

Bases in weakly sequentially complete Banach spaces

Ъy

N. J. KALTON* (Swansea, Wales)

Abstract. A theorem of Zippin states that if every basis of a Banach space X is boundedly-complete, then X is reflexive; we here obtain a similar characterization of weakly sequentially complete Banach spaces. A basis is called β -complete if it induces a β -perfect sequence space; the main result of this paper is that a Banach space with a basis is weakly sequentially complete if and only if every basis is β -complete

Let X be a Banach space, let (x_n) be a Schauder basis of X and let (f_n) denote the dual sequence of continuous linear functionals on X; thus for each $x \in X$

$$x = \sum_{n=0}^{\infty} f_n(x) x_n.$$

Then we say that (x_n) is shrinking if (f_n) is a basis of X^* , and that (x_n) is boundedly-complete if whenever (a_n) is a sequence of scalars such that

$$\sup_n \Big\| \sum_{i=1}^n a_i x_i \Big\| < \infty,$$

then $\sum_{i=1}^{\infty} a_i x_i$ converges.

These classical definitions lead to the following two well-known theorems.

THEOREM 1. (James [2]). X is reflexive if and only if (x_n) is shrinking and boundedly-complete.

Theorem 2. (Zippin [9]). If X has a basis then the following are equivalent:

- (i) X is reflexive.
- (ii) Every basis of X is shrinking.
- (iii) Every basis of X is boundedly-complete.

The theory of bases is related to the theory of sequence spaces

^{*} While engaged on this research, the author was in part supported by an S.R.C. Resettlement Followship.

for we may define the sequence space

$$\lambda_x = \left\{ (a_n); \sum_{n=1}^{\infty} a_n x_n \text{ converges} \right\}.$$

For a given sequence space μ we define (see Garling [1])

$$\mu^{\beta} = \left\{ (a_n); \ \sum_{n=1}^{\infty} \, a_n b_n \ \text{converges for all} \ (b_n) \, \epsilon \mu \right\},$$

$$\mu' = \left\{ (a_n); \sup_{m} \left| \sum_{n=1}^{m} a_n b_n \right| < \infty \text{ for all } (b_n) \epsilon \mu \right\}.$$

Then it may be easily seen that (x_n) is boundedly-complete if $\lambda_x = \lambda_x^{p_n}$ (for other results of a similar nature, see Ruckle [7]). One naturally asks what is obtained if one only assumes $\lambda_x = \lambda_x^{\beta\beta}$ (a weaker assumption, see [1]). This is equivalent to the following definition (see [3]):

DEFINITION 1. (x_n) is β -complete if whenever $(\sum_{i=1}^n a_i x_i)_{n=1}^{\infty}$ is a weakly Cauchy sequence then $\sum_{i=1}^{\infty} a_i x_i$ converges.

This leads to a modification of Theorem 1.

Theorem 3. ([3]). X is reflexive if and only if (x_n) is shrinking and β -complete.

In this paper we establish a result related to Zippin's Theorem 2, characterizing spaces in which every basis is β -complete. It is obvious that if X is weakly sequentially complete then any basis of X is β -complete; thus, for example, the space l^1 of absolutely convergent sequences is not reflexive but every basis of l^1 is β -complete. The main theorem of this paper will demonstrate that the property of having every basis β -complete characterizes weak sequential completeness.

The proof will depend on a refinement of a very useful lemma discovered by Zippin [9]; we shall call a sequence (y_n) semi-normalised (this terminology follows Pełczyński [6]; the term "normalised" has been used by the author for the equivalent property in a locally convex space) if $0 < \inf \|y_n\| < \sup \|y_n\| < \infty$.

PROPOSITION 1. Let (x_n) be a basis of X and suppose that (p_n) is an increasing sequence of integers with $p_0=0$ and $p_n-p_{n-1}\geqslant 1$; let $X_n=\lim(x_{p_n-1}+1,\ldots,x_{p_n})$. Let $u_n\in X_n$ and $\varphi_n\in X_n^*$ be two sequences with $\varphi_n(u_n)=1$ and $\sup_n\|u_n\|$ $\|\varphi_n\|<\infty$; then there is a basis (y_n) of X with $y_{p_n}=u_n$ and $\varphi_n(y_i)=0$ for $p_{n-1}+1\leqslant i\leqslant p_n-1$.

