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Flat spaces of continuous functions®
by
PETER NYIKOS and JUAN J. SCHAFFER (Pittsburgh, Pa.)

Abstract. A Banach space is flat if there exists on the surface of its unit ball
a curve of length 2 with antipodal endpoints. We characterize the flat spaces among
the spaces C(K) and C,(K), K compact, o an involutory automorphism of K, as well
as some other spaces of continuous functions, by topological properties of the domain.
‘We note that every infinite-dimensional space L™ (u) is flat.

1. Intreduction. In'[7], Harrell and Karlovitz call a Banach space
flat if there exists on the surface of its unit ball a curve of length 2 with
antipodal endpoints. They observe that L'(u), where y is Lebesgue measure
on the unit interval, is flat, but that I*(8,) is not. They had shown earlier
[6] that a flat space is not reflexive, and that C([0, 1]) is flat. In [12],
Schiiffer showed that L'(u) for a general measure space is flat if and
only if u is not purely atomie.

Continuing the investigation of the flatness of “classical” spaces,
we are led to consider the space C(K) for a compact Hausdorff space K,
and, more generally, the subspace C,(K) of those functions that are skew
with respect to an involutory automorphism o of K. The purpose of this
paper is to give a complete account of which C,(K) are flat: in terms
of the topology of K, they are exactly those for which there exists a non-
-empty dense-in-itself set in K not containing fixed points of o. The
flatness of C,(K) can also be characterized in terms of the geometry of
its dual: in particular, C,(K) is flat if and only if its dual is flat.

These various characterizations yield a similar account for C(K)
itself and for Cy(T), the space of continuous functions vanishing at infi-
nity on the locally compact Hausdorff space T. Among other results
concerning spaces congruent to some C,(K) we note the fact that every
infinite-dimensional space L®(u) is flat.

* The work of the authors was supported in part by NSF Grants GJ580
and GP19126, respectively.
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The spaces C,(K) are discussed and characterized by their metric
properties in ([2]; pp. 87-96), an account of work due in the main to Jerison.
Lindenstrauss [8] proposes an interesting definition of “classical Banach
spaces in the isometric sense’’; he points out that they turn out to be
exactly the Banach spaces congruent to I(u) for 1 < p < oo, together
with those whose dual is congruent to some L'(u). Now the L?(u) are
reflexive, and therefore not flat, for 1 <p < co; and the I'(u) were
classified as to their flatness in [12]. The spaces O,(K) are important
instances of spaces with duals congruent to L'-spaces, but do not exhaugt
this class by far (see [9] and references given there for a complete de-
seription). It would be interesting to decide which of the remaining such
spaces are flat — thus completing the survey of all “classical” spaces —
or at least which M-spaces or G-spaces are flat (terminology as in [97.
The fragmentary results available on this point are not included here.

The question of flatness of Banach spaces belongs to an avea of
investigation begun in [11] and continued in other papers, dealing with
certain metric parameters of the unit spheres of normed spaces. In another

_Paper [13] one of us shall discuss the values of these, viz., the inner di-
ameler, the perimeter, and the girth, for all the spaces treated here.

Thanks are due to S. P. Franklin, D. J. Lutzer, V. J. Mizel, and
K. Sundaresan for their helpful suggestions.

2. Preliminaries. If X is a normed space, a subspace of X is a linear
manifold of X (not necessarily closed), provided with the norm of .X.
A congruence is an isomstric isomorphism of one normed space onto
another.

A cwrve in X is a “rectifiable geometric curve” asg defined
in ([1]; pp. 23-26); for terminological details see ([11]; p. 61). The length
f)f a curve cis I(c), and its standard representation in terms of arc-length
I8 g [0, )] - X.

X is flat if there is a curve of length 2 in the boundary of the unit
ball of X such that its endpoints are antipodal; i.e., & curve ¢ with I(c)
= 2, lgc()ll =1 for 5¢[0, 2], and g.(0)+ g.(2) = 0. If 4 subspace is flat,
it obviously follows that X itself is flab.

Let T be a Hausdorff space; then ¢ (T) is the Banach space of all
bounded real-valued continuous functions on 7' with the supremum norm.
Let ¢ be an involutory automorphism of 7, i.e., a homeomorphism
of T onto T with oo =id. Then 0,(T) denotes the closed subspace
{f<O(D):f(t)+f(at) =0, teT} of C(T); it is also a Banach space. We set
T° = {te T: ot + 1} the open set of points not fixed by o, and observe
once and for all that

) feCu(T)  implies F(TNT?) < {0}.
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If T is locally compact, Cy(7) denotes the closed subspace of C(T)
consisting of the real-valued continuous functions on 7 that vanish at
infinity. If ¢ is as before, we set Co,(T) = C(T) N C,(T).

