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On a formula of Pollaczek and Spitzer

by
LAJOS TAKACS* (Cleveland, Ohio)

Abstract. In 1952 F. Pollaczek and in 1956 F. Spitzer found a formula which

- makes it possible to determine the distribution of the maximal partial sum of n mutually

independent and identically distributed real random variables. This paper contains

two simple and elementary proofs and a generalization of the formula of Pollaczek
and Spitzer.

1. Introduction. Let ¢, &,..., &,,... be mubually independent,
and identically distributed real random variables and write
1) E{e™*n} = ¢(s)

for Re(s) =0. Define § =0,0, =&+...+&, for n=1,2,...,¢
=max(0,{,) for n =0,1,2,..., and 7y = max({y, {1y...yL,)  Tor
n=0,1,2,... Introduce the Laplace-Stieltjes transforms
(2) E{*n} =g, (s) for Re(s) =0 and ==0,1,2,...,
(3) E{e‘“ff} =gf(s) for Re(s)>0 and =n=0,1,2,..,
and .
(4) E{e™*m} = d,(s) for Re(s)>0 and n=0,1,2,...

In 1952 F. Pollaczek [1] and in 1956 F. Spitzer [2] provéd that if
Re(s) > 0 and |p| < 1, then

o0 ® &
5 L V2 F o).
G 2, Pnie)e” = oxp{ 35t (5)
In this paper we shall give two simple and elementary proofs for (5)
and we shall also prove a generalization of (5).

2. Auxiliary theorems. It will be convenient to introduce an opera-
tor A. Let us suppose that & is a real random variable with distribution
function P{¢ < 2} = F(x) and write &F = max(0, £). Then

(6) fp(S) =E{e%} = fe‘“dlf’(w)

* This research was supported by the National Science Foundation under
Contract No. GP-7847.
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exists for Re(s) = 0 and determines uniquely

M gt(s) =Efe =) =F(0)+ j ¢~%dF(w) for Re(s)z0.
We shall write

(8) ¢t (s) = Ap(s) for Re(s)>0.
It

(9) '}/(‘9) = 01971(8)+" '+anq9n(s)1

where n is a positive integer, ¢y, 05, ..., ¢, are complex numbers and
@1(8), @a(8), ..., @ (s) are Laplace—Stieltjes transforms of real random
variables, then let us define

(10)  Ap(s) = o; Apy(s) +... 40, Apy(s) for
LeMMA 1. If y,(s)
(11 A{'Vl

for Re(s) :

Proof. First let ug sﬁppose that y,(s) and y,(s) are Laplace—Stieltjes

transforms of real random variables. We can easily see that for any two

real random variables y, and y, we have

(12)  P{max(0, y1; %1+ x2) <
= P{max(0

Re(s) = 0.
) and y,(s) are of the form (9), then we have

A?’z 8} + A{ya(s) Ay1(8)} = A{yy(s)ya(s)}+ (Ayl(s)) (A'J’z(s))

o} +P{max(0, s, 114+ %) < 0}
(0, 21+ 20) < #} +P{max (0, ;) +max (0, y,) < o}

for all z. If we suppose that y, and y, are independent random variables
for which E{¢™1} = y(s) and E{¢™2} = y,(s) whenever Re(s) = 0,
and if we form the Laplace-Stieltjes transform of (12), then we obtain
(11) in this particular case. The general case can be reduced immediately
%0 this particular case by using the representation (9). This completes
the proof of the lemma. .

Finally we note that if Ay,(s) = y,(s) and Ay,(s) = y,(s) for Re(s)
>0, then A{y,(s)ys(s)} = 71(s)ye(s) for Re(s)> 0. Furthermore, if
Ay (s) = Ayy(s) = 0 for Re(s) > 0, then A{y;1(8)y,(s)} = 0 for Re(s) = 0

3. First proof of (5). For n = 1,2,... we can write that
(13) nn =max(0, &y, &1+ &y .oy £k v+ £,) = max(0, & +7%_),

where 7 ﬂn_l =max(0, &, &+ &5, ..y x4, £,) has the same distri-
bution as #,_, and is independent of £, Henee it follows that for Re(s) = 0
“and n =1,2,... we have

