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" Unitary representations induced
from compact subgroups

by
MARC A. RIEFFEL* (Berkeley)

Abstract. It is shown, for the case in which the subgroup is compact, that the
induced representations of Mackey and Mautner can be defined in terms of certain
Hilbert module tensor products, or, alternatively, certain spaces of Hilbert—Schmidt
intertwining operators. These definitions are used to derive basic properties of induced
representations, and the connection with Blattner’s approach in terms of positive
type measures is discussed.

Let H be a compact subgroup of a locally compact group & Mackey
([131, [14], [15]) and Mautner ([18], [19]), using definitions involving cer-
tain spaces of measurable vector valued functions, showed how to induce
representations of H up to @. (Mackey, in fact, treated the more general ca-
se in which H need not be compact). In the present paper we show how
these induced representations can be defined in terms of eertain Hilbert
module tensor “products, or, alternatively, in terms of certain spaces .of
Hilbert-Schmidt intertwining operators. Such definitions enable us to give
convenient derivations of the basie properties of induced representations
along lines which follow fairly closely the theory of induced representations
as it is developed for finite groups (for which see [2]). Our approach is also
quite similar to that for induced Banach space represbntations which we
gave in [22].

The exposition is organized in the following way. In Section 1 we
consider the basic properties of the Hilbert space tensor product. The
principal result is that this tensor product provides the left adjoint for
the construction of spaces of Hilbert—Schmidt operators. We believe that
thig result is new, although the interconnection between the Hilbert
space tensor product and Hilbert-Schmidt operators is found implicitly
in a number of papers. In Section 2 the results of Section 1 are extended
to the setting of Hilbert spaces which are modules over sets, and in Section

* This research was partially supported by National Science Foundation grant
GP-12997. ’
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3 the special case in which these sets are groups or algebras is considered.
Section 4, the heart of the. paper, contains the definitions of induced
representations and the derivation of their basic properties, such as the
Frobenius reciprocity theorem for compaet groups. In the process we
also show that if H is a compact subgroup of a locally compact group @
which is not compact, then the restriction functor from unitary represen-
tations of @ to unitary representations of H has neither a left nor a right
adjoint. Section 5 is devoted to showing that the induced representations
studied in Section 4 are the same as those of Mautner and the special
case of those of Mackey in which the subgroup is compact. In the course
of doing this we show that the two types of induced representations
studied in Section 4 (analogues of the left and right adjoints of the re-
striction functor) are naturally equivalent, in analogy with the situation
for finite groups and Frobenius extensions of algebras [20]. Finally, in
Section 6 we show how our definitions of induced representations are
related to the approach to induced representations developed by Blattner
[1] using positive definite meagures. '

It would, of course, be very desirable to be able to define the induced
represenfations of Mackey in terms of some kind of tensor product in
the more general case in which the subgroup need mot be compact. But
we have had no success in trying to find such a definition. At the time
of writing this paper we suspect that some construction more general
than a tensor product will be needed in order to be able to do this.

In a subsequent paper we will use many of the results and ideas of
the present paper to discuss unitary representations of a compact Lie
group, @, which are induced directly from representations of subalgebras
of thfs complexified Lie algebra of @. This will permit, among other things
a qu.rw simple approach to a theorem of Borel and Weil giving a conereté
‘ ?ea,hza.tion for the irreducible representation of @ of given highest weight
in terms of holomorphia sections of an appropriate line bundle.

.1. I-Ii!bert space tensor products and Hilbert-Schmidt operators. In
this section we recall the definition and basic properties of the tensor
produet. of Hilbert spaces (see [4], [25] o [26] for detaily), and we show
tpa,p this tenso; product provides the left adjoint for the functor con-
sisting of forming spaces of Hilbert-Schmids operators. ’

Lit V and W be Hilbert spaces (all veetor spaces will be over the
;c;lnsrp ex num]?ers), and let V®W be their 'algebraic tensor product.
e 18 a unique inmer product on VW wh nent
tensors s ghven, oy ®@W whose value on elementary
0Ow, VO = (v, 0"y (w, w'y.
g[ljie]ao completion of ¥ @W with respect to this inner product iz called the
ert space tensor product of V and W. Throughout the rest of this

“.
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paper the symbol @ will always denote this Hilbert space tensor product.

The Hilbert space tensor product is commutative and associative,
and it is distributative with respect to direct sums. That is, for Hilbert
spaces V, W and X there are natural (unitary) isomorphisms

VW~ WQV,

TR(WeX)x(VeW)®X,
and )
Te(WaX) = (VeW)a(VeX).

Furthermore, if {¢;} and {¢;) are orthonormal bases for ¥V and W res-
pectively, then {¢®¢;} is an orthonormal basis for Ve@W.
 Finally, we recall that if V, V', W, and W’ are Hilbert spaces, and
it f: V>V’ g: W— W’ are bounded linear operators, then there is
a unique bounded linear operator.

feg: VeV - WeW’
whose value on’ elementary tensors is given by
(fog)(wer) = (fo)@(gv"). -

Furthermore, [|f®gll = |fllligl, (f®g)* =f*®g* and, if one also has
bounded operators f: V'— V", g': W' — W", then

(feg)(fey = (FHelyy.

Most of the various tensor products which have been defined in the
mathematical literature satisfy a universal property with respect to
appropriate bilinear maps, and also provide the left adjoint of an appro-
priate Hom functor. This is true in particular of the Hilbert space tensor
product, and we now proceed to indicate the way in which this is the
case. Special cases of the properties which we now describe are certainly
implicit in a number of works involving the Hilbert space tensor product
beginning with the work of Murray and von Neumann in which this tensor
product was first defined (page 17 of [21]), but we have not seen these
properties stated explicitly before. )

The properties which we describe are closely related to the theory of
Hilbert-Schmidt operators (for the basic properties of which we refer
the reader to [6]). For this reason we establish:

Norarrow. 1.1. If V and W are Hilbert spaces, then Hs(V, W) will
denote the Hilbert space of all Hilbert—Schmidt operators from ¥ to W,
with the Hilbert-Schmidt norm, which we will denote by || {|.-

DEFINITION. 1.2. Let ¥V, W and X be Hilbert spaces. A continuous
bilinear map, b, from V x W into X will be said to be a Hilbert-Schmids
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bilinear map if there exist orthonormal bases {¢;} and {¢} for V and W
respectively such that

[bls = ( 3 ooz, eile) "< oo
i T=1
We will let Bhs(V, W; X) denote the space of Hilbert-Schmidt bilinear
maps from ¥ X W into X, with the indicated norm.

It will be clear from the proof of the next theorem that [Ib]l, does not
depend on the choice of bases, and that Bhs(V, W; X) is itself a Hilbert
space. This next theorem is the statement of the universal property of
the Hilbert space tensor product with respect to bilinear maps.

THEOR.EB.I. 1.3. Let V, W and X be Hilbert spaces, and let d denote the
bounded bilinear map of VXW into VQW defined by a(v, w) = v@w.

Th.en th.e map f—fod defined for feHs(VQW, X) establishes o natural
unstary isomorphism

Bhs(V, W; X) = He(VQW, X).

Proof. If feHs(VQ@W,X), then it is easil ifi
agily verified that f
Bhs(V, W; X), and that [|fod|l, = ||f]],. fods
Conversely, let beBhs(V, W; X) be gi ;
given, and let {e,} and
orthonormal bases for ¥V and W respectively s7uch that “ e} be

2 e i< .
4, J=1
Then we can define an operator, f, fr i
, » Jp, from V@W into X by defining its
values on the elements of the orthonormal basis {6:@¢6;} for VW t% be

foles® ¢) = ble,, e).