Proof. The proof is essentially that of Zippin. Let $Z_n=\varphi_n^{-1}(0)$ and $Y_n=\ln(x_{p_n-1+1},\ldots,x_{p_n-1})$; then by a lemma of Zippin there is a linear

 $||T_n|| \cdot ||T_n^{-1}|| \leq 9$

Then let

$$egin{array}{ll} y_i &= T_n x_i, & i = p_{n-1} \! + \! 1, \ldots, p_n \! - \! 1, \ y_{n-1} &= u_n. \end{array}$$

It is clear that (y_k) is fundamental in X and it remains to be shown that (y_k) is a basic sequence. There is a constant K > 0 (the basis constant) such that for all sequences of scalars (c_k) and r < s

$$\left\|\sum_{i=1}^r c_i x_i\right\| \leqslant K \left\|\sum_{i=1}^s c_i x_i\right\|.$$

Now let $x = \sum_{i=1}^{p_n} c_i y_i = \sum_{i=1}^{p_n} d_i x_i$ and suppose $r < p_n$. If $r = p_m$ for some m

$$\Big\| \sum_{i=1}^r c_i y_i \Big\| = \Big\| \sum_{i=1}^r d_i x_i \Big\| \leqslant K \|x\|$$

If $p_{m-1}+1\leqslant r\leqslant p_m-1$

$$\begin{split} \left\| \sum_{i=1}^{r} c_{i} y_{i} \right\| & \leqslant \left\| \sum_{i=1}^{p_{m-1}} c_{i} y_{i} \right\| + \left\| \sum_{p_{m-1}+1}^{r} c_{i} y_{i} \right\| \\ & \leqslant K \left\| x \right\| + \left\| T_{m} \right\| \left\| \sum_{p_{m-1}+1}^{r} c_{i} x_{i} \right\| \\ & \leqslant K \left\| x \right\| + K \left\| T_{m} \right\| \left\| \sum_{p_{m-1}+1}^{p_{m-1}} c_{i} x_{i} \right\| \\ & \leqslant K \left\| x \right\| + K \left\| T_{m} \right\| \cdot \left\| T_{m}^{-1} \right\| \left\| \sum_{p_{m-1}+1}^{p_{m-1}} c_{i} y_{i} \right\| \\ & \leqslant K \left\| x \right\| + 9 K \left(\left\| \sum_{p_{m-1}+1}^{p_{m}} c_{i} y_{i} \right\| + \left| c_{p_{m}} \right| \left\| u_{m} \right| \right) \right) \\ & \leqslant K \left\| x \right\| + 9 K \left(1 + \left\| \varphi_{m} \right\| \left\| u_{m} \right\| \right) \right) \sum_{p_{m-1}+1}^{p_{m}} c_{i} y_{i} \right\| \\ & \leqslant \left\| x \right\| \left\langle K + 18 K^{2} \left(1 + \left\| \varphi_{m} \right\| \left\| u_{m} \right\| \right) \right). \end{split}$$

Hence for all r

$$\Big\|\sum_{i=1}^{r}c_{i}y_{i}\Big\|\leqslant C\|x\|,$$

where $C = K + 18 K^2 (1 + \sup_{m} ||\varphi_m|| ||u_m||)$.

Thus (y_n) is a basic sequence.

Zippin's lemma in its original form states that if $u_n \neq 0$ and $u_n \in X_n$ then there is a basis (y_n) with $y_{p_n} = u_n$. This follows by choosing φ_n such that $\varphi_n(u_n) = 1$ and $\|\varphi_n\| \cdot \|u_n\| = 1$.

