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Bases in weakly sequentially complete Banach spaces
by
N. J. KALTON* (Swansea, Wales)

Abstract. A theorem of Zippin states that if every basis of a Banach space X is -
boundedly-complete, then X is reflexive; we here obtain a similar characterization
of weakly sequentially complete Banach spaces. A basis iz called f-complete if it
induces a B-perfecét sequence space; the main result of this paper is that a Banach
space with a basis is weakly sequentially complete if and only if every basis is -
-complete

Let X be a Banach space, let (z,) be a Schauder basis of X and let

(f,) denote- the dual sequence of continuous linear functionmals on X;
thus for each zeX ‘

2= ful@)a,.
n=1

Then we say that (w,) is shrinking if (f,) is a basis of X*, and that ()
is boundedly-complete if whenever (a@,) is a sequence of scalars such that

n
I
sup” S o2 || < oo,
7 =1

©
then 3 a;@; converges.
i=1
These classical definitions lead to the following two well-known
theorems.

TurorEM 1. (James [2]). X is veflewive if and only if (v,) is shrinking and
boundedly-complete.

THEOREM 2. (Zippin [9]). If X has a basis then the following are equiv-
alent: :

(i) X ds reflemive.
(ii) Bvery basis of X 48 shrinking.
(iil) Hwvery basis of X is boundedly-complete.
The theory of basges is related to the theory of sequence spaces

* While engaged on this research, the author was in part supported by an 8.R.C.
Resettlement Fellowship. ‘
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for we may define the sequence space

dy = {(%); D a,m, converges}.
=1
For a given sequence space u we define (see Garling [17)

W= {(dn) i D) a,b, converges for all (b,) e,u},

Na=l

m
W= {(a’n)§ SEPI 2 by,

n=1

< oo for all (bn)elu}.

Then it may be easily seen that (z,) is boundedly-complete if 1, = Az?
(for other results of a similar nature, see Ruckle [7]). One naturally agks

what is obtained if one only assumes A, =AY’ (a weaker assumption,

see [1]). This iy equivalent to the following definition (see [3]):
n !
DErINITION 1. (w,) s B-complete if whenever (Y G)oy 18 @ weakly
4 0 da=]
Cauchy sequence then Y a,x; converges.
= . ;

This leads to a modification of Theorem 1.

TEmOREM 3. ([81). X is reflewive if and only if (2,) 18 shrinking and
f-complete. ) .

In this paper we establish a result related to Zippin’s Theorem. 2,
characterizing spaces in which every basis is p-complete. It'is obvious
that i X is weakly sequentially complete then any basis of X ig -complete;
thus, for example, the space I' of absolutely convergent sequemnces is
not reflexive but every basiz of I* is B-complete. The main theorem of
this paper will demonstrate that the property of having every basis f-
complete characterizes weak sequential completieness.

The proof will depend on a refinement of a very useful lemma dis-
covered by Zippin [9]; we shall call a sequence (Y) semi-normalised (this
terminology follows Pelezyriski [6]; the term “normalised” has been nsed
by the author for the equivalent Property in a locally convex space)
i 0 < intlly,| < suplly, < co. ‘

ProposrrioN 1. Let (x,) be o basis of X amd suppose that (p,) is an
increasing sequence of integers with Py = 0 and Pp—Ppa=1; let X,
=@, 4150, 3, ). Let u,eX, and g, <X, be two sequences with g, (u,)
=1 and sw:p[]u,,” llpall < o5 then there is a basis Yn) of X with Yp,, = U
ond @, (y;) =0 for p, \ +1<i<p,—1.

Proof. The proof is essentially that of Zippin. Let Z, = ¢7*(0) and

= ]in(.'):pn_1 +12 =y Bp )5 then by a lemma of Zippin, there is a linear

icm®
isomorphism T,: ¥, —Z, such that
Tl 1T < 9.
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" Then let
Y; =Tnm¢, 1 =pﬂ_1+1;-'-7.pn_1’

yp” == Uy .

