

Flat spaces of continuous functions*

bу

PETER NYIKOS and JUAN J. SCHÄFFER (Pittsburgh, Pa.)

Abstract. A Banach space is flat if there exists on the surface of its unit ball a curve of length 2 with antipodal endpoints. We characterize the flat spaces among the spaces C(K) and $C_{\sigma}(K)$, K compact, σ an involutory automorphism of K, as well as some other spaces of continuous functions, by topological properties of the domain. We note that every infinite-dimensional space $L^{\infty}(\mu)$ is flat.

1. Introduction. In [7], Harrell and Karlovitz call a Banach space flat if there exists on the surface of its unit ball a curve of length 2 with antipodal endpoints. They observe that $L^1(\mu)$, where μ is Lebesgue measure on the unit interval, is flat, but that $l^1(\aleph_0)$ is not. They had shown earlier [6] that a flat space is not reflexive, and that C([0, 1]) is flat. In [12], Schäffer showed that $L^1(\mu)$ for a general measure space is flat if and only if μ is not purely atomic.

Continuing the investigation of the flatness of "classical" spaces, we are led to consider the space C(K) for a compact Hausdorff space K, and, more generally, the subspace $C_{\sigma}(K)$ of those functions that are skew with respect to an involutory automorphism σ of K. The purpose of this paper is to give a complete account of which $C_{\sigma}(K)$ are flat: in terms of the topology of K, they are exactly those for which there exists a non-empty dense-in-itself set in K not containing fixed points of σ . The flatness of $C_{\sigma}(K)$ can also be characterized in terms of the geometry of

its dual: in particular, $C_{\sigma}(K)$ is flat if and only if its dual is flat. These various characterizations yield a similar account for C(K) itself and for $C_0(T)$, the space of continuous functions vanishing at infinity on the locally compact Hausdorff space T. Among other results concerning spaces congruent to some $C_{\sigma}(K)$ we note the fact that every infinite-dimensional space $L^{\infty}(\mu)$ is flat.

^{*} The work of the authors was supported in part by NSF Grants GJ580 and GP19126, respectively.

The spaces $C_{\sigma}(K)$ are discussed and characterized by their metric properties in ([2]; pp. 87–96), an account of work due in the main to Jerison. Lindenstrauss [8] proposes an interesting definition of "classical Banach spaces in the isometric sense"; he points out that they turn out to be exactly the Banach spaces congruent to $L^p(\mu)$ for $1 \leq p < \infty$, together with those whose dual is congruent to some $L^1(\mu)$. Now the $L^p(\mu)$ are reflexive, and therefore not flat, for $1 ; and the <math>L^1(\mu)$ were classified as to their flatness in [12]. The spaces $C_{\sigma}(K)$ are important instances of spaces with duals congruent to L^1 -spaces, but do not exhaust this class by far (see [9] and references given there for a complete description). It would be interesting to decide which of the remaining such spaces are flat — thus completing the survey of all "classical" spaces — or at least which M-spaces or G-spaces are flat (terminology as in [9]). The fragmentary results available on this point are not included here.

The question of flatness of Banach spaces belongs to an area of investigation begun in [11] and continued in other papers, dealing with certain metric parameters of the unit spheres of normed spaces. In another paper [13] one of us shall discuss the values of these, viz., the *inner diameter*, the *perimeter*, and the *girth*, for all the spaces treated here.

Thanks are due to S. P. Franklin, D. J. Lutzer, V. J. Mizel, and K. Sundaresan for their helpful suggestions.

2. Preliminaries. If X is a normed space, a *subspace* of X is a linear manifold of X (not necessarily closed), provided with the norm of X. A *congruence* is an isometric isomorphism of one normed space onto another.

A curve in X is a "rectifiable geometric curve" as defined in ([1]; pp. 23-26); for terminological details see ([11]; p. 61). The length of a curve c is $l(\mathfrak{c})$, and its standard representation in terms of arc-length is $g_{\mathfrak{c}}\colon [0,l(\mathfrak{c})]\to X$.

X is flat if there is a curve of length 2 in the boundary of the unit ball of X such that its endpoints are antipodal; i.e., a curve c with l(c) = 2, $||g_c(s)|| = 1$ for $s \in [0, 2]$, and $g_c(0) + g_c(2) = 0$. If a subspace is flat, it obviously follows that X itself is flat.

Let T be a Hausdorff space; then C(T) is the Banach space of all bounded real-valued continuous functions on T with the supremum norm. Let σ be an involutory automorphism of T, i.e., a homeomorphism of T onto T with $\sigma \circ \sigma = \mathrm{id}$. Then $C_{\sigma}(T)$ denotes the closed subspace $\{f \in C(T): f(t) + f(\sigma t) = 0, t \in T\}$ of C(T); it is also a Banach space. We set $T^{\sigma} = \{t \in T: \sigma t \neq t\}$ the open set of points not fixed by σ , and observe once and for all that

If T is locally compact, $C_0(T)$ denotes the closed subspace of C(T) consisting of the real-valued continuous functions on T that vanish at infinity. If σ is as before, we set $C_{0\sigma}(T) = C_0(T) \cap C_{\sigma}(T)$.