PROPOSITION 2. Under the same assumptions as Proposition 1, suppose $u_n \epsilon X_n$ and $v_n \epsilon X_n$ are two semi-normalised sequences. Then there is a basis (y_n) of X with $y_{p_n} = u_n$ and $y_{p_{n-1}} = v_n$ if and only if

$$\inf_{n}\inf_{c}||u_n+cv_n||=\sigma>0.$$

Proof. Suppose there is a basis (y_n) with $y_{p_{n-1}} = v_n$ and $y_p = u_n$. Then there is a constant K such that if r < s

$$\left\|\sum_{i=1}^r c_i y_i \right\| \leqslant K \left\|\sum_{i=1}^s c_i y_i \right\|$$

for all sequences (c_k) . Thus, as

$$||u_n|| \le ||u_n + cv_n|| + ||cv_n|| \le (1 + K)||u_n + cv_n||$$
 for all c

if

$$0 < \inf_{n} ||u_n|| \le (\inf_{n} \inf_{c} ||u_n + cv_n||)(1 + K)$$

so that $\sigma > 0$.

Conversely suppose $\delta > 0$. Then the linear functional ψ_n on $\lim(u_n; v_n)$ given by $\psi_n(u_n) = 1$ and $\psi_n(v_n) = 0$ satisfies

$$\|\psi_n\|\leqslant \delta^{-1} \quad \text{ for } \psi_n(au_n+bv_n) = a \text{ and, } \|au_n+bv_n\|\geqslant |a|\,\delta.$$

Extend ψ_n to a linear functional φ_n on X_n with $\|\varphi_n\| \leq \delta^{-1}$, by the Hahn-Banach Theorem. Then by Lemma 1, there is a basis (z_n) of X with $z_{p_n} = u_n$ and $\varphi_n(z_i) = 0$, $i = p_{n-1} + 1, \ldots, p_n - 1$. Clearly $v_n \in \text{lin}(z_{p_{n-1}+1}, \ldots, z_{p_{n-1}})$ and by applying Zippin's lemma in its original form there is a basis (y_n) of X with $y_{p_n-1} = v_n$ and $y_{p_n} = u_n$.

Before proceeding with the proof of the main theorem, it is useful to introduce a further concept intermediate to β -completeness and bounded-completeness.

DEFINITION 2. A basis (x_n) is said to be totally β -complete if whenever $(\sum_{i=1}^{n} a_i x_i)_{n=1}^{\infty}$ is a weakly Cauchy sequence for some sequence $\{p_n\}$ with $p_n \to \infty$, then $\sum_{i=1}^{\infty} a_i x_i$ converges.

Proposition 3. A boundedly-complete basis is totally β-complete.

Proof. If $\sum_{i=1}^{n} a x_i$ is a weakly Cauchy sequence, then

$$\sup_{n} \left\| \sum_{i=1}^{r_n} a_i x_i \right\| = M.$$

Let K be the basis constant; then

$$\sup_{n} \Big\| \sum_{i=1}^{n} a_i x_i \Big\| \leqslant KM.$$

As (x_n) is boundedly-complete, $\sum_{i=1}^{\infty} a_i x_i$ converges.

PROPOSITION 4. If X is a Banach space with a basis, and every basis of X is β -complete, then every basis of X is totally β -complete.

Proof. Let (x_n) be a basis of X and suppose that the sequence

$$\Big(\sum_{i=1}^{n_n} a_i x_i\Big)_{n=1}^{\infty}$$

is weakly Cauchy, where $p_n > p_{n-1}$ for all n. It may be assumed that an infinite number of $(a_i)_{i=1}^{\infty}$ are non-zero, and that, for each n,

That an infinite number of $(a_i)_{i=1}$ are non-zero, and that, for each n, $\sum_{p_{n-1}+1} a_i x_i \neq 0$. Then by Proposition 1, there is a basis (y_n) of X with $y_{p_n} = \sum_{p_{n-1}+1} a_i x_i$; then $(\sum_{n=1}^m y_{p_n})_{m=1}^\infty$ is weakly Cauchy and as (y_n) is β -complete, $\sum_{n=1}^\infty y_{p_n}$ exists and

$$\sum_{n=1}^{\infty} y_{n_n} = \lim_{m o \infty} \sum_{i=1}^{p_m} a_i x_i$$
 weakly.