(14) D,(s) = A{p(s)D,_,(s)}
and obviously @y(s) =1 for Re(s)>0.
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Starting from @,(s) we can obtain &,(s) for every n =1, 2,... by
the recurrence formula (14). However, we can deduce from (14) a simpler
recurrence relation. If Re(s)> 0 and » = 1,2, ..., then ‘we have

1

- +

n k

This can be proved by mathenlamea,l induction. If # = 1, then (15) is
true. Suppose that (15) is true for » (n = 1,2, ...). We shall prove that
it is true for n +1. Hence it follows that (15) is true for every n =1, 2, ...
By (14) and (15) we can write that

(16) Dysa(8) = A{p(s) ()}

1 n
= AR P a(0)

for Re(s)>=0. If we apply Lemma 1 to y.(s) =
= ¢,(8), then we obtain that

A7) A{p(s)gi () Ppp(8)} = A{pp1a(8) Pry(9)}+
_ + @ (8) Poiyr (8) —A{p (8) P,
If we put (17) into (16), then we obtain that

¢ (8) @n—k (S) and Ve (8)

n-ro41(8)}-

n+1

(18) (I)n—t—l Z Pr (8 n-7+1( ) . ¢n+1(s

that is,
n+1

n—]—l 2%

Hence (15) is true if » is replaced by n+1, and this completes the proof
of (15).

If we introduce the generating function

(19) D,.1(8) = (s) for Re(s)>0

n Ic+1

(20) 5,0 = D ®,(8)¢" for Re()>0 and |o <1,
N
then by (158) we obtain that
U (s .
o) 2088 _ g6, 0 St 016

Il

Since U(s, 0) = 1, it follows that

log U(s, o) 2‘” ¢

k=1

0 and || < 1. This completes the proof of (5).

(22)

for Re(s) >
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4. Second proof of (5). For n=1,2, ... let us define the polynomialy

1 %y ,\"n
N el ) ) 6
Icl—!—zkz-&Z.-[-nk,ﬁn kl!kz kn’ 2 "

%, are non-negative integers.
are complex numbers for which |m,] <1

(23) Qul®1, By -

where %y, &y, ...,
LEMMA 2. If @1, @y ooy Byy +os

(m=1,2,...) and |g| <1, then
Y ol 1€,
(24) 1+2Qn(“’17m27-~7 @,) 0" l}z-l % Ial

=1

Proof. The proof is immediate. If we form the coefficient of ("
the power series expansion of the right-hand side of (24), then we obtain
Qn (@15 By« vy ) forn =1,2,... .

We note that if jy| <1 and we multiply (24) by

.k
— oy — exp ] — 2& 2|
(25) 1—ey = exp) At
k=1
then by forming the coefficient of p” we obtain that

(26)  Qu(@1, @ay-ovy Bn) =~ YQpr (B1; Doy o5y Ty
= Qu(1—Y, a—Y%y ...y B —Y")
for n =1,2,... and here @, =1.
Now we shall prove that for Re(s)> 0 and n =1, 2,...
(27) D,(8) = Qulwi (), 9 (3)5 s 031 (5)

and evidently @,(s) = 1. This implies (5) if we use (24).
Since the right-hand mde of (27) is a polynomial of ¢i (s), @5 (s), ...
-5 pn (8) and Agf (s) = ¢; (s) for Re(s) > 0 and j = 1, 2, ..., u, it follows
tha.t

(28) ' AD,(s) = B,(s).
On the other hand by (26) we can write down that
(29)  Bu(s) —(s) B_s(s)
= (ol (8) —0(8), 0 (8) = a(8), -, 5 (8) — g (9))
forn =1,2,... and Re(s) > 0. Since the right-hand side of (29) is a poly-

nomial of ¢ (s) —¢u(s), ¢ (8) —pa(), -y ¢t () —pu(s) and A{gf (s)—
—@;(s)} = 0 for Re(s) > 0, it follows that

(30) A{dsn('g)_(p(g) (pn—l(s)} =0
for n =1,2,... and Re(s)=0

we have

icm°®
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By (28) and (30) we obtain that

(31) Duls) = Alp(s)B,_y(s)} for n=1,2,...

This is in agreement with (14) and therefore (27) is indeed correct.