E}Einbilfsozas;y ve;-@ed that f{,eHs(‘V®W, X), that [fyll. = bl and
Heis »od. From his ob.ser'vamoJ.J, together with the basic facts about
ert-Sehmidt operators, it is easily seen that the definition of f, does
not depend on the choice of bages, and neither does [1B]]a- ’
giVZnVebren;ark that thg canonica.l. bilinear map of VXW into VW
per Wyi S( 1, an.) ‘:v(®1w is '{wot a Hilbert-Schmidt bilinear map if either
ey of o 911;11 ¢ dimensional. Because of this, many proofs from the
oy o dgebraic .tensor products do mot carry over directly to the
Dresent sefting. This is true, for example, of the usual proof of the unique-

ness of tensor products. Nevertheless it is still true that abstract

Hilbert space tensor Products (for their definition see Definition 2.3)

are unique (up to unitary equivalence). This will be thown in the next

section (Proposition 2.5) i
of Hilbert sodulos ) in the more general context of tensor products

* © ’
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We will now use the universal property of the Hilbert space tensor
product with respect to Hilbert—Schmidt bilinear maps to prove the
important adjointness relation satistied by this tensor product. The
appropriate setting for the adjointness relation is the category of Hilbert
spaces in which the morphisms are taken to be the Hilbert—Sehmidt
operators. We remark that, strictly speaking, this category is not a cat-
egory, since the identity map on an infinite dimensional Hilbert space
is not a Hilbert-Schmidt operator. This fact will have the effect that
again many proofs from the theory of algebraic tensor products can not
be carried over to the present setting. However, we feel that we are quite
justified in considering the collection of Hilbert spaces with Hilbert—
Sehmidt morphisms to be a category becanse of the fact that in this
setting the Hilbert space tensor product does provide the left adjoint
for the functor Hs(X, -). We remark further that since Hs(V, W) is again,
a Hilbert space, this category should be considered to be an autonomous
category (see [11]). i

THEOREM 1.4. Let V, W and X be Hilbert spaces. Then
Hs (X @V, W) = Hs(V, Hs(X, W))

in whick the isomorphism: consists of assigning to any f in Hs(XQV, W)
the element f' of Hs(V, Hs(X, W)} defined by f'(v)(z) = fle@wv). This
isomorphism is unstary and natural.
Proof. In view of THEOREM 1.3 it suffices to show that there is a natural
isomorphism
Bhs (X, V; W) = Hs(V, Hs(X, W)).

But it/is easily verified that such an isomorphism is given by b - g, for
any beBhs(X, V; W) where g, is defined by

y,,(?))‘(m) =b(z,v), xeX,vel.

Tor any Hilbert spaces V and W the spaces V®W and Hs(V, W)
will have the same dimension, and so will be isomorphic. But there is
in general no natural isomorphism between them. However, if Vis I*(B)
for some measure §pace B (we will suppress mention of the measure in-
volved), then one has the following result, which is certainly well known
although we have not found a good reference for it (part of it can be
found in Theorem 3.1 of [7]). '

THEOREM 1.5. Let B be a positive measure space and let W be a Hilbert
space. Let I*(B, W) denote the Hilbert space of W-valued Bochner square-
integrable functions on E. Then there are natural unitary isomorphisms

.

L2(E) @W = IL¥B, W) = Hs(L*(B), W).
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Under the first of these isomorphisms an elqmmtqry tensor f@w corresponds
to. the fumction ¢ — f(e)w, whereas under the second the operator, Ty, which
corresponds to Fe<L*(B, W) is defined by

Tp(f) = [f(e)F(e)de.
B

Proof. The first isomorphism is obtained by first lifting to the alge-
braic tensor product, LI*(B)®@W, the bilinear map from I*(E) X W into
I*(B, W) which carries the pair (f,w) to the funetion ¢— f(e)w. This
bilinear map is not a Hilbert—Sechmidt bilinear map. But by ‘using the
Gram-Schmidt process to ensure that the elements of W which a,ppea,r
in any finite sum of elementary tensors are orthogonal, one sees easily
that this lifted map is isometric on the algebraic tensor product, and so
extends to an isometry of the Hilbert tensor product, L*(F)®W, into
L*(B, W). The fact that this isometry is surjective follows from the fact
that the simple functions in I*(E, W) (which are, of course, dense in
I’ (E, W)) are easily seen to be the images under this isometry of finite
sums of elementary tensors. ‘

To prove the second assertion we state a lemma which is the basis
for Mackey’s definition of the tensor product of Hilbert spaces (see the
comments immediately following Theorem. 5.1 of [15]). This lemma does
not seem to be a consequence of the universal property of the Hilbert
tensor product. ‘

LEMMA 1.6. Let V and W be Hilbert spaces. Then there is o matural
unitary isomorphism

VW ~ Hs(V*, W)

(;v‘hevte 7* derfotes the dual of V, which we do not identify with V). Under
this womorpm.sm the operator, T,g,,, which corresponds to an elementary
tensoty v @w, is defined by T,g,, (v*) = (v, v*>uw. ‘ ‘
qudProof. _It 1:s easily seen. that every operator of finite rank is the image
by ter the mdl.ca.ttlad_mappmg of a finite sum of elementary tensors, and
toa tlfte mapping s 1som§tric on this dense set of tensors so that it extends
a‘rea.ﬁ ;{;Zﬂetry def;x}lled on all of V. @W. But the operators of finite rank
amo - gL . . N " .
g ng the Hilbert Schmldtloperators, and so the isometry is
We conclude the proof of Theorem 1 ]
.5. From Lemma 1.6 it foll
@ \ & a 1.6 it follows
at I7(B) @W ~ Hs((I*(B)), W). But there is a natural linear isomor-

phism of I*(H) onto (I*(E)* which assions b i
functional &, defined 1(337( ! o1 fiems o ek JAAE) the fineay

Mo = [ a@f()de,  germ)

icm'

»
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(with no complex conjugate sign). What is being used here is the fact
that the complex vector space L*(H) has a canonical real form, namely
the space of real-valued functions which it contains. Thus L*(B)@W
~ Hs(I*(B), W) as desired. There is no difficulty in following the iso-
morphisms in this proof to verify that the second isomorphism of The-
orem 1.5 has the form indicated in the statement of the theorem.

2. Hilbert module tensor products. In this section we define what
we will mean by the tensor product of Hilbert spaces which in addition
are modules, and we derive the basic properties of this tensor product.
The exposition. is very similar to that which we gave for the tensor product
of Banach modules in [22], the most essential difference being that,
ingtead of using the projective tensor produect as was done in [22], we now
use the Hilbert space tensor product which was discussed in the previous
section. As a consequence, the proofs of some of the results of this section
differ from the proofs of the corresponding results in [22]. As was the
case in [16] and [22], we find it convenient to consider the general case
of modules over an arbitrary set.

DEFINITION. 2.1. Let 8 be a set. By a Hilbert S-modile we mean a Hil-
bert space, V, together with an assignment to every .element of 8 of

_a bounded linear operator on V. For seS, vV, we will denote the action

of s on v by sv or vs. If V and W are Hilbert S-modules, then Homg(V, W)
will denote the collection of bounded linear operators, f, from ¥V to W
which are §-module homomorphisms, that is, for which f(sv) = sf(v) for
all se§ and v V. Furthermore, Hsg(V, W) will denote the closed subspace

- of Hs(V, W) consisting of the S-module homomeorphisms.

‘We remark that if 8 is a group then HSS(V, W) is the space of strong
intertwining operators yhich Mackey describes on page 118 of [15].

DEFINITION. 2.2. Let V and W be Hilbert S-modules. A bilinear map,
b, from V x W into a Hilbert space X is said to be S8-balanced if b (sv, w)
= b (v, sw) for all seS, veV, weW. We will let Bhsg(V, W; X) denote
the closed subspace of Bhs(V, W; X) consisting of the S-balanced Hilbert—
Schmidt bilinear maps from VX W into X.

DEFINITION. 2.3. Let ¥ and W be Hilbert S-motiules. Then a Hilbert
space tensor product over S of V and W is a pair, (U, &), consisting of
a Hilbert space, U, and a bounded S-balanced bilinear map, d, of VX'
into U such that for any Hilbert space X the map frfod defined for
every feHs(U, X) establishes a unitary isomorphism between Hs(U, X)
and Bhsg(V, W; X).

We show first that such tensor products always exist.

THEOREM. 2.4. Let V and W be Hilbert S-modules, and let V @gW
be the quotient Hilbert space (VQW)/K, where K is the (closed) subspace
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of VW which is spanned by all elements of the form sv @ w — v ® sw
seS, veV, weW. Then V @gW (with the obvious bilinear map of V.X W int(;
V @sW) is a Hilbert space tensor product over S of V and W. :

The proof of this theorem, nsing Theorem 1.3, is straightforward
(and very similar to the proof of Theorem 2.3 of [22]) and so we will not
include the proof here.

We remark that a somewhat similar construetion of a tensor product
has been given by Grove [8] for the case of II”‘-aIgebrfw, the 1)-rineipm]
difference being that he requires K to be a two-sided ideal ‘raA:'hof' 1'.hf1?ﬁ
simply a subspace. S

For veV and w<W we will denote the image in ¥V ®yW of the element
v@w of VW again by v ® w. Then the S-balanced bounded bih‘ne%ur
map from VX W into VQ®¢W given by (v, w) — v ® w need not be a Hil-
bert-Schmidt bilinear map. Because of this, many probfs from the th 00]
of algebraic tensor products do mnot work in the present sefting. 'Thii

is true, for example, of the nsual proof of the uniqueness of tensor products.