Clearly

$$\sum_{n=1}^{\infty} y_{p_n} = \sum_{i=1}^{\infty} a_i x_i.$$

Two further ideas from [4] and [8] will be required for the main theorem. If (x_n) is a Schauder basis of X with dual sequence (f_n) then we say a subsequence (x_{p_n}) is a $type\ P$ subsequence if

$$\inf_{n} \|x_{p_n}\| \neq 0$$
 and $\sup_{n} \left\| \sum_{i=1}^{n} x_{p_i} \right\| < \infty$

and is a type P* subsequence if

$$\sup_n \|x_{p_n}\| < \infty \quad \text{ and } \quad \sup_n \Big\| \sum_{i=1}^n f_{p_i} \Big\| < \infty.$$

Then the following result is proved in [4].

PROPOSITION 5. If (x_{p_n}) is a type P subsequence of (x_n) then the sequence (y_n) given by $y_i = x_i$, $i \neq p_n$, and $y_{p_n} = \sum\limits_{i=1}^n x_{p_i}$ is a basis of X. If (x_{p_n}) is a type P^* subsequence of (x_n) then the sequence (y_n) given by $y_i = x_i$, $i \neq p_n$ and $y_{p_n} = x_{p_n} - x_{p_{n-1}}$ (where $x_{p_0} = 0$) is a basis of X.

2 - Studia Mathematica VIII a

127

126

THEOREM 4. Let X be a Banach space with a basis and suppose every basis of X is β -complete; then X is weakly sequentially complete.

Proof. Let (x_n) be a basis of X; we shall prove three lemmas under the assumption that every basis of X is β -complete.

LEMMA 1. Let (z_n) be a sequence of the form

$$z_n = \sum_{i=p_{n-1}+1}^{p_n} a_i x_i, \quad \text{where } p_0 = 0 < p_1 < p_2 \dots$$

If (z_n) is weakly Cauchy then $\lim z_n = 0$ weakly.

Proof. We may assume $z_n \neq 0$ for all n; if the lemma is false there exists $\varphi \in X^*$ with $\lim \varphi(z_n) = 1$. We further assume (discarding, if necessary, a finite number of the sequence (z_n) that $\varphi(z_n) \neq 0$ for all n. Then let $u_n = \frac{1}{m(x_n)} z_n$, and let φ_n be the restriction of φ to $X_n = \lim_{n \to \infty} (x_{p_{n-1}+1}, \dots)$ \ldots, x_{p_n}). We have

$$\inf |\varphi(z_n)| = \delta > 0$$

and as (z_n) is a weakly Cauchy sequence

$$\sup \|z_n\| = M < \infty,$$

so that

$$\sup \|u_n\| \leqslant M \, \delta^{-1} < \, \infty,$$

and hence

$$\sup_{n} \|\varphi_n\| \ \|u_n\| \leqslant M \delta^{-1} \|\varphi\|$$

Then by Proposition 1, there is a basis (y_n) of X with $y_{p_n} = u_n$ and $\varphi(y_i) = 0$ for $p_{n-1} < i < p_n$. Let (g_n) be the sequence dual to (y_n) in X^* ; in the weak*-topology of X^* ,

$$\varphi = \sum_{n=1}^{\infty} g_{p_n}$$

so that $\sup \|\sum_{i=1}^n g_{p_i}\| < \infty$.

Certainly $||y_n|| = ||u_n|| \leqslant M \delta^{-1}$.

Thus (y_{p_n}) is a subsequence of (y_n) of type P^* and the sequence (w_n) given by

$$w_i=y_i \quad (i\neq p_n), \quad w_{p_n}=y_{p_n}-y_{p_{n-1}}$$

is a basis of X (Proposition 5).