‘We summarize a useful remark for the study of C,(K), K compact,
in the following lemma.

LevMA 1. Let K be a compact Hausdorff space and o an involutory
automorphism of E. Let K' = K° U {oo} be the one-point compactification
of the locally compact space K°, and ¢': K' — K' defined by o't = ot, te K°
and c'co = co. Then o is an imvolutory automorphism of the compact
Hausdorff space XK', K'" = K°, and the mapping f—f': C,(K) - C (K"
defined by f'(t) = f(f), te K and f'(o0) = 0 is a congruence.

Proof. Immediate from the definitions and (1). _

A Hausdorff space T contains a‘ largest dense-in-itself subset; this

‘set is closed and is called the perfect core of T. A space is scattered if its

perfect core is empty. Pelezyrniski and Semadeni [10] have given a great
number of equivalent conditions for a compact space K to be scattered,
and especially some involving C(K) and (C(XK))*. We reformulate for
our use three of these conditions. If K is a compaect Hausdorff space and
te K, the evaluation funciional e (C(K))* is defined by <(J, e =f(t),
fe C(K).

THEOREM 2. (PEECZYRSKI AND SEMADENI). Let K be a compact Haus-
dorff space. The following statements are equivalent: ‘

(a) K is not scattered;

(b) there exists he C(K) such thath(K) = [0,1];

(e)  the Uinear mapping I': I'(K) — (C(K))* defined by Ty = Y y(i)e,

teK

Y I{EK), is not surjective.

Proof. ([10]; Main Theorem, (0), (3), (11)).

3. The main result. We examine the following properties that
a normed space X may have:

(F1): X 4s flat;

(F2): X" is not the closed linear span of the exireme points of its unit
ball;

(F3): X* is not congruent to 1'(A) for any set A;

(F4): X* is flat.
‘We observe that I'(4) is the closed linear span of the extreme points
of its unit ball, so that (F2) always implies (F3).

Before we discuss these conditions as applicable to a space C,(K),
we look at a special case. We define m: [—1,1] —[—1,1] by =t = —1,
an involutory automorphism of [—1,1]. The proof of the following
lemma is an adaptation of a construction in- [6].
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LeumA 3. The space C,([—1,1]) s flat.
Proof. We deéfine g: [0,2] - C,([—1,1]) b

2(1—s)1,

0<t<
—OONE = g1, i<ien,

o)) =

Then Jg(s)| = [lg())(1—4s) =1, and [g(s)—g(s) = |s'—s], as is
easily verified directly. Therefore g is Lipschitzian, and is the standard
representation in terms of arc-length of a curve of length 2 in the boundary
of the unit ball of C, ([ —1,1]). But g(2) = —¢(0), so the endpoints of
the curve are antipodal, and the space is flat.

In the rest of this section, we shall be dealing with a given compact
Hausdorff space K and an involutory automorphism o of K. The fol-
lowing construction is useful. Let V be a closed set in K with V n oV = @,
and let f,eC(V) be given. By the Tietze Extension Theorem there exists
FreC(K) with |Ifil] = [foll and fi(f) = —fi(ot) = fo(8), t<V. We define
f: K —~R by f(t) = }(f() —fu(ot)), te K, and find fe0,(K), £l = |,
and f(t) = fy(#), t¢ V. Such a function f shall be called & skew Tietze extension
of fo-

For every te K, we consider the evaluation functional efe(C,(K)),
(the restriction of ¢, to C,(K)) defined by {(f, ¢f> = f(t), feC,(K). The sei
{ef: 1« K%} is exactly the set of emtreme points of the unit ball of (0 (x))*
([21; p. 89).

Leyua 4. With K, o as specified, let o non-empty set P = K satisfy
P noP =@. Then the linear mapping Ip: 1(P) — (O,(K))* defined by
Ipy = é y(@t)yef, ye'(P), is isometric.

Proof. Obviously, P = K. Now |l¢f]| = 1, te P, so I, is well defined,
linear, and bounded, and ||I'p|| < 1. It remains to prove that eyl =
for all y<I'(P), or at least for all those with finite support. If Q@ = P is
finite and y(f) = 0, 1« P\Q, we can find, by means of a skew Tietze ex-
tension, feC,(XK) with ||f| =1 and f(¢) = sgny(t), te@. Then

ITeyll = 1A 172l =[S, 3yt
. 1@
= D y®seny () = Xy (1)

teQ Q)

=yl

We are now ready to characterize those K and ¢ for Whmh 0, (K)
satisfies (F1)-(F4).