However, we can still prove this uniqueness b iffer C
y a different method whi
takes advantage of the reflexivity of Hilbert spaces. i
. m’_(l;‘dﬂflsz;a.dZ;lE\.“fftgb U, dz) and (U',d') are two tensor products over § of
- nd: W en there is a unitary transformation '
S modules V. and J; 4 Y mmfm mation, J, from U onio
denP:o%f. In Definiltion 2.3 }et X = O (tho complex number field) and
« ]Z[ e Uy I and I' the unitary transformations fr» fod and = fod’
I s,(. » 0) Aa,nd Hs(U’, C) respectively onto ‘BhsS(V, W; C). Then
‘ oI(Ils1 aI 1)131tary transformation of (U’)* (the dual of IU’) onto U*. Let
= (I""I')", so that J maps U into U’ (because Hi - .
J : int, Hilbert spaces are
rfeﬂex;ve). We/ show that J is the desired isomorphism. Now J 1Ps unitary
since I and I' are. Thus all that needs to be shown is that @' = Jo d. To

show this it suffices to show that
(o) (o xw), By = (@' (v xw), h'

f ’ 12 ) y X
or every h'eU"™, veV and weW. Now the left hand side is equal to
(*) ((I’l)*(d(?; Xw))y I' (W) = (d(v X w), I (Wod'yy.

But fro _— ; .
W: hil;::t} -tlh((z d;ﬁmmon of I it iy clear that for any beBhsg(V, Wi ()
o e ) .(v X)) = b(v Xw). From this fact we Seo that the right
Insn le of () is equal to (d' (v Xw), "> ag desired e
L | v X red.
o ¥ ew o‘f this result we will from now on denoto the Hilbert tengor
product of Hilbert S-modules V and W by g B

OOROLLAR 2.6 THE ¢ ) v
Y. 0. ] MMUTATLVITY ) SOR ROD
( (Y OF 1UE TENSOR PRODU ‘)-.

There is a natural unilary 4
. nary isomorphism o W on T
ourres v @ wto w @ v for all veV (mzt)i weW YV &W onto W@V which

* © '
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The Hilbert module tensor product behaves properly with respect
to intertwining operators. In view of the important role played up to
this point by Hilbert—Schmidt operators it might seem that attention
should be restricted to Hilbert-Schmidt intertwining operators, as will
be necessary in several important places later. However, in the present
sitpation it is crueial not to make such a restriction. The reason for this
is that we have never required the operators by which a set S acts on
o Hilbert S-module V to be Hilbert—Schmidt operators. Thus it will
be mnecessary to be able to consider arbitrary (bounded) intertwining
operators in order to be able to conclude later that the tensor product
of a Hilbert nrodule with a Hilbert bimodule is again a Hilbert module.

ProposITION. 2.7. If V, V', W, and W' are Hilbert S-modules, and
if feHomg(V, V') and geHomg (W, W'y then there is a unique operdator,
f®g, from VW to V' QW' such that

fe®gnrew) =f) e gw)
for all veV and weW. Furthermore I @ gl < Ifll lgll-

Proof. The usual proof from the theory of algebraic tensor products
does not work in this context because the bilinear map (v, w) fW®gw)

'need not be a Hilbert—Schmidt map. Instead we make use of the well-

known. fact, mentioned near the beginning of the previous section, that
the proposition is true for ordinary Hilbert space tensor products (that
is with § empty), so that f ® g, viewed as a map from VQW to V' W',
is ‘well defined. Tf this f ® g is then composed with the projection of V' W’
onto V' @sW', it is easily verified that this composed map contains K-
(of Theorem 2.4) in its kernel, and so lifts to the desired map of V @sW
into V' @gW'. .

COROLLARY. 2.8. If in addition to the hypotheses of PROPOSITION 2.7
we have S-modules V' and W', and if f eHomg(V’, V") and g' eHomg(W',
W', then

(Fegfeqn =FNely.

The Hilbert module tensor product, of course, again provides the
left adjoint for an appropriate Hom functor. The statement of this adjo-
intness relation in its most general form involves bimodules.

DERINITION. 2.9. Let 8 and T be sets. Then by a Hilbert S-T-bimodule
we mean a Hilbert space Z which is simultaneously a Hilbert S-module
and a Hilbert T-module such that the actions of § and T on Z commute,
that is, s (t(2) = t(s(2)) for all se8, teT and zeZ. ‘

It is important to note that if Z is a Hilbert S-T-bimodule and if V
is a Hilbert Z-module, then both Hsy(Z, V) and Z ®,V become Hilbert
S-modules, when the action of 8 is defined by

(s) (&) = f(s2), SESZfEHST(_Z, V), 2eZ
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and
sE®v) = (s2) @0, sef, el vV,
respectively. (Proposition 2.7 is needed for the verification of this fact
for the case of Z ®,V). A similar statement holds with the roles of Z and
V reversed.
We now state the basic adjointness relation for the Hilbert module
tensor product. ’

THEOREM. 2,10. Let 8 and T be sets, and let X be o Iilbert 8-module,

Z be a Hilbert 8-T-bimodule, and Y be o Hilbert T-module. Then
Hsp(Z @ X, ¥) o2 Hag(X, Hep(Z, Y)),

where the isomorphism consists of assigning to any f in Hs,p(Z @sX, X)
the element f' of HsgX, Hsp(Z, T)) defined by (f («))(2) = f(z ® @), for
all zeX, zeZ. This isomorphism 18 unitary and natural.

The proof of this theorem uging the universal property of the Hilbert
module tensor product iz straightforward (and very similar to the proof
of Theorem 2.12 of [22]) and so we will not include a proof here-

The Hilbert module tensor product satisfies the wusual associativity
law for tensor products. However, once again the usual proof from the

“theory of algebraic tensor products does not work in the present setting.
Instead we give a proof which uses the reflexivity of Hilbert spaces (as
did the proof of Theorem 2.5) and which also uses the adjointness relation
stated just above.

TeroREM. 2.11. Let 8 and T be sels, and let X be a Hilbert S-module,
Z be a Hilbert S-T-bimodule, and Y be o Hilbert T-module. Then .

X ®5(Z@rY) = (X ®sZ) @r¥,

where the isomorphisin carries a tensor of the form o ® (2 ® y) to the tensor
(x ®2) ®y. This isomorphism is wnitary and natural,

Proof. For any Hilbert space W we have
Hs (X ®4(Z @7 Y), W) = Hsy(Z @, Y, Hs (X, W)
. = Hyy(Y, Hyg(Z, Ha(X, W),
Hs((X ®¢%) @,.Y, W) o Hsy( ¥, Hy(X®gq Z, W)
= Hey (¥, Hag(2, Hs (X, w)))-

Letting W ‘pe the (.mmplex numliers, it follows that the duals of the two
ypaces cons1.d§red' In the statement of the theorem are isomorphic, and
80 by reflexivity the spaces themselves are isomorphie. It is not difficult

o verify that the isomorphism acts on elementary tensors as stated in
the theorem. ‘

* ©
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Ag a final basic property of the tensor product of Hilbert modules
we show that it commutes with Hilbert space direct sums. We recall
that if {V,} is a family of Hilbert spaces, then the direct sum of this family,
denoted by @V;, is defined to be the Hilbert space of all collections
{v;} such that v;¢V, for each 4 and D llv|2 < oo. There are obvious iso-
metric. injections of the V, into this direct sum, but the direct sum does
not satisfy the usual universal property for direct sums (as deseribed
for example on page 31 of [10], where direct sums are called coproducts)
if there is an, infinite number of summands. It is clear that if all the V; are
modules over a given set 8, then @V, becomes an S-module under the
evident coordinate-wise action provided that the operator norms of each
element of § viewed as an operator on the different V, are uniformly
bounded (for example if all these operators are unitary). With this assump-
tion in force we have:

THEOREM. 2.12. Let {V.;} be a family of S-modules with the action of
each element of 8 uniformly bounded on the V;, and let Z be an S-T-bimodule.
Then there are natural unitary T-module isomorphisms

ZRs(@®V,) == D(ZRsVs), Hsg(®V:,Z) =2 @Hsy(V,, Z),

and
Hss(Z, @V,) == ®Hsg(Z, Vo).