We summarize a useful remark for the study of $C_{\sigma}(K)$, K compact, in the following lemma.

LEMMA 1. Let K be a compact Hausdorff space and σ an involutory automorphism of K. Let $K' = K^{\sigma} \cup \{\infty\}$ be the one-point compactification of the locally compact space K^{σ} , and $\sigma' \colon K' \to K'$ defined by $\sigma' t = \sigma t$, $t \in K^{\sigma}$ and $\sigma' \infty = \infty$. Then σ' is an involutory automorphism of the compact Hausdorff space K', $K'^{\sigma'} = K^{\sigma}$, and the mapping $f \mapsto f' \colon C_{\sigma}(K) \to C_{\sigma'}(K')$ defined by f'(t) = f(t), $t \in K^{\sigma}$, and $f'(\infty) = 0$ is a congruence.

Proof. Immediate from the definitions and (1).

A Hausdorff space T contains a largest dense-in-itself subset; this set is closed and is called the *perfect core* of T. A space is *scattered* if its perfect core is empty. Pełczyński and Semadeni [10] have given a great number of equivalent conditions for a compact space K to be scattered, and especially some involving C(K) and $(C(K))^*$. We reformulate for our use three of these conditions. If K is a compact Hausdorff space and $t \in K$, the *evaluation functional* $e_t \in (C(K))^*$ is defined by $\langle f, e_t \rangle = f(t)$, $f \in C(K)$.

THEOREM 2. (PEŁCZYŃSKI AND SEMADENI). Let K be a compact Hausdorff space. The following statements are equivalent:

- (a) K is not scattered;
- (b) there exists $h \in C(K)$ such that h(K) = [0, 1];
- (c) the linear mapping $\Gamma: l^1(K) \to (C(K))^*$ defined by $\Gamma y = \sum_{t \in K} y(t) e_t$, $Y \in l^1(K)$, is not surjective.

Proof. ([10]; Main Theorem, (0), (3), (11)).

- 3. The main result. We examine the following properties that a normed space X may have:
 - (F1): X is flat;
- (F2): X^* is not the closed linear span of the extreme points of its unit ball;
 - (F3): X^* is not congruent to $l^1(A)$ for any set A;
 - (F4): X^* is flat.

We observe that $l^1(A)$ is the closed linear span of the extreme points of its unit ball, so that (F2) always implies (F3).

Before we discuss these conditions as applicable to a space $C_{\sigma}(K)$, we look at a special case. We define $\pi \colon [-1,1] \to [-1,1]$ by $\pi t = -t$, an involutory automorphism of [-1,1]. The proof of the following lemma is an adaptation of a construction in [6].

225

LEMMA 3. The space $C_{\pi}([-1,1])$ is flat.

Proof. We define $g: [0,2] \to C_{\pi}([-1,1])$ by

$$(g(s))(t) = -(g(s))(-t) = \begin{cases} 2(1-s)t, & 0 \leqslant t \leqslant \frac{1}{2}, \\ |4-4t-s|-1, & \frac{1}{2} \leqslant t \leqslant 1, \end{cases} 0 \leqslant s \leqslant 2.$$

Then $||g(s)|| = |(g(s))(1-\frac{1}{4}s)| = 1$, and ||g(s')-g(s)|| = |s'-s|, as is easily verified directly. Therefore g is Lipschitzian, and is the standard representation in terms of arc-length of a curve of length 2 in the boundary of the unit ball of $C_n([-1,1])$. But g(2) = -g(0), so the endpoints of the curve are antipodal, and the space is flat.

In the rest of this section, we shall be dealing with a given compact Hausdorff space K and an involutory automorphism σ of K. The following construction is useful. Let V be a closed set in K with $V \cap \sigma V = \emptyset$, and let $f_0 \in C(V)$ be given. By the Tietze Extension Theorem there exists $f_1 \in C(K)$ with $||f_1|| = ||f_0||$ and $f_1(t) = -f_1(\sigma t) = f_0(t)$, $t \in V$. We define $f \colon K \to R$ by $f(t) = \frac{1}{2}(f_1(t) - f_1(\sigma t))$, $t \in K$, and find $f \in C_{\sigma}(K)$, $||f|| = ||f_0||$, and $f(t) = f_0(t)$, $t \in V$. Such a function f shall be called a skew Tietze extension of f_0 .