Then

$$\sum_{i=1}^{n} w_{p_i} = y_{p_n} = u_n = \frac{1}{\varphi(z_n)} z_n$$

is a weakly Cauchy sequence. As (w_n) is β -complete

$$\sum_{i=1}^{\infty} w_{p_i} = \lim_{n o \infty} rac{1}{\varphi(z_n)} \, z_n = \lim_{n o \infty} z_n \quad ext{ exists weakly.}$$

But for all k

$$f_k(\lim z_n)=0$$

so that $\sum_{i=1}^{\infty} w_{p_i} = 0$ contradicting the fact that (w_n) is a basis of X.

LEMMA 2. Suppose that for a sequence $(a_n)_{n=1}^{\infty}$ of scalars

$$\Big\| \sum_{p_{n-1}+1}^{p_n} a_i x_i \Big\| \geqslant \delta > 0 \quad ext{ where } p_0 = 0 < p_1 < p_2 \dots$$

and that $v_n \in X_n = \lim(x_{p_{n-1}+1}, \dots, x_{p_n})$; then the sequence $z_n = v_n + \sum_{i=1}^{p_{n-1}} a_i x_i$ is not a weakly Cauchy sequence.

Proof. Suppose (z_n) is weakly Cauchy; then

$$\sup ||z_n|| = M < \infty$$

and if K is the basis constant of (x_n) , $\|\sum_{i=1}^{n_n} a_i x_i\| \le KM$ for all n and $\|v_n\| \le (1+K) M$.

Since by Proposition 4, (x_n) is totally β -complete, no subsequence of $(\sum_{i=1}^{n} a_i x_i; n = 1, 2...)$ is weakly Cauchy and it follows, that since (z_n) is weakly Cauchy,

$$\liminf_{n\to\infty}\|v_n\|\neq 0,\quad \liminf_{n\to\infty}\Big\|\sum_{i=p_{n-1}+1}^{p_n}a_ix_i-v_n\Big\|\neq 0.$$

Hence there exists k_0 and $\varepsilon > 0$ such that for $n \geqslant k_0$

$$\|v_n\|\geqslant arepsilon, \quad \|u_n\|\geqslant arepsilon, \quad ext{where } u_n=ig(\sum_{i=n,\ldots,j+1}^{n}a_ix_iig)-v_n.$$

Suppose now that for some $k \geqslant k_0$ and $\gamma > 0$ $||u_n + cv_n|| \geqslant \gamma$ whenever $n \geqslant k$ and c is any scalar. Then by Proposition 2, there is a basis (y_n) of X with $y_{p_n} = u_n$ and $y_{p_{n-1}} = v_n$ for $n \ge k$; the sequence

$$w_n = y_{p_n-1} + \sum_{i=k}^{n-1} (y_{p_i} + y_{p_i-1})$$

is then weakly Cauchy, since

$$w_n = v_n + \sum_{n_{k-1}+1}^{n_{k-1}} a_i w_i = z_n - \sum_{i=1}^{n_{k-1}} a_i w_i.$$

Thus as (y_n) is totally β -complete, (w_n) and hence (z_n) converges weakly. But $f_k(\lim z_n) = a_k$ so that $\lim z_n = \sum_{k=1}^{\infty} a_k x_k$ contradicting the fact that $\left\|\sum_{n=1}^{p_n} a_i x_i\right\| \geqslant \delta$ for all n.

Hence we conclude that

$$\liminf_{n\to\infty} \|u_n + cv_n\| = 0.$$

There exists a sequence $\lambda_n \to \infty$ and c_n , real, such that $\|u_{\lambda_n} + c_n v_{\lambda_n}\| \to 0$ and as it is easily seen that $\sup_n |c_n| < \infty$, we may assume that $\lim_{n \to \infty} c_n = c$ exists. Thus $\|u_{\lambda_n} + cv_{\lambda_n}\| \to 0$ and hence

$$\left\| z_{\lambda_n}(c-1) + \sum_{i=1}^{p_{\lambda_n}} a_i x_i - c \sum_{i=1}^{p_{\lambda_n-1}} a_i x_i \right\| \to 0.$$

If c=1, then $\lim \|\sum_{i=p_1,\ldots,1+1}^{p_{2_n}}a_ix_i\|=0$. But

$$\delta \leqslant \Big\| \sum_{i=p_{\lambda_n}-1}^{p_{\lambda_n}} a_i x_i \Big\|.$$

Hence $c \neq 1$ and the sequence $\sum_{i=1}^{\nu_{\lambda_n}} a_i x_i - c \sum_{i=1}^{\nu_{\lambda_{n-1}}} a_i x_i$ is weakly Cauchy.