Proof. Since the Hilbert space direct sum does not s&iﬁjsfy the usual
universal property for direct sums, the usual proof from the purely algebraic
setting can not be used in the present setting. We begin by indicating
the proof of the second isomorphism. The proof of the third isomorphism
i quite similar and so we will omit it. If 7' is an element of Hsy(®V;, Z),
then its composition, 7;, with the natural injection of V; into @V is
easily seen to be an element of Hsg(V;, Z), and it easily verified that
the map T > {T;} yields the desired isomorphism. :

We now turn to the proof of the first isomorphism. We will show that
@ (Z ®V,) satisfies the universal property of the tensor product Z& BV.).
The isomorphism of these two spaces will then follow from the unique-
ness of the tensor product (Theorem 2.5), and it is then easy to verify
that the isomorphism respects the action of 7. But let ¥ be any Hilbert
space. Then, by applying the adjointness velation (though disregarding
the action of T) together with the second isomorphism whose proof we
have indicated immediately above, we obtain

Hs(D(Z®sVs), ¥) = @H(Z®sV, ¥)
= @HSS(VU Hs(Z, Y)) :":’:HSS(("BVM Hs(Z, Y))
= H3(Z ®s(@V,), ¥) = Bhsg(Z, ®V;; ¥)

and so the desired universal property is established.
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3. Hilbert modules over groups and algebras. We Dbegin this section
with a brief summary of some of the notation which we will uge. Thig
notation is the same as that used in [22], to which we refer the reader
if he feels the need for a more complete explanation.

Let 4 be a Banach algebra. By a left Hilbert A-module we mean. a Hil-
bert space V which is a left module over 4 in the usual algebraic sense,
and for which there is a constant, k, such that ||jav|| < k|| |jv] for all aed,
veV. We will say that V is an essential A-module if in addition 4V ig
dense in V. If 4 is a Banach algebra with involution, then we will say
that an essential A-module V is a unitary A-module if the corresponding
representation  of A is a *-representation. Similar definitions apply for
right Hilbert A-modules.

If @ is a locally compact group, then M (@) will denote the measure
algebra of &, and L(@) will denote the group algebra of @, usually viewed

a8 a two-sided ideal in M(G). By a left (right) Hilbert G-module we will -

mean a Hilbert space 7 together with a strongly continuous uniformly
bounded representation (anti-representation) of G on V. If, in addition,
the action of @ on V is by unitary operators, then we will call ¥ a unitary
G-module. It is well-known that the category of Hilbert G-modules with
continuous (not necessarily Hilbert-Schmidt) module homomorphiymg is
isomorphic in the evident way to the category of essential Hilbert L()-
modules, and that the category of unitary G-modules is isomorphic to
the category of essential unitary L(@)-modules.

The definitions of Hilbert bimodules over Banach algebras or locally
compact groups are analogous to the definitions of Hilbert modules given
above.

Let 4 be a Banach algebra and S be a set. If ¥ is an S-module and Z
is an A-8-bimodule which as an A-module iz a left A-module, then it is
easily seen that with the actions defined just after Definition 2.9 Z ®sV
becomes a left A-module while Hsg(Z, V) hecomes a right .4-module.
Similar statements hold if Z is a right A-module, or if the roles of Z and
V are reversed, or if we replace 4 by a group.

PROPOSITION. 3.1. Let A be a Banach algebra with bounded approwimate
tdentity, and let S be a set. Let Z be a Hilbert A-8-bimodule, and let V be
o Hilbert S-module. If Z is essential as am A-module, then so is Z @4V,

The proof is entirely analogous to the proof of Theorem 3.9 of [22]
and so it will be omitted.
. On the other hand, in sharp contrast to the situation for Flom which
was illustrated by Examples 3.12 and 3.13 of [22], we have:

PROPOSITION. 3.2. Let A be o Banach algebra with bounded ap;pwow%?mate
identity, and let S be a set. Let 7 be a Hilbert A-8-bimodule, and let V be
o Hilbert S-module. If Z is essential as an A-module, then so is Hsy(Z, V)

° © .
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& Proof. It suffices to show that Hs(Z, V) (disvegarding 8) iz an essen-

© tial A-module. For if this is shown, then it follows by a straightforward

argument (which can be found in the proof of Proposition 3.4 of [22])
that 4;f cofiverges to f for any bounded approximate identity {i;} for A
and any f in Hs(Z, V). Since ¢;f is in Hsg(Z, V) if f is in Hsg (Z, V), it
follows that Hsg(Z, V) itself is essential.

Now every element of Hs(Z, V) can be approximated in Hs (Z, V) by
operators of finite rank, and so it suffices to consider only such operators.
But if f is an operator of finite rank, then there exist a finite number of
orthonormal veetors, vy ,...,,, of V and elements, #,,...,4,, of Z*
(the dual of Z) such that

F@) =D (& @)
for every zeZ. Then for any aed we have
(@) (@) = Y, E(aa)) v, = D) (a&) (2)0;,

where ag; is defined by the dual action of A on Z*. Furthermore, it is
easily verified that

(laf —fll)* = D, llag; — &2,

But by Proposition 8.7 of [22] the dual of an essential module which is
reflexive as & Banach space is again an essential module. Thus we can
c¢hooge an element, a, of an approximate identity for A such that laz; —%|
is afbitrarily small simultaneously for all %, and hence such that |jaf —fl,
is%Arbitrarily small.

We remark that if Z is in fact unitary as an A-module, then a much
simpler proof of the above proposition can be given by using: '

ProposiTioN. 8.3. Let A be a Banach algebra with involution, and let
8 be a set. Let Z be o Hilbert A-8-bimodule, and lot V be a Hilbert S-module.
If Z is unitary as an_A-module, then so are Z ®sV and Hsg(Z, V).

We omit the straightforward proof.

PROPOSITION. 3.4. Let @ be a locally compact group and let 8 be a set.
Let Z be o Hilbert G-S-bimodule and let V be Hilbert 8-module. Then
Z®sV and Hsg(Z, V) are both Hilbert G-modules (that 4s, the obwious action
of @ on these spaces s sirongly continuous). If Z is unitary as a G-module,
then so are Z @gV and Hsy(Z, V).

Proof. Since 7 is a @-module it is an M (@)-module which iy essential
a8 an L(G)-module. Thus Z®yV and Hsg(Z, V) are essential ag L(G)-
modules, and so the action of @ on each of them is strongly continuous.
The statement about wnitary modules is easily verified.

" In conclusion, we state the analogue of Theorem 3.14 of [22]. We
omit the proof since it ig virtually the same as the proof of that theorem.

4 — Studia Mathematica XLIT 9
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THEOREM. 3.5. Let V and W be Hilbert G-modules, so that they are also
Hilbert L(@)-modules and M (G)-modules. Then

VesW=V ®L(G)W =V ®M(G)W7

the isomorphisms being natural and unitary.

Because of this theorem we will not distingnish between these three
tensor products in the sequal, and we will denote ail three by ¥V ®,W
when we find it convenient to do so.

4. Induced representations. Throughout this section G will denote
& locally compact group and H will denote a (usually compact) subgroup
of &. Following the notation of [22] we will let x and § denote left Haar
measures on & and H respectively. Let I*(G) denote the usual Hilbert
space of complex-valued square-integrable functions on @ with respect
to u, viewed as a right-H-unitary-left-G-bimodule under the actions

@) =Ff=Y), @y @, fel? (&
and

)W) =F(ys™),  se<H, fl} (@), y<G.

We remark that if H is compact, then the modular function of G restricted
to H has constant value 1, so that I*(@) is also unitary as an H-module.
We will let f,Z(G) denote the same Hilbert space as L*(@), but viewed
‘a8 @ left-H-unitary-right-G-bimodule under the actions

(f)(@) =f(2y), ©,yeq, fI(@)
and

() @) =f(ys), seH, fel? (@), y G-

(As discussed in the second section of [24], I (@) can be considered to be
the dual of I*(G) with the dual action.) Without further comment we will
also consider I*(@) and I*() to be the corresponding L(@)-L (H)-bimod-
ules.