TeroREM 5. Let K be a compact Hausdorff space and o an involutory
automorphism of K. Then (F1), (F2), (F3), (F4) are equivalent for X = 0, (K),
and also equivalent to each of the following statements :
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(a): K° is not scattered;

(b): there exists heC,(K) with h(K°) =[—1,1];

(e): there exists heC,(K) with h(K) =[—1,1].

Proof. We add one more statement to the list:

(d): if Pc K satisfies PnoP =@, P U oP = K° the isomefric
linear mapping I'p: I'(P) — (0,(K))* defined in Lemma 4 is not surjective;

+ and prove the implications

(a)

O TN

(F1) «<——{c)

(F2)
(F3) < (F4)

In view of the formulation of statements (a), (b), (e), (d) it is possible
to apply Lemma 1 (observing (1)) and assume without loss, as we shall
in this proof, that K\K° is a singleton, say {oo}. If K° = @, the theorem
is trivial. We therefore assume without loss that K° # @.

The implication (F2) — (F3) was noted above, and the implications
(b) — (¢) and (F3) — (d) are trivial.

(a) implies (b). The perfect core § of K’ is not empty; choose
tge 8. Since 7, # oy, there exists an open neighborhood U of ¢, such that
clU nel(oU) = @; in particular, el U <« K°. Then U n § is non-empty
and dense-in-itself, hence ¢l U is compact and not scattered. By Theorem 2
there exists hoeC(clU) with hy(clU) = [0, 1]. A skew Tietze extension &
of h, satisties heC,(K), [—1,1]> h(E") > k(cl U) U k(cl(cT)) = [0,1] U
uf[—1,0] =[—1,1], as required by (b).

(c) implies (F1). With % as in (e¢), the mapping ¢ — goh is a con-
gruence of C_([—1,1]) onto a closed subspace of O,(X). By Lemma 3,
this subspace is flat; hence C,(K) itself is flat.

(F1) implies (b). Let ¢ be a curve of length 2 in the boundary of
the unit ball of C,(K), with antipodal endpoints. Let re [—1, 1] be
given. Since g (1 —7)eC,(K), |lg.(L —7)|| = 1, there exists {.e K’ such that
(9.2 =) (t,) = 1. Then

7 =1—(1=7) <1—[g(1—7)— g (Ol < 1— (1= (g:(0) (1))

= (g:(00) ) = (14 (9:(0) (t) — 1 < [lge(X =) + g (0)f — 1
=[9.(2)—g(1-7)-1<2-(1—27)~1 =7.

Therefore 7 = (¢.(0)) (%) € (9.(0))(K°); since re[~1,1] is arbitrary and
llg.(0)]l = 1, we conclude that (b) is satisfied with h = ¢.(0).
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(¢) implies (d). With % as in (c), consider once more the congruence
@+ goh of C.([—1,1]) onto a closed subspace of C,(K). If, contrary to
(d), I'» were surjective for some P < K, P N ¢P =, then every element
of (C,([—1,1]))" would, by the Hahn-Banach Theorem, be (l)f the form

> y(t)ery, yel'(P); however the linear functional ¢ [ o(r)dr on
teP o

C,([—1,1]) is bounded, but not of this form.

(d) implies (a). Assume, contrary to (a), that K° ig scattered. Since
EN\E’ is a singleton, K itself is scattered. Let #*e (0, (K))* be given. By
the Hahn-Banach Theorem, #* can be extended to an element of (0(XK))*.
By Theorem 2, there exists y,e[*(K) such that

fra®y =<y Ty = (6 Y wey =f, ey, feO(K),
| kK K

since {f, 6,y = f(oc) = 0. Thus

| o = Do)

(244

@

Let P be any set in K that is maximal with respect to the condition

P noP =@ (such exist, by Zorn’s Lemma); then P UoP = E°. We
define ye I*(P) by y(t) = y,(t) —ys(ot), teP (s0 that [ly] < 2 [ly,|l). Then (2)
implies —since e, = —eéf, te P—

P RICLEDYACLEPNACL ESACLA

teoP 1P

= D y()ef = Ipy.

telP

Since @« (C,(K)|* was arbitrary, I is surjective, in contradiction to (d).