5. A generalization of (5). Let us suppose that 7, is a non- -negative
random variable and £, (n =1, 2, ...) is a sequence of mutually independ-
ent and identically dwtnbuted real random variables. Suppose that {&,}
and 77, are also independent. Denote by ¢(s) the Laplace—Stieltjes trans-
form of &,.

Let us define a sequence of random variables 7, (n = 0,1,2,...)
by the following recurrence relation

(32) My =MaX(0, 9, ,+&,) for n=1,2,..

It P{n, =0} =1, then obviously P{y,<w} =P{yi<s} for =
., where 7 (n =0,1,2,...) iy defined in the Introduction.
Now we are interested in fmdlng the distribution of #, in the general
case. Let

=17u7

(33) E{e "} = Q

() for Re(s)=>0 and =n=0,1,2,..
THEOREM 1. For Re(s)>0 and n =1,2,... we have
(34) Quls) = Zasn_k(s)A{Qo(s)Qz(s)},
k=0

where Py(s) (k- =0,1,2,...,n) is given by (27), Qu( 8) =1 and
(35) Q1(8) = Qulp1(8) =1 (8), @a(8) — pf (8), -,y wals) — i (5))
fork =1,2,...,n and the right-hand side of (35) can be obtained by (23).

Proof. We shall prove that if Q,(s) is given by (34), then for n =
=0,1,2,...

(36) ) A{p(8) 2,(8)} = Q,11(5)

if Re(s):> 0. Hence it follows that (34) is indeed the correct formula.
By (34)

(87) Afp(s) Qu(s)} = D Afp(s) Byr(5) A{20(5) Q% (5}
k=0

If we apply Lemma 1 to the functions y,(s) = ¢(s)®,_,(s) and y,(s)

(s)Q%(s), then we obtain that
(38)  A{p(8) Py (5) A{20(5)Q5(5)}} = A{w(s) 24(8)Q5(s)} +
+q)n—-k+1 A{Q Qlc } A‘{Qn“'le S).Q (S)Qk( }
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Tt we put (38) into (37) and take into consideration that

(39) k Z%‘Q:(S) [@n—kﬂ(s)—fP(s)@n_k(s)J'FQ:H(s) =0
=0

for m =1,2,..., then we obtain thab

n
(40)  A{p(8) 26} = Pupa (VA {20(8)QR(8)} +A{20(8)Qrisr(9)}
k=0
for n =0,1,2,... and Re(s)>0. By (34) the right-hand gide of (40)
can be written as £,,,(s) and this proves (36). It remains to show thab
(39) Lolds. If we multiply the left-hand side of (39) by ¢", where |o| <1
and add for » =1,2,..., then we obtain

B <k
W) o] 3Ll —at 01+ ) 0
k=1

=1
whence (39) follows.

6. Further results. First let us define the operator A for a larger
clags of functions than before. Let us suppose that £ is a real or complex
- random variable for which E{|{|} < oo and let 5 be a real random variable.
Write n+ = max(0, 7). The expectation E{le™"} exists for Re(s) = 0
and determines uniquely E{te™*} for Re(s) > 0. Let us write

A -1 =0,

(42) E{te"} = AB{{e™™} for Re(s)>0

Thig definition of A includes the previous one as a particular case.
THEOREM 2. If Re(s) = 0 and |o| < 1, then we have

)

(43) Z‘Pn(S)@” = g—Al0g 1-op(9)]
=0
and
(44) 2 Q,(s) 0" = e~1llng[1——e¢(s)]A{_Qo(8)e»log[1—2!17(8)]~1~Aloz[1—-w(a)]}’

where @,(8) (n =0,1,2, ..
by (33).

Proof. Formula (43) follows from (5) and formula (44) from (34)
if we take into consideration that

(45) D aper

n=1

) 48 defined by (4) and £,(s) (n = 0,1,2,...)

= A{—log[1— gp(s)T}

icm
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for Re(s) >0 and ]@[ <1. We can easily prove (45). Suppose that
1y €y oony &y -.. 18 @ Sequence of mutually independent random variables
and E{e“s‘fn} =gp(s)forn =1,2,... and Re(s) = 0. Let us suppose that
the random variable » is mdependent of {£,} and

1
n(n-+1)

Let us define # = £,+...+ &, and ¢ = ¢’(v+1). Then

(46) Py =n} =

for n =1,2,...