We are now in a position to define induced representations. The
definitions which we give are quite similar to those usually given for finite
groups, and also to those which we gave in [22]. The principal difference
is that by using I*(6) instead of the group algebra of ¢ and by using
the Hilbert tensor product instead of the projective tensor product we
ensure that the induced representions which are obtained are unitary
representations, and not just Banach representations as was the cage
in [22]. :

DEFINITION. 4.1. Let V be a left Hilbert H-module. The unitary left
G-modules #

YV = @RV

icm°®
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“and

V® = Hsg(L2(@), V)

will be called respectively the adjoint and coadjoint unitary modules
obtained by inducing V from H to G- ‘

We remark that ¥ and V¢ are unitary even if V is not, as can be
seen from Proposition 3.4. Our terminology is motivated by that for
adjoint functors which is given in [17]. We will show presently that,
at least when @ is compact, “V and V¢ are in fact the adjoint and coadjoint
of the obvious restriction functor from the category of unitary G-mod-
ules to the category of Hilbert H-modules.

We also remark that Diendonné, on page 165 of [3], has given a defi-
nition of induced representations which is somewhat similar to that which
we have given above for V¥ He assumes that G is compact and consider
only finite dimensional representations, V, of H (and so does not need
to introduce Hilbert-Schmidt operators) and defines the corresponding
induced representation to be HomH(V, LQ(G)) (which is, of courge, a con-
travariant functor contrary to our definition). But he does not seem to
take full advantage of this definition in deriving the basic properties
of induced representations.

In the rest of this section we will derive the basic properties of the
induced representations defined in Definition 4.1. In the following section,
we will then show the relation between these induced representations
and those which were defined earlier by Mackey ([137], [14], [15]) and
Mautner ([18], [19]).

The principal fact which is needed for the derivation of the bagic prop-
erties of the induced representations defined above states essentially
that if H = G (compact) then ¥V = ¥V = V% This is the analogue of
Theorems 4.4 and 4.5 of [22], but it fails to be true when @ is not compact
(Proposition 4.7). (The failure of this theorem when & is not compact
i3 closely related to the fact that the Frobenius reciprocity theorem in
its ordinary (non-infinitesimal) form does not hold when @ is not compact.)
This difference in comparison to the results of [22] is related to the fact
that, in the present context, bounded approximate identities are not
available to the extent that they were is Theorems 4.4 and 4.5 of [22].
As a consequence, the method of proof must be quite different from that
in [22], and generalization of the present results to Hilbert modules over
general algebras becomes fairly cumbersome. We will further discuss
this last point immediately after we have stated the theorem. In prepara-
tion for the statement of the theorem we mention that if Z is a G-module
and if feI*(@), then, since & is now compact, feL(@), so that fz is well-
defined for zeZ. Also, we define f by f (#) = f(#™?) for zG-

THEOREM. 4.2. Let G be a compact group (with normalized Haar MEASUTe),
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let 8 be a sei, and let Z be a Hilbert S-G-bimodule. If Z as a G-module is
a unitary left G-module, and if L*(G) and I (G) are viewed as G-G-bimodules,
then
L@ ®Z =Z and Hsg(IMG), Z) = 7,

as S-G-bimodules, the isomorphisms being unitary and natural. Under the
first of these isomorphisms am elementary iensor f® 2 is identified with
feeZ, whereas under the second isomorphism the operator T, which corresponds
to zeZ is defined by T,(f) =fs. If Z as o G-module is a wnitary right
G-module, then, as S-G-bimodules

ZQ@eI*@) =Z and Hsg(I*(@),2) =7,

with properties analogous to those just stated for left modules.

We remark that because ¢ is compact, L*(G) is an H*-algebra [12].
But the analogue of the above theorem is not true for modules over arbi-
trary H*-algebras, or even over ones in which all the minimal two-sided
ideals are finite dimensional, although this latter condition ig necessary.
The additional condition which must be satisfied by an H*-algebra before
the analogue of the above theorem will hold is that the norm of each mini-
mal central idempotent in the algebra should be the square-root of the
dimension of the minimal two-sided ideal which it generates (equivalently,
the formal dimension of each irreducible representation of the H*-algebra,
as defined in Definition 6.2 of [23], should be equal to its actual dimen-
sion, or, the H*-algebra should be “normal” as defined on page 84 of

[7]). This fact will appear only implicitly in the proof which we give .

below for Theorem 4.2, because we prefer to give a proof for the particular
case of groups which is comparatively elementary in the senge that it
does not depend on the structure theory of H*-algebras or of I?(@). But
the above considerations certainly indicate that one can mnot expect to
obtain a proof which iy as elementary as the proofs of Theorems 4.4 and
4.5 of [22].

The main step in the proof of Theorem 4.2 is:

Lemma. 4.3. If as a G-module Z is a unitary left G-module, then
Hsy(L}(6), Z) = Z,

the isomorphism being unitary and natural. Under this isomorphism the
operator, T, which corresponds to zeZ is defined by T,(f) = fe.

Proof. For any zZ the operator T, is defined by

T(f) = [of@oxdu(@), fI*(@).

icm
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Since @ is compact and » —> a2 is continuous, it is-clear that > a2 is
a function in I*(@, Z), and so T, is in Hs(L*(@), Z) according to Theorem
1.5. Futhermore, also according to this theorem,

T =] Guwnwu(m)

Since Z is assumed to be a unitary G-module and the Haar measure u

on G is assumed to be normalized, we obtain the fact that [|Tfls = [l2]-

(This is the only place where we use the assumption that Z is unitary.)
Now T, is an L()-module homomorphism since

T.(g*f) = (g*f)z = g(fe) = g(T.f)

for any geL(G) and feI*(@), and so T,<Hsy(I*(6), Z). Furthermore it
is easily verified that the map 2z T, from Z to Hsg(L* (@), Z) is an §-G-
module homomorphism, that it is injective (by using the facts that Z
is an essential L(@)-module and that I*(@) is dense in L(@)), and that
it is natural. Thus what needs to be shown is that this map is surjective.
Let T'<Hsy(L* (@), Z) be given. We wish to find z<Z such that T = T}. .
Now according to Theorem 1.5 there is an Fel?(@, Z) such that for all
fel*(@)

T(f) = [ J@) P (@) du(@).

The fact that T is a G-module homomorphism means that

[J@ ) Fla)ap(@) =y [ @) F(@)du(@)
or
Jof@ Plym)au@) = [, f@)y(F@)du)
or all feI*(@) and y<G. It follows that
F(yz) =y(F(@) ae o
for each yed. Now it is easily verified that F(yz)—y(F(z)) is a jointly
measurable function of # and y. Then by Fubini’s theorem
= {(@, 9): Flyo) #y(F @)}

is a null set of G x@, and so, again by Fubini’s theorem, for all # outside
of some fixed null set of G we have

F(yo) = y(F())

If we let x, be such a point outside the given null set and if we let
# = oy (F(m,)), then we see that F(#) = x2 a. e., 50 that T = T, as desired.

COROLLARY. 4.4. If as a G-module Z is a unitary right G-module, then
ZQq* (@) =2

ae.y.
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Under this isomorphism the element of Z which corresponds to an elementary
tensor 2 ® f is zf.

Proof. The dual, Z¥, of Z is an S-G-bimodule which as a G-module
is a left unitary G-module. Applying Lemma 4.3 we obtain

2 o Hsy(IA(@), 2) = Hse (I (@), Hs(Z, 0)),
where O denotes the complex number field. Applying the adjointness re-
lation, Theorem 2.10, to the right hand side, we obtain
Z* = Hs(7Z @,I(@), 0).

Pasging to the dual Hilbert space we obtain the desired isomorphism.

I heZ*, 2<% and feI*(G), then, tracing back the isomorphisms in this
proof, we obtain

h(z®f) = T(f)(2) = (fb)(2) = h(2f),
g0 that z ® f corresponds t0 2f as desired.
CorOLLARY. 4.8. If as o G-module Z is a unitary right G-module, then

Hsy (I2(6), 2) = 2.
Under this isgmorphism the operator, T',, which corvesponds to z<Z is defined
by T,(f) =4
Proof. Let ¢ denote the group opposite to that of ¢ Then Z becomes

a left @-module, EZ(G) becomes a left-right G-bimodule, and it is easily
seen that :

Hg(1}(6), 2) = Hsg(£2(6), 2).
Furthermore, as a G-module it is easily seen that I? (@) is naturally iso-
morphic to I*(&), the isomorphism being given by f > f Thus

Hsy (IX(@), 7) = Hyg (@), Z) .
We can now apply Lemma 4.3. to obtain the desired result.
4.6. COROLIARY. If as a G-module Z is a unitary left G-module, then

@@z ~7.