It is clear that (y,) is fundamental in X and it remaing to be shown
that (y;) is a basic sequence. There is a constant K > 0 (the basis constant)
such that for all sequences of scalars (¢,) and » < s

r 8§
| Sae <] 3o
=1 =1
Py ,

n
Nowletz = 3 4y; = 3 d,; and suppose r < p,,. If # = p_ for some m
i i=1

=1

I 2 o] = | Zr‘ dal| < K.
: =1 i=1
Ep, +1<r < Pm—1
T Pm—1 l »
Hchyi < H 2 ¢:Ys| + ” Z Yy
=t “ 25

<Kl +IT0] 3 oa

Py—y 1
Dp~1
SEle+EIT | Y oo
D1+l
Dy ~1
< Kl + BTl 0220 | Y o
Pp—1+1
P
SEfel+E (]| 3 aye] +1oy,| )
Pp—1+1
< Kol + 9K @ +lipall Tunl) | D o
Pp—1+1

< el (B +18 K (1 + ign] [[t6]l)) -

| 3

where ( = K +18 K*(1 +sup ol [[tml]) -

Hence for all r

< Ol
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Thus (y,) is a basic sequence. '
Zippin’s lemma in its original forrh states that if w, 5 0 and w,<X,

then there is a basis (y,) With ¥, = . This follows by choosing ¢, such
that g, (4,) =1 and [l [lua]| = 1. .

PROPOSITION 2. Under the same assumptions as Proposition 1, suppose
u,eX, and v, eX, are two semi-normalised sequences. Then there is a basis
(Ya) of X with yp, = Uy, and Yy | =V if and only if

infint ||u,, + ov,)| = o> 0.
n ¢

Proof. Suppose there iy a basiy (y,) with y, , =0, and y» =u,.
Then there is a constant K such that if r < s

HZ o[ < X HZ W«H

for all sequences (¢;). Thus, as

leenll < - 00| - llewyl| < (L4 ) i+ 00, for all 6

0 < indfJu|| < (indinf fju, + ov,lf) (L +K)

so that ¢ > 0.
Conversely suppose 6 > 0. Then the linear functional ¢, on lin(u,; v,)
given by v, (u,) = 1 and yp,(v,) = 0 satisfies

”"/’n” = 6~ for ?Pn(a’uﬂ'}"b’un) =0a a‘nd ”a'»un'\',blun” = {a’l d.

Extend v, to a linear functional ¢, on X, with |g,/| < 6~% by the
Hahn~Banach Theorem. Then by Lemma 1, there is a basis (2,) of X with
zp =ty a0d @, (2;) = 0, @ =P, _,+%, ..., p,~1. Clearly Oﬂslm(z}, L1

) and by applylng Zippin’s lemma in its original form’ there is
a basm ('yn) of X with y, _, =9, and Yp,, = Un

Before proceeding with the proof of the main theorem, it is useful
to introduce a further concept mtermedmte to f-completeness and bound-
ed-completeness.

DEFINITION . A basis (z,) is said 1o be totally f-complete if whenover

( 2 a, mi),,__l 18 o weakly Cauchy sequence for some sequence {p,} with P,

. th(m 2 a;%; CONvErges.
=1

PROPOSITION 3. A boundedly-complete basis is totally p-complete.

Proof. I 2 a ;s a Weakly Cauchy sequence, then.

=1

sup»”.z aia%” = M.
n i1 '

icm°®
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Let K be the basis constant; then

s&p”é’ %%H< KM.

As (@,) is boundedly-complete, Z‘ a,%; converges.

PropostrioN 4. If X is a Boma,ch space with a basis, and every basis
of X is f-complete, then every basis of X is totally f-complete.

Proof. Leb (#,) be a basis of X and suppose that the sequence

Dy

=-]
Z @il
i=1

is weakly Cauchy, where p, >, for.all # It may be assumed
that an infinite number of (#,)X, are non- -zero, and that, for each =,
P,
> a; # 0. Then by ]?roposltlon 1, there is a basis (y,) of X with
Pp—1+1 Pp,
y:,n = 3 @ then { Z Yo )., 18 Weakly Cauchy and as (yn) is
Pyl

B-complete, 2, Yp, €Xists fmcl
n=1

oo Pm
Z Yo, = 11m 2 a;w;  weakly.
=1 0 g

Clearly
- 00 00
Yp, = ), 48
Two further ideas from [4] and [8] will be required for the main the-

orem. If (#,) is a Schauder basis of X with dual sequence (f,) then we
say a subsequence (mpn) i8 a type P subsequence if

n
info,, | %0 and sup | 3 @, || < o0
# n =l
and is a type P* subsequence if

n
supllo, || < oo and  sup H 1, H < oo.
n ;unf * n g pL

_Then the following result is proved in [4].