By Proposition 2, there is a basis (t_n) of X with $t_{p_n} = \sum_{p_{n-1}+1}^n a_i x_i$. Then $||t_{p_n}|| \ge \delta$ and

$$\left\|\sum_{i=1}^{n}t_{p_{i}}\right\|\leqslant KM$$

so that (t_{p_n}) is a subsequence of type P. Hence there is a basis (s_n) with $s_{p_n} = \sum_{i=1}^{r} a_i x_i$ (Proposition 5). Then $s_{p_{\lambda_n}} - c s_{p_{\lambda_n-1}}$ is a weakly Cauchy sequence, and by applying Lemma 1 to the subsequence $s_{p_{\lambda_2}} - c s_{p_{\lambda_2}-1}$ we obtain that

$$\lim_{n\to\infty}\sum_{i=1}^{p_{\lambda_n}}a_ix_i-c\sum_{i=1}^{p_{\lambda_n-1}}a_ix_i=0 \quad \text{ weakly }$$

and hence $\lim_{n \to \infty} (c-1)z_{p_{\lambda_n}} = 0$ weakly.

As $c \neq 1$ $\lim_{n \to \infty} z_{p_{\lambda_n}} = 0$ weakly. But $\lim_{n \to \infty} f_k(z_{p_{\lambda_n}}) = a_k$ and so $a_k = 0$ for all n, contradicting the fact that,

$$\left\|\sum_{p_{n-1}+1}^{p_n}a_ix_i\right\|\geqslant \delta.$$

Lemma 3. If (z_n) is a weakly Cauchy sequence and $\lim_{n\to\infty} f_k(z_n)=a_k,$ then $\sum\limits_{n\to\infty}^\infty a_k x_k$ converges.

Proof. If the lemma is false, there exists $\delta > 0$ such that for any n,m there exists $N \ge m$ such that

$$\Big\|\sum_{i=n+1}^N a_i x_i\Big\| \geqslant \delta.$$

Now choose $(m_n)_{n=1}^{\infty}$ and $(p_n)_{n=0}^{\infty}$ thus: let $p_0=0$ and suppose that $(p_n)_{n< k}$ and $(m_n)_{n< k}$ have been chosen (where $k \ge 1$). Then choose

$$\text{(i)} \quad m_k > m_{k-1} \ \, \text{such that} \, \, \big\| \sum_{i=1}^{p_{k-1}} a_i x_i - \sum_{i=1}^{p_{k-1}} f_i(z_{m_k}) x_i \big\| \leqslant \frac{1}{2^{k+1}},$$

$$\begin{array}{ll} \text{(ii)} & p_k > p_{k-1} \text{ such that} \big\| \sum_{p_k+1}^\infty f_i(z_{m_k}) x_i \big\| \leqslant \frac{1}{2^{k+1}} \text{ and } \big\| \sum_{p_{k-1}+1}^{p_k} a_i x_i \big\| \geqslant \delta. \end{array}$$
 Then the sequence

$$u_n = \sum_{i=1}^{n} a_i x_i + \sum_{i=n}^{n} f_i(z_{m_n}) x_i$$

is weakly Cauchy and a contradiction is obtained by Lemma 2.

We are now in a position to prove Theorem 4; let (z_n) be a weakly Cauchy sequence which does not converge weakly. Then if $\lim_{n\to\infty} f_k(z_n) = a_k$, by Lemma 3 there exists $z \in X$ with $z = \sum_{k=1}^{\infty} a_k x_k$.