Under this isom~orphism the element of Z which corresponds to an elementary
tensor f ® z is fe.
" ];?)jl?o(gé é[‘kfl;i ifﬂﬁ:vlirirgfri ;J.orollary 4.5 in the same way that Corollary
The proof of Theorem 4.2 is now complete.
.One ‘reason that the results of this paper do not apply to represen-
tations induced from non-compact subgroups is that Theorem, 4.2 i false

for. non-compact groups. In fact it fails so badly that even our definition
of induced representations ig useless in this cage.

icm°®
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PROPOSITION. 4.7. If H is a non-compact subgroup of the locally compact
group G, and if V is any left Hilbert H-module, then :

IMG)®yV =0 and Hsy(Z*(@), V) =0,

whether H is viewed as acting on L*(G) by left translation or right transla-
tion. )

Proof. If TeHsy (L} (&), V), then T*TeHsy(L*(&), (&) I T # 0,
then T*T will have non-trivial finite dimensional eigensubspaces since
it is a compact self-adjoint operator, and these eigensubspaces will be
invariant under H. Thus what we need to know in order to show that
Hsy (@), V) =0 is the following lemma which is somewhat related
to a result of Weil (see page 70 of [27]). The proof that I*(G) ®zV = 0
then follows from these results in the same way that Corollary 4.4 followed
from Lemma 4.3.

LmvMa. 4.8. If H is a subgroup of G which is mot compact, then L*(Q)
has no finite dimensional subspaces which are invariant under either left
or right translation by H.

Proof. The case of right invariant subspaces is complicated slightly
by the fact that the modular function, 4, of & comes into play, and so we
will treat this case. Let ¥ be a subspace of I*(@) which is invariant under
right translation by H. Choose feV with |f|| = 1. Let ¢ > 0 be given.
Since feL*(G), we can find a compact subset, B, of ¢ such that

[ulf@PRdp@ < (s/2)2

(where E' denotes the complement of E). Since H is not compact, we can
find a sequence, {s;}, of points of H such that the sequence {Fs;} of subsets
of @ is digjoint. Then by considering integrals over ¥ and B’ it is easily
calculated that ’

[<fss; fop] < (A (s) A (7))

so that |<{e;, e;>] < e, where ¢; = fs;/||fs;]l. But one can then easily verify
that |le;— el > (2—2¢)® if ¢ #j. Thus the unit ball of V can not be
norm compact, and so V¥ is not finite dimensional.

An alternate proof of Proposition 4.7 can be given as follows if the
action of H is unitary. Let T <Hsy (L“'(G),V). Arguing as we did at the
end of the proof of Lemma 4.3, we find that there iy an F<L*(G, V) such
that T = Tp and, if, say, H acts by left translation, then for all # outside
some null set

F(sz) = (sF(z)) a.e.s.

It follows that off a null set the norm of F is essentially constant on cosets
of H. Then by using Proposition 10.1 of [22] it i3 not difficult fo convince
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oneself that if H is not compact then the only way such an F can be
square-integrable is for ' to be a null function. Thus 7T = 0.

We pow derive some of the basic properties of the induced represen-
tations which we have defined. The derivations are very similar to thoge
for induced representations of finite groups. We begin with the theorem
on induction in stages..

TEEOREM. 4.9. Let H be a compact subgroup of the locally compact group
@, and lei K be a closed subgroup of I. If V is any Hilbert K-module, then

G(IIV) gG"V and (VI[)G o 'VG’
the isomorphisms being unitary and natural.
Proof. Applying Theorems 2.11 and 4.2 we obtain

V) = ING) ®gy (z* () V) == (L*(6) @y L? (H)) @V
=~ P} QgV = V.
Applying in addition Theorem 2.10, we obtain

(VR)® = Hsg (E1(@), Hsg (£2(H), V) = Hsg (I (H) @pl? (_é),v
o Hig (I2(@), 7) = V4

CorOLLARY. 4.10. If V is the left regular representation of H, then SV
and VE are both equivalent to the left regular representation of G.

Proof. Let K = {e} where ¢ it the identity element of G, and let W
be the one-dimensional representation of K. It is easily seen that ZW and
WH are equivalent to the left regular representation of H and that W
and W¢ are equivalent to the left regular representation of ¢ We can
now apply Theorem 4.9 to obtain the desired resul.

Another basic property of induced representations follows immediately

from the fact that tensor products ancd Hg commute with direct sums
(Theorem 2.12).

TemoREM. 4.11. Let H be a compact sub 1 ]
‘ . subgroup of the locally compact
group G. If {V} is a collection of wnitary H-modules, then !
AOV) = @V, wd (V) = OVF.

COROLLARY. 4.12. If V 4s reducible then so are OV and V°.

CoROLLARY. 4.13. If V is equivalent to a subrepresemtation of the left

regular representation of H (in particular if V is i ) X
an rreduc -
module) then TV and V¢ are both ¢ 4 ettons o 1

reqular representation of G.

41g?mof. This follows immediately from Theorem 4.11 and Corollary

Next, we consider the Frobeniug reciprocity theorem, which should

quivalent to subrepresentations of the loft

- ©
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say that induced representations are the adjoints of the restriction functor
from the category of unitary G-modules to the category of unitary H-
modules (or, more generally, of Hilbert H-modules). If V is any Hilbert
H-module and W is any unitary G-module, then, applying the adjointness
relation Theorem 2.10, we obtain .

(*)  Hsg(°F, W) = HiT*(@) ®x V, W) = Hsy (V, Hsg(12(&), 7))
and. ¢ '

(**) Hsg(W, V) = HSG(W', HSH(E" (@), V)) =~ Hsy (iz(G) ®:W, V).

T£ G is not compact, then from Proposition 4.7 we unfortunately conclude
that .

Hio (67, W) = 0 = Hsy (W, V).

The only useful piece of information which we can obtain from this is
the following special case of Theorem 8.2 of [15].

ProposiTION. 4.14. If G is not compact, then °V and V& contain no
finite dimensional subrepresentations.

However, if G itself is compaet, then Theorem 4.2 is applicable to
(*) and (**) and we obtain:

THEOREM. 4.15. (THE FROBENIUS RECIPROCITY THEOREM FOR COMPACT
GROUPS). Let G be a compact group and let H be a dlosed subgroup of G. Then
the functor SV and V& are respectively the left and right adjoints of the
restriction functor from the category of umitary G-modules to the category
of Hilbert H-modules. That is, for any Hilbert H-module, V, and any unitary
G-module, W, there are natural unitary isomorphisms

Hig(°V, W) o Hsg(V, Wg)
and
Hsg(W, VE) o2 Hsy(Wg, V)

where Wy denotes W viewed as an H-module.

If V and W are taken to be irreducible modules then one can immedi-
ately deduce from this theorem the more classical form of the Frobenius
reciprocity theorem for compact groups as formulated in [29], or on pages
82-83 of [27], or on pages 12 and 27 of [30]. This is done by noting, for
example, that in this case the dimension of Hsy(V, Wy) is equal to the
multiplicity of V in Wy. :

Joseph Wolt hag pointed out to us that a part of one version of the
Peter—Weyl theorem is a consequence of the Frobenius reciprocity theorem.
Specifically, if & is compact, if H = {¢}, and if V is the one-dimensional
representation of H, then, as mentioned before, “¥ and V¢ are both
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equivalent to the left regular representation of G. If we let W be any ,
irreducible representation of &, then by applying the Frobenius reciprocity
theorem we find that there are non-zero Hilbert—Schmidt operators which
intertwine W with the left regular representation of G' so that W mugs
be finite dimensional, and furthermore that the multiplicity of W in the
left regular representation of @ is equal to the dimension of W.

Of course, the rest of the Peter-Weyl theorem can be obtained in the
usual way. It suffices to show that any invariant subspace of the left
regular representation containg a finite dimensional invariant subspace.
But to do this it suffices to check that the operator Ry of right convolution
by any function fin L(@) is a Hilbert-Schmidt operator which. is in the
commutant of the left regular representation, and that given any ge<IX )
there is a self-adjoint feL(@) such that LK,y 0. For then g will have
a non-zero component in one of the finite dimensional eigensubspaces
of R;, and the eigensubspaces of R, are invariant subspaces of the left
regular representation.

