]) is extended to pairs
of matrices which are “regular” in a certain extended sense. We obtain
this extension of Brudno-Mazur—Orlicz theorem by increasing the scope
of the principle of “aping sequences”. The basic idea of the prineiple
of aping sequences was introduced independently by Agnew [1, Theorem
4.17 and Brudno [2]. A general form of this principle was given by Erdos
and Piranian [3, Theorem 1]. This principle states, roughly, that a regular
maitrix transforms each pair of similar bounded sequences into similar
bounded sequences.

Terminology and Notation. We denote by E a closed subspace
of co-dimension one of a fixed BE-space (D, ||-|lp).- We assume that
{'}20, € = (0,...,0,1,0,...), where 1 is in the j-th place, is a Schauder-
Dasis for B and {¢'};., together with .= (1,1,1,...)is a Schauder-basis
for D. The space A* = (1*, B) is defined (see [4, § 5]) as the set of all in-

n
finite sequences y satistying |[yll,» = sup sup | D@yl < oo. It is known
n>0 |digsl k=0

. (see [4, §5]) that (4%, |||l») is a BK-space and ¢ el*,j = 0. We assume
that {e'};-, in a Schauder-basis for 2%, too. Similarly the space g and
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