Then the series (z_n-z) is weakly Cauchy and $\lim f_k(z_n-z)=0$.

We then determine increasing sequences $(p_n)_{n=0}^{\infty}$ and $(m_n)_{n=1}^{\infty}$ inductively. Let $p_0 = 0$ and suppose $(p_n)_{n < k}$ and $(m_n)_{n < k}$ have been determined; then choose

(i)
$$m_k > m_{k-1}$$
 such that $\left\| \sum_{i=1}^{n_{k-1}} f_i(z_{m_k}) x_i - \sum_{i=1}^{n_{k-1}} a_i x_i \right\| \leqslant 1/2^{k+1}$,

$$(ii) \quad p_k > p_{k-1} \ \, \text{such that} \ \, \big\| \sum_{i=p_k+1}^\infty f_i(z_{m_k}) x_i \, \big\| \leqslant 1/2^{k+1}.$$

Then consider the sequence $u_n = \sum_{i=p_{n-1}+1}^{p_n} f_i(z_{m_n}) x_i$

$$\left\| u_n + \left(\sum_{i=1}^{n-1} a_i x_i \right) - z_{m_n} \right\| \leqslant 1/2^n$$

and hence $(u_n + \sum_{i=1}^{n_{n-1}} a_i x_i)_{n=1}^{\infty}$ is weakly Cauchy. It follows that $(u_n)_{n=1}^{\infty}$ is weakly Cauchy and by Lemma 1 lim $u_n = 0$ weakly.

Therefore

$$\lim_{n\to\infty} z_n = \lim_{n\to\infty} z_{m_n} = \lim_{n\to\infty} \sum_{i=1}^{p_{n-1}} a_i x_i = z$$

and (z_n) is a weakly convergent sequence.

Next we apply Theorem 4, using a result due to Pelczyński (see [5]) to obtain a characterization of all weakly sequentially complete Banach spaces.

Proposition 6. If X is a Banach space in which every closed subspace with a basis is weakly sequentially complete, then X is weakly sequentially complete.

Proof. This is essentially the first half of the proof of Theorem 2 of [5].

THEOREM 5. If X is a Banach space and every basic sequence in X is β -complete then X is weakly sequentially complete.

Proof. By Theorem 4 and Proposition 6.

We conclude with two remarks. First it should be observed that if X possesses a β -complete unconditional basis then X is weakly sequentially complete: for it is easily seen that the basis is in fact boundedly-complete. Secondly it is possible for a Banach space to possess a totally β -complete (or indeed boundedly-complete basis) and yet fail to be weakly sequentially complete. For let X be the non-reflexive space of James [2]; then X^* possesses a boundedly-complete basis, but if X^* is weakly sequentially complete, then X^{**} would be inseparable, contradicting the fact that X has codimension one in X^{**} .

References

- D. J. H. Garling, The β and γ-duality of sequence spaces, Proc. Camb. Phil. Soc. 63 (1967), pp. 963-981.
- R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950),
 pp. 518-527.
- [3] N. J. Kalton, Schauder decompositions in locally convex spaces, Proc. Camb. Phil. Soc. 68 (1970), pp. 377-392.

[4] - Schauder bases and reflexivity, Stud. Math. 38 (1970), pp. 254-266.

[5] A. Pełczyński, A note to the paper of I. Singer, "Basic sequences and reflexivity of Banach spaces", Stud. Math. 21 (1962), pp. 371-374.

[6] - Universal bases, Stud. Math. 32 (1969), pp. 247-268.

[7] W. Ruckle, On the characterisation of sequence spaces associated with Schauder bases, Stud. Math. 28 (1967), pp. 279-288.

[8] I. Singer, Basic sequences and reflexivity of Banach spaces, Stud. Math. 21 (1962), pp. 351-369.

[9] M. Zippin, A remark on bases and reflexivity in Banach spaces, Israel J. Math. 6 (1968), pp. 74-79.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WARWICK

Received November 12, 1970

(272)