Although the comments just preceding Proposition 4.14 show that if G
is not compact then ¥ and V¢ are not adjoints of the restriction funetor
one can still imagine that some other construction might provide sucli
adjoints. We show now that this is not the case (at least it the m orphisms
are taken to be Hilbert-Schmidt operators), again by applying Proposi-
tion 4.7. o

T.IEEOREM. 4.16. If H ds a compact subgroup of a locally compact group G
and if @ is mot compact, then the restriction functor from unitary G—mod;ules,‘
to unitary H-modules has neither o left nor a right adjoint. ‘

Proof. ieti functor joi
_—y If), ?::pg:f that the restriction functor had a vight adjoint,

HSG(W7 R(.V)) == Hypy (W, V)

for every upitary G-module W and unitary H-module V. Then, this relation
must hold in particular if we set W = L*(@). But for this choice of W the:
left—hanfi side will always be 0 according to Proposition 4.7 wheré&s
there will be many choices of V for which the right-hand side,is not 0.
Thus no such adjointness relation can exist. The argument showing the
non-existence of a left adjoint is similar. -
. Tl}e fma.l property of induced representations which we will derive
211 tl?ls section concerns their contragradient (or adjoint, in Maycke&’s
t;];mél_lﬁllgﬁzi. If, *V is a u;_nitar'y G~1“119dule, then its dual is by definition
the G- e V' =Hs(V,0). It Vis a left module then T* is a right
ule gnq conversely. In order to be able to work: always with left
mogules it s custmpary to apply the involution » — o~ on & to a right
mo gle, .V,.to obtain a corresponding leff; module, which wo will (161131:0,
by V(this is consistent with our usage in I? (@). The contragradient
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of a Hilbert left G-module V is then defined to be the left module (17)*
(or equivalently (V*)7), and we will denote it by ¥ .

ProrosITION. 4.17. If H is a compact subgroup of a locally compact
group G, and if V is o Hilbert left H-module, then

(V¥ = (7).
Proof. (V)¢ = Hsy(IX@), Hs(V, 0)= Hs(IX(@)®4V,C) = (@)@ V)"
But, it is easily seen that I*(@)®,;V = (I*(#)®4 V)", and so the result
follows.

Tn the next section we will show that ¥ and V¢ arve naturally equi-
valent if V is unitary, and it will then follow that

YV = (T = (7)) = (VTR

But we do not know how to derive these facts in a more direct manmer.

John L. Kelley has suggested that we mention that all 6f the results
of this section, suitably interpreted, remain true when instead of assuming
that H is a subgroup of G we assume only that we are given a continuous
homomorphism of H into G.

5. The realization of ¢V and V¢ as function spaces. In this section '
we will show that the definitions of induced representations which we
gave in the previous section are equivalent to the definition in terms of
function spaces which was given by Mautner [18, 19] and to the special
case of Mackey’s definition [13 ,' 14, 157 in which the subgroup is compact.
In the process we will see that &y and V¥ are naturally equivalent.

The first theorem is an analogue of Theorem 10.4 of [22].

TurorREM. 5.1 Let H be a compact subgroup of the locally compact group
&, and let V be a unitary left H-module. Then 4V is naturally isomorphic to
the unitary G-module consisting of all Bochner square-iniegrable Sfunctions,
F, from G to V such that ‘

F(ws) = s (F(z))

for all @@ and all seH (with functions which are equal a. ¢. identified) on
which the action of G is defined by

WF)(@) = Fy~a).

Proof. Let K be the subspace of I*(&)®V which is spanned by
elements of the form fs ® v—f ® sv, where feLl’(&), seH, and veV, s0
that 9V = (I*(#) ®V)/K. But this quotient is naturally isomorphic to
the orthogonal conxplement of K, that is, ¢V ~ K. Now applying Theo-
rem 1.6 we identify I?(¢) @V with I*(@, V), and we identify K and K-
with the corresponding subspaces of L*(&, V).
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Suppose now that FeK'. Then for every feL*(G), s<H, and veV, we
have, since ¥V is unitary, V

= fs@v—f®sv)
= [ F @), 0> flas™) ap@) — [, <(F (@), s> F(@) du(w)
= [T (@s) =51 (F (@), v F(w)du(@).
Thus for each seH and v<V we have
(Fas)—sH{F@)),v) =0 ae .

Since F is Bochner measurable, its range iy contained in a geparable
subspace of V If we let ¥ range over a countable dense subset of this
subspace and if we take the union of the corresponding null sets, we find
that for each seHf ’ .

F(ws) = s~ F(z) a.e a.

Conversely it is easily seen that any function satisfying this condition is
an element of K. But this condition on the function F is not as stron
as tl?a‘t in the statement of the theorem. To verify.tha,t this stronvef
eond1§10n-holds we prove the following lemma which is algo of indep:;n-
dent interest. Remarks concerning the map « introdueed in this lemma
can be found immediately following Theorem 10.4 of [22]. Thizx map is
also used at the bottom of page 27 of [30].

Levma. 5.2. The projection, m, of I*(&, V) onto KL is given by
ag(®) = [, 5(g(xs)) dp(s)
for all g<I*(@, V). The range of = is the space, Ik (@, V),

those functions, F, in I}(Q, V)
@ satisfy

. consisting of all
which for all © outside of some null set of

Flos) = s (F(m))
Jor all seH (where two such functions are identified if they are equal a. e.).
o I;goof. Arguments analogous to those in the proof of Lemma 10.5
(G>EH] show ?hat s(q(ws)) is Bochner square-integrable function on,
@x » #XB), that mg is defined a. e., that wg L* (@, V), that [wgll, < 9e
at 2(yg) = y(ag) for all y <@, and, finally, that ngel (@, V). ’

On the other hand, if F<I2
. w(@, V), then for all i b
set referred to in the definition of ,L%ZG, V) > ontsite of the nul

al (x) =st(F(ws))d,B(s) =fHF(50)d/3(S) = P(o),

¢ . L
80 that = is a projection of I*(@, V) onto (&, V)

shows that  is self-adjoint, - A routine calculation
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Tt remains to show that the kernel of = is K. Now if fel?(@), veV and
reH, then

wlf ©m) (@) = [ 5 (@s)sroaf(s) = [ flasr)s0aB(s) = n(fr © 0)(2),

go that K is contained in the kernel of =. On the other hand, since Ktis
invariant under @, it is closed under convolution by continuous funections
of compact support. Since such convolutions are continuous (Theorem
20.16 of [9]) it follows that KL contains a dense submanifold consisting
of continuous functions. But if F is such a continuous funetion in K+,
then it is clear from the argument just preceding this lemma that F(ws)
= ¢ F (@) for all 4G and s<H, that is, that I is in the space of func-
tions described in the theorem, and in particular is preserved by z Thus
7 acts as the identity operator on a dense submanifold of K+, and so K-+
is in the range of z. It follows that K contains the kernel of z.

To conclude the proof of Theorem 5.1 it suffices to remark that any
function in I%(@, V) can be modified on a null set so as to satisty the
conditions of the theorem (for example by defining its value to be 0 on
this null set).

We note that the space of functions described in Theorem 5.1 is the
game ag that used by Mautner ([18], [19]) to define induced representa-
tions, which in turn is easily seen to be the game as the special case of the
space of functions used by Mackey ([13], [14], [15]) in which the gubgroup
is compact (as was remarked by Mautner himself).

THEOREM. 5.3. Let H be o compact subgroup of the locally compact group
@ and let V be a Hilbert H-module. Then V& is unitarily equivalent to ey,
and so to the G-module consisting of the space of functions deseribed in Theo-
rem 5.1

Proof. Given 7T eHs,(L*(@), V), one can  find, according to

" Theorem 1.6, an FeL*(@, V) which represents T, that is, such that

Tf = [qf(@)F () du(@) for all feiz(G'). The fact that T is a module
homomorphism means that s(Tf) = T(sf) for all seH and f I (@), that
is, that ;

s [, f@)F(@)ap) = [of (@) F@)dp@),
or )
[, 7@)s(F@)dn@) = [ f@)Flas™)du@).
It follows that fof each s<H we have F(ws) = s (F(2)) a e. #. Conversely
it is easily seen that any such function does represent an element. of

Hsy (IF(G), V). The rest of the proof follows by arguments similar to
those in the proof of Lemma 5.2 and in the end of the proof of Lemma 4.3.
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We remark that in this theorem we did not need to assume that Vv
is unitary, contrary to the case in Theorem 5.1. If in Theorem 5.1 it ig
only assumed that V is a Hilbert module then one can only conclude
that the funetions F must satisfy F'(zs) = s’*(F(w)) where s* denotes
the adjoint of the action of s.