ProrostrION 5. If (®p,) 18 @ type P subsequénce of (,) then the sequence
n
(Un) given by y, = @y, #p,, and Yo, = él' @y, is o basis of X. If (@)

is a type P* subsequence of (w,,) then the sequence (y,,) given by y; = ;& % p,
and g, = B, — %y, _, (where @, =0) is o basis of X.

2 — Studia Mathamaticn STTTT 0
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TamorEM 4. Let X be a Banach space with a basis and suppose every
basis of X is f-complete; then X is wealkly sequentially complete.

Proof. Let (z,) be a basis of X; we shall prove three lemmag under
the assumption that every basis of X is f-complete.

Leania 1. Let (2,) be a sequence of the form

Dy,
2y = 2 a;w;, where Py = 0 < Py < Py...

i=Pp-1+1

If (2) is weakly Cauchy then limz, =0 weakly.

-0
Proof. We may assume 2, = 0 for all n; if the lemma is: false there
exists}p eX* with lim ¢(z,) = 1. We further agsume (discarding, if necessary,
00

a finite number of the sequence (z,)) that ¢(z,) 7 0 for all n. Then let

A =“<‘1Tz and let g, be the restriction of p to X, = lin(zp, ., ...
P %,
-y ). We have

inf | (2,)] = 6 >.0
and as (2,) is a weakly Cauchy sequence
supfien]| = M < oo,

so that
supllu,|| < M6~ < oo,
n

and hence
Sup gl ug)l < M 672 -

Then by ‘Proposition 1, there iy a basis (y,) of X with Y, = Un sun*d
@(y;) = 0 for p,_, < i< p,. Let (g,) be the sequence dual to (y,) in X;
in the weak*-topology of X*,

¢ = ngn

n=1

« n
so that sup| 3 g,|l < co.
4 i=1

Certainly [y, || = llu,l| < M 67"

Thus (y,, ) is-a subsequence of (y,) of type P* and the sequence (w,)
given by

Wi=Y (¢ FD)y Wy =

is a basis of X (Proposition 5).

ypn - yﬁ’nml

icm
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Then
u , 1
Wy, =Yp = Uy, = 2,
D
3=1 v n " q’(zn) "

ig a weakly Cauchy sequence. As (w,) is B-complete

1
W, =lim——pg =Ilimg
,g; P M¢(zn) it n—s00 "

But for all %

exists weakly.

80 that > Wy, = 0 contradicting the fact that (w,) is a basis of X,
i=1

Leuwa 2. Suppose that for a sequence (a,)5., of scalars

Pn
H 2 aimi” =0>0 where p, = 0<p < pys..
Dy_1+1
Pp—1
and that v, <X, = Bn (e, 15 %p,); then the sequence 2, = v,+ 3 a.m,
48 not & weakly Cauchy sequence. =1

Proof. Suppose (2,) is weakly Cauchy; then

supfie,)] = M < oo

Py
and if K is the basis constant of (z,), | D wa)| < KM for all » and [onl]
< (1+K)M. =1

Since by Proposition 4, (s,) is totally f-complete, no subsequence
Pn

of (Mamy;mn=1,2 ...) is weakly Cauchy and it follows, that since (z,)
=1

is weakly Cauchy,

Py,

limint o] # 0, limi.nf“ @ —ov, [ #0.”
N->00 N—>00 d=p,_q+1
Hence there exists %, and ¢ > 0 such that for n >k,
Pn
ol > s>, where w, = ( Gyty) — v,
=Py _1+1

Suppose now that for some % > k, and ¥ > 0 |lu,+ev,] > y whenever
n =% and ¢ is any scalar. Then by Proposition 2, there is a basis (y,)
of X with Yp, = Up and g, _, =0, for %> k; the sequence

n—1
Wy, = ypn—1+2 (yp,i'l'yp,,;—l)
i=k
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is then weakly Cauchy, since

Dol Dp—1
w, = v,+ 2 a-tm“zn—z @i %q-
Dp—1+1 =

Thus as (¥,) is totally g-complete, (w,) and hence (z,) converges weakly.

Bub fi(limz,) = &, so that limz, = 3 apwy, contradicting the fact that
To=1

P a; miH >4 for all n.