(d) implies (F2). Let P < K satisfy P noP =@, P UoP = K%
we have just shown that such a set exists. As noted earlier in. this section,
the set of extreme points of the unit ball of (C(E)* is {ef: te K%}
= {4-¢: < P}. But the image of I'» contains this set, and hence also
containg (actually, coincides with) the closed linear span of this set of
extreme points. The required implication follows.

(F3) is equivalent to (F4). Since (0, (X))* is an abstract L-space
(cf. [9]), it is flat if and only if it is not congruent to I'(A4) for any set A
[12]. :

Remark 1. Using statement (a), it is possible to apply the equiv-
alences of Pelczyriski and Semadeni [10] to derive many other condi-
“tions equivalent to (F1)-(F4) for X = 0,(K); e.g., there emists a non-
atomic regular finite Borel measure v on K such that y(K°).> 0.

icm°®
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Remark 2. In [13] we shall give further conditions on the metric
structure of the unit balls of X, X* that are equivalent to - (F1)~(F4)
for X = 0,(K). .

4. Applications to other spaces. Theorem 5 provides criteria for the
flatness of Banach spaces congruent to O,(K). The following theorems
summarize some of these criteria.

The proofs will merely be sketched. We recall that a topological
space is basically disconnected if the closure of every co-zero set is open;
extremally disconnected spaces are basically disconnected.

TesorEM 6. Let T be a completely regular Hausdorff space. Then
(F1), (F2), (F3), (F4) are equivalent for

the space X = where T is and hold if and only if
T is not scattered; or equiv-
Go(T) locally ”"mf’“"t} alently, there ewists he X
compact N
with h{T) = [0, 1];
‘pseudocompact there ewists heX with h(T)
= [0, 1];
o) not pseudocompact (always)

T is ot both compact and
scattered ;

T is infinite.

paracompact (in particular,
metrizable)
basically disconnected

Proof. 1. If T is locally compact, there is a natural congruence be-
tween Cy(T) and O,(K), where the compact space K is Tx {—1,1} if T
is compact, and the one-point compactification of this product otherwise,
and o: K > K interchanges the second components —1 and 1 in the
product. The conclusion for Cy(T) — and for C(T) if T is compact — then
follows from Theorem 5.

2. In general, there is a natural congruence hetween C(T) and C(8T)
where BI' is the Stone-Cech compactification of 7. Application of the
preceding result to ¢'(BT) shows that C(T) satisfies (F1), (F2), (¥3), (F4)
if and only if

(*) there emists heC(T) such that h(T) is a dense subset of [0,1]..

If T is pseudocompact, every continuous image of 7 in R is pseudo-
compact, hence compact. In this case, (*) is equivalent to the existence
of heG(T) with h(T)-= [0,1]. If T is not pseudocompact, we prove (*)
by an argument adapted from [4]. Let f: 7 — R be an unbounded contin-
uous function; there exists a countably infinite set § < f(T) that is
closed and discrete in E. Since R is normal, there exists a continuous ¢:
R —[0,1] such that ¢(8) is dense in [0,1]. Then h = gpof satisfies (*).

3 — Studia Mathernatica XLIL3
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The conclusion for paracompact 7 follows from these results, since
such a space is pseudocompact if and only if it is compact.

3. If T is basically disconnected and infinite, T containsg a subset
homeomorphic to SN ([5]; 9H); but SV is not scattered, hence AT is not
scattered. The conclusion follows from the preceding results applied to
O (BT).

Remark. The condition for non-compact pseudocompact spaces
in Theorem 6 is unsatisfactory: pseudocompactness itself has a simple
intrinsic characterization for completely regular Hausdorff spaces ([3];
p. 232), but we lack such a characterization of those pseudocompact
spaces that ean be mapped continuously onto [0, 1]. Such spaces may
well be scattered: it is easy to construct a suitable instance of the scattered
locally compact pseudocompact space ¥ described in ([5]; 5I) so that it
has a continuous mapping onto [0, 1]; the construction is suggested by
([61; 6Q). 4

TEEOREM 7. If (8, 8,u) is any measure
(F3), (F4) are equivalent for X = L>(u)
8 finite-dimensional.

space, (F1), (F2),
and. hold wunless this space

Proof. L*®(p) is congruent to C(7T), where T is the Stone space of
the o-complete Boolean measure algebra of u ([14]; pp. 206-207). T ig
compact and basically disconnected; a proof might use ([14]; pp. 85-86)
and ([5]; Theorem 16, 17). The conclusion follows from Theorem 6.
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