If @ is ecompact then the Frobenius reciprocity theorem (Theorem ’

4.13) says that © V and V¢ are the left and right adjoints of the restriction
funetor, and so in this case we see that the restriction functor exhibits
the interesting phenomenon that its left and right adjoints are naturally
equivalent. In a purely algebraic setiting this phenomenon has been gtudied

first by Higman [28], and then by Morita [20], who showed that it ig . .

very clofely related to the concept of Frobenius extensions. In. the ter-
‘minology of Morita, the restriction functor and the functor ¢V which
we have defined above form a strongly adjoint pair.

In a subsequent paper in which we will discuss unitary representations
induced from subalgebras of the complexified Lie algebra of a compact
Lie group, we will see that the left and right adjoints of the restriction
functor arc 1o longer equivalent in this more general setting.

. 6. Blattny"’s construction of induced representations. In [1] Blattner
showed how tae induced representations of Mackey could be defined in
terms of positive definite measures. In this section we will show how
Blattner’s construction iy related to the definition of induced represen-
tations which we have given in terms of tensor products and spaces of
Hilbert-Schmidt operators. :

For various reasons, including the fact that we have been using left
rather than right Haar measures, we will find it convenient to uge conven-
tions which are slightly different from those used by Blattner. The con-
ventions which we will use, together with a reformulation. of Blattner’s
theorem in terms of these conventions, can be found in, unpublished notes
by J. M. G. Edl. We are indebted to Fell for having provided us with
& copy of these notes. We will view 0,(6) as a dense subalgebra of L(Q)
with its usual convolution multiplication and involution. Wo will say
that a complex Radon measure, m, is positive definite if m(ff) =0
for all fe0,(@). Given a positive definite Radon measure, m, one can
then equip C,(6) with the positive Hermitian form:

(6.1) AL Dm = m(g*+f), f, geC(@),

and from this obtain in the usual way a unitary representation of G on
the corresponding Hilbert space (for details see [6]). We will denote the
resulting @-module by 7,,. )

Let H be a compact subgroup of @ and let m be o positive definite
measure on H. Let 7 denote m viewed as 2 measure on @ in the obvious

@ © .
lm Unitary representations induced from compact subgroups 171

way. Then by imitating part of the proof of Bla,ttngr’s theorem wusing
our slightly different conventions, one can verify that s is in fact positive
definite on & (this verification is carried out in the notes of Fell mentioned
above). Blattner's theorem states then (though in the more general case
in which H need not be compact) that

V) 22 Vi

where the induced representation %(V,,) which Blattner uses is essentially
that defined by Mackey in terms of function spaces. In this section we
will show how to prove this theorem of Blattner (for the special case in
which H is compact) in terms of the definition of induced representation
which we have given using tensor products.

Our approach to Blattner’s theorem is based in part on the obser-
vation that the construction of the representation V,, can be reformulated
in terms of positive intertwining operators. Specifically, if m is any Radon
measure on @ then an easy calculation shows that

(6.2) m(g*f) = (Puf, 9>
where P, is the operator defined by
(Ppf)@) = [ flay)am(y), @

although this operator need not have all its values even in I*(@). If, how-
ever, m is a finite measure and if the modular funetion of G has value
1 on the support of m (in particular, if m is supported on a compact sub-
group of G, as will be the case in our applications), then P,, is a bounded
operator on I*(@). In fact it is just convolution on the right by the measure
7% which is the image of m under the homeomorphism & — z~"' of & From
this last remark it is clear that £, commutes with the left regular repre-
sentation of G on I*(@). Furthermore, it is clear from.6.2 that if m is
positive definite then P,, is a positive (not necessarily definite) operat‘or.
In this case one can see by comparing 6.1 with 6.2 that tiﬁ;»constructmn
of V,, is a particular case of the following construction, whose details
are easily verified.

PROPOSITION. 6.3, Let A be a normed *-algebra and let V be an essential
unitary d-module. Let P be a positive operator on 'V such that P eHom (V, V).
Define a positive Hermitian form on V by

o, v"yp = {Puv, v").
Then the action of A on V induces on the Hilbert space corresponding to this
positive Hermitian form the structure of am essential wnitary A-module.

We remark that a similar construction can be made for unbounded P,

although in this case it seems to be necessary to assume thaﬁ A has an
approximate identity in order to conclude that the module is essential.
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We will denote the A-module constructed in the way described above
by V/P. In particular, we note that if m is a positive definite finite measure
supported so that P, is hounded, then it is clear from the discussion above
that

Vm = LZ (G)/Pm

Further information about the construction described in Proposition
6.3 is given by the following:
PROPOSITION. 6.4. Let A, V and P be as in Proposition 6.3, and let E

be the orthogonal projection of V onto the closure of the ramge of P (so -

EcHom,(V, V). Then V[P == V[B. Furthermore, V[E is isomorphic to
the A-submodule of V consistirvig of the range of H.

Proof. Let @ be the positive square-root of P (so Q eHom , (V, V)).
Then for v, "<V we have

{Qv, @Qv'>g = (HQv, Q') = (EPv, v") = (v, v")p.

Thus @ extends to an isometric intertwining operator of V/P into V/E.
We show that @ (V) is dense in V/E so that this isometry is unitary. Let
{E(r)} be a resolution of the identity for P (continuous from the right),
and let T, be defined for £ > 0 by

T, = f r=ORE (r).
12

Then a simple calculation shows that ||v —QTw| approaches 0 for any
veV a8 ¢ approaches 0. Thus @ (V) is dense in V/¥. Finally, it is a trivial
matter to verify the last statement of the proposition.

As & corollary of this proposition we obtain the following result which
we have hot seen mentioned before:

CoROLLARY. 6.5. Let m be a finite positive definite Radon measure on
G and suppose that the modular funciion of G has value 1 on the support
of m. Then V,, is unitarily equivalent to a subrepresentation of the left regular
representation of G. .

Proof. We see from Proposition 6.4 that V,, is in fact unitarily equiva-
lent to the submodule of the left regular representation consisting of the
closure of the range of P,,.

Suppose now that H is a compact subgroup of ¢ and that m is a positive
definite measure on H. Then in terms of the notation and results de-
seribed above, Blattner’s theorem hecomes the statement that

(@) ®p (L (H) [P,y) = I*(@)[Py;.

We will now give a direct proof of this relation. To do this we need to
know how P, and P; are related.
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LEMMA. 6.6. If we identify I*(G) with LZ(G) ®HL2(H) accordmg to
Theorem 4.2, then :

Py =I®E-Pm7

where I denotes the identity operator on . i

" Proof. Under the identification of I*(G)®zL*(H) with I*(G) an
elementary tensor f® g is carried, according to Theorem 4.2, to the element
f*o of I*(@), where for the purposes of defining this convolution the
elements of I*(H) are viewed as measures on H and so on G. Then

(IQP,)(f® ¢) = (fr@)xm = Pa(f*).

Since the span of ‘nhe elementary tensors is dense, it follows that I ®P,,
= P, ag desired.
The proof of Blattner’s theorem is thus reduced to proving the follow-

ing theorem:
THEOREM. 6.7 Let Z be a unitary left-G-right-H-bimodule, let V be a wwi-
tary left H-module, and let P be a positive operator in Hompg(V, V). Then

f®Pm¢ —f*(‘p*m

Z@gn(V/[P) = (Z®xV)/I ®&P,

where I denotes the identity operator on Z.

Proof. We remark first that I ®zP is a positive operator since it
clearly has a self-adjoint square root. Let & be the projection onto the
closure of the range of P. We show first that the projection onto the clo-
sure of the range of I®yP is I Q®yE. Now, B = limP"" in the strong
operator topology, as n approaches infinity. Similarly the projection onto
the range of IQ®zP is Hm (I ®gP)"". But it is clear that (I @zP)"™
= I®gz(P)", and it is easily seen that limI @y (P)/" = I ®gH, so that

" we obtain the desired result.

Then, according to Proposition 6.4,

Z@u(VIP) = Z®H(V/E) and  (ZQgV)/IQpP = (Z®yV)/IQxH,

80 that we need only show that
ZQp(V/E) = (ZgV)/IQyH,

that is, we need only prove the theorem when P is a projection, E. But
let. V, =BV and V, = (I—E)V so that V = V,@®V, as H-modules.

" Now V/E =~ V,as mentioned in Proposition 6.4,50 Z ®g(V /H) = Z @V

But I®jy I is clearly the projection of Z ®5V onto Z ®y V, so that we
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also have (Z®zV)/I @yl = Z ®u V1. Thus Z @y (V /) 22 (Z @z V)[I @y E
as desired. . ;
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