For every $t \in K$, we consider the evaluation functional $e_t^\sigma \in (C_\sigma(K))^*$, (the restriction of e_t to $C_\sigma(K)$) defined by $\langle f, e_t^\sigma \rangle = f(t)$, $f \in C_\sigma(K)$. The set $\{e_t^\sigma \colon t \in K^\sigma\}$ is exactly the set of extreme points of the unit ball of $(C_\sigma(K))^*$ ([2]; p. 89).

Lemma 4. With K, σ as specified, let a non-empty set $P \subset K$ satisfy $P \cap \sigma P = \emptyset$. Then the linear mapping $\Gamma_P \colon l^1(P) \to (C_\sigma(K))^*$ defined by $\Gamma_P y = \sum_{l \in P} y(t) e_l^\sigma, y \in l^1(P)$, is isometric.

Proof. Obviously, $P \subset K^{\sigma}$. Now $\|e_t^{\sigma}\| = 1$, $t \in P$, so Γ_P is well defined, linear, and bounded, and $\|\Gamma_P\| \leq 1$. It remains to prove that $\|\Gamma_P y\| \geq \|y\|$ for all $y \in l^1(P)$, or at least for all those with finite support. If $Q \subset P$ is finite and y(t) = 0, $t \in P \setminus Q$, we can find, by means of a skew Tietze extension, $f \in C_{\sigma}(K)$ with $\|f\| = 1$ and $f(t) = \operatorname{sgn} y(t)$, $t \in Q$. Then

$$\begin{split} \|T_{P}y\| \geqslant \|f\| \, \|T_{P}y\| \geqslant \left| \left\langle f, \sum_{t \in Q} y\left(t\right) e_{t}^{\sigma} \right\rangle \right| \\ &= \sum_{t \in Q} y\left(t\right) \operatorname{sgn} y\left(t\right) = \sum_{t \in Q} |y\left(t\right)| = \|y\|. \end{split}$$

We are now ready to characterize those K and σ for which $C_{\sigma}(K)$ satisfies (F1)–(F4).

THEOREM 5. Let K be a compact Hausdorff space and σ an involutory automorphism of K. Then (F1), (F2), (F3), (F4) are equivalent for $X=C_{\sigma}(K)$, and also equivalent to each of the following statements:

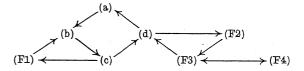
(a): K^{σ} is not scattered;

(b): there exists $h \in C_{\sigma}(K)$ with $h(K^{\sigma}) = [-1, 1];$

(c): there exists $h \in C_{\sigma}(K)$ with h(K) = [-1, 1].

Proof. We add one more statement to the list:

(d): if $P \subset K$ satisfies $P \cap \sigma P = \emptyset$, $P \cup \sigma P = K^{\sigma}$, the isometric linear mapping $\Gamma_P \colon l^1(P) \to (C_{\sigma}(K))^*$ defined in Lemma 4 is not surjective; and prove the implications



In view of the formulation of statements (a), (b), (c), (d) it is possible to apply Lemma 1 (observing (1)) and assume without loss, as we shall in this proof, that $K \setminus K^{\sigma}$ is a singleton, say $\{\infty\}$. If $K^{\sigma} = \emptyset$, the theorem is trivial. We therefore assume without loss that $K^{\sigma} \neq \emptyset$.

The implication $(F2) \rightarrow (F3)$ was noted above, and the implications $(b) \rightarrow (c)$ and $(F3) \rightarrow (d)$ are trivial.

- (a) implies (b). The perfect core S of K^{σ} is not empty; choose $t_0 \in S$. Since $t_0 \neq \sigma t_0$, there exists an open neighborhood U of t_0 such that $\operatorname{cl} U \cap \operatorname{cl}(\sigma U) = \emptyset$; in particular, $\operatorname{cl} U \subset K^{\sigma}$. Then $U \cap S$ is non-empty and dense-in-itself, hence $\operatorname{cl} U$ is compact and not scattered. By Theorem 2 there exists $h_0 \in C(\operatorname{cl} U)$ with $h_0(\operatorname{cl} U) = [0, 1]$. A skew Tietze extension h_0 of h_0 satisfies $h \in C_{\sigma}(K)$, $[-1, 1] \supset h(K^{\sigma}) \supset h(\operatorname{cl} U) \cup h(\operatorname{cl}(\sigma U)) = [0, 1] \cup \cup [-1, 0] = [-1, 1]$, as required by (b).
- (c) implies (F1). With h as in (c), the mapping $\varphi \mapsto \varphi \circ h$ is a congruence of $C_{\pi}([-1,1])$ onto a closed subspace of $C_{\sigma}(K)$. By Lemma 3, this subspace is flat; hence $C_{\sigma}(K)$ itself is flat.
- (F1) implies (b). Let $\mathfrak c$ be a