(47) E{e) = '—QL — —log(1—el) < oo,
. n=1 :

(48) E{te™ =§"7[¢(s)]n = —log(1—op(s)

for Re(s)> 0 and |g| <1 and »

(49) E{e™"} = ZQ—"A [p(s)"

for Re(s) = 0 and |o] < 1. Thus (45) follows by (42).

Formulas (43) and (44) are useful -because they make it poss1ble to
find @,(s) (n =1,2,...) and Q,(s) (» =1,2,...) by using the method
of factorization.

TEEOREM 3. Suppose that o] < 1 and that for Re(s) =

(s, 0)P™ (s, 0),

where O+ (s, o) is a regular function of s in the domain Re(s) > 0, continuous
and free from zeros in Re(s) >0 and satisfies llmlog Ot (s, o)fs =0

(Re(s) = 0), furthermore @~ (s, p) is & regular functwn of 8 in the domain
Re(s) < 0, continuous and free from zeros in Re(s) <0 and satisfies
limlog' @~ (s, 0)/s = 0 (Re(s) < 0). Then we have '

|8}—o0r

(50) 1—op(s) = &

.- 1
51 Py (s) " =
b 250 = g
and )
- w1 2y(s)
2 2, e st e b
for Re(s) =0 and |o] < 1.

'
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Proof. Now we have

(53) Alog[1—gp(s)] = log @t (s, ) +log D (0, ¢)
for Re(s)> 0 and |g| < 1. Thus (51) and (52) follow from (43) a_nd (44)
regpectively. :

We can prove (63) for Re(s) > 0 if we use the following formula:
If E{|{|} < oo, then for Re(s) > 0 we have
E{Co"””} P

(e} = 2B} + e
1

(54)

2 3 a—vD L, !
where L,, the path of integration, consists of the imaginary axis from
2 = —ioo to 2 = —i¢ and again from 2 = 4¢ t0 ¢ = foo. By (84) we can
obtain (53) for Re(s) > 0. Since (53) is continuous for Re(s) == 0, we can.
obtain (53) for Re(s) = 0 by continuity.
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Appronmanon of translation invariant operators
by
DAVID C. SEREVE* (Minnesota)

Abstract. The purpose of this paper is to construct approximations to translation
invariant operators from IL? (R") to L2 (B"). We give error estimates in the form of
rates of convergence on subspaces of L2,

1. Introduction. The purpose of this paper is to constluct a family
of approximations 4;, 0 <h < oo, to a translation invariant operator
4 from IL?(R"™ to L(R™). We obtain error estimates

Il 42 — Ay, < OB*)|4°ul,,
for  in the Bessel potential space L, s> 0, where 0 is independent
of k. For the definition of A° see Section 4 below.

First we consider 1 <p =g < co. 4, is given by Aju(z) =
Z' ot (#+hf). An interesting feature is that the coet'hclents Cpp aTE
ez

independent of % if and only if the multlpher T corresponding to 4 is

homogeneous of degree zero, that is, T (AE) (f) forA> 0and 0 # Z<R™
We also give approximations to singular integral operators with vama,ble
kernels.

In Section 7 we construct approximations 4,, where A maps L? to
I% p< g If p <g, then A; cannot be a difference operator as above.
However, A,u is given by convolving a function with u. Certain approxi-
mation results for translation invariant operators on locally compact
abelian groups are given by Figh-Talamanea and Gaudry [6].

Part of the results presented here appeared in the author’s Ph. D.
dissertation at Rice University directed by Professor Jim Douglas, Jr.

2. Preliminaries. R" denotes n-dimensional Euclidean space, Z" the
points in R" with integer coordinates, and T™ the dual group of Z* For
r>0 we set @ = {{eR" —r<§<r,j=1,...,n} and we identify
I with Q.. L%, 1, and L?(Q,) denote the usual L” spaces of functions on
R*, Z* and Q, ‘respectively. If F is a subset of R”* CF is the complement;
of D and yp is the characteristic function of .

* During the preparation of this paper the author was partially supported by
the National Science Foundation under NSF grant GP-7041X.
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