Pp-1
Hence we conclude that

hmmfmiﬂu +ev,)| = 0.
Nn—00

There exists a sequence A, — oo and ¢,, real, such that [, + 6,0, || -0

and as it is easily seen that sup|o,,] < oo, We Inay assume that lim o,, =¢
N->00

exists. Thus [lu,, +ov, [0 and hence

Pip Pr,—1
Hz;n(o—-l)—{—z 0;0; — ¢ 2 uiw¢l|->0.
= =
2, =
If ¢ =1, then lim|| 1=p,1§1+i @z = 0. Bub
p}_n
6<“ Z aiaq”.
=Pz, -1
P, Php—1
Hence ¢ # 1 and the sequence Z a;z;—¢ 2 a;m; I8 Wea.kly Cauchy

4=1

By Proposition 2, there is a basis (Z,)
Then [ft,, | > 6 and
H 2 tpw
i=1

so that (4, ) is a subsequence of type P. Hence there is a basis (s,) with
Dy,

of X with by, =

2 Ay &y

Dp—y-t+1

= a‘a: (Proposition 5). Then s, —os is a weakly Cauchy
i P, Php—1

sequence, and by applying Lemma 1 to the subsequence 024, — Oy 1
N
we obtain that
P2, Ph,—1
lim ) az;—¢ a2, =0  weakl
lin 3 a0 5 o v

and hence lim (c~1)z, =0 weakly.
n>00 n

icm
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As 0 #1 lim oy, = 0 weakly. But hmf,c(zpll ) =a, and so a, =0

00

for all n, contradicting the fact that,

P,

| 3w

Py—1+l

Leyva 3. If (2,) is a weakly Cauchy sequemce and ]Jm Jul#n) = ay,

then, 2 @, @, converges.

Proof. If the lemma is false, there exists 6 > 0 such that for any n,m
there exists N > m such that

” awi“> 8.

i=ni1

Now choose (m,);, and (p,)5, thus: let p, = 0 and suppose that
(Pudner and (m,), ., have been chosen (where % > 1). Then choose

Pr.1 1
(1) my >my_, such that | Z‘ aym;— 2 Fi(@my) ” < g

.. o 1 Pg
(1) P> ppy such that|| 3 fi(en) ]| < oy and || 3 aww][> 6
DPpt+l <~ Pp—1+1

Then the sequence

Uy —2a;w+ 2 fi#m,) 2,

_pn- 1+l

is weakly Cauchy and a contradiction iz obtained by Lemma 2.
We are now in a position to prove Theorem 4; let (2,) be a weakly
Cauchy sequence which does not converge Weakly Then if hm fe(22) = ag,

by Lemma 3 there exists zeX with z = Z’ @ T«

Then the series (z,—2) is weakly Cauchy and lim f. (2, —2) = 0.

n—+00

We then determine increasing sequences (p,)2, and (m,)2., induc-
tively. Let p, = 0 and suppose (p,),; and (m,,),; have been determined;
then choose

?

Pp—1 k—1
(i) my > my_, such that H S filem)@mi— Y | <1/28,
& &

(i) pp > pr_, such that “ Z‘ fz () ]| < LJ2RF0
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Py,
Then consider the sequence u, = 3 filey, )o;
=0y 1+1
Pn—1
” un"‘ (Z a’imi) “zmn <1/2n
i=1 )
Pr—1

and hence (u,+ Y a@;)3., is weakly Cauchy. It follows that ()2,
. i=1
is weakly Cauchy and by Lemma 1 lim #, = 0 weakly.

N->00
Therefore
Pp—1
lim ¢, = lim #,, = lim 2 o, =2
00 oo T mseo '

and (2,) is a weakly convergent sequence.

Next we apply Theorem 4, using a result due to Pelezyniski (see [B])
to obtain a characterization of all weakly sequentially complete Banach
spaces.

PRrOPOSITION 6. If X 48 a Banach space in which every closed subspace
with « basis is weakly sequentially complete, then X is wealkly sequentially
complete.

Proof. This is essentially the first half of the proof of Theorem 2
of [5].

TEBOREM 5. If X is o Banach space and every basic sequence in X is
B-complete then X is weakly sequentially complete.

Proof. By Theorem 4 and Proposition 6.
We conclude with two remarks. First it should be observed that if X
- Possesses a f-complete unconditional basis then X ig weakly sequentially
complete: for it is easily seen that the basis is in fact boundedly-complete.
Secondly it is possible for a Banach space to possess a totally S-complete
(or indeed boundedly-complete bagis) and yet fail to be weakly sequent-
fally complete. For let X be the non-reflexive space of James [2]; then X*
Dossesses a boundedly-complete bagis, but if X* ig weakly sequentially
complete, then X™ would be inseparable, contradicting the fact that X
has codimension one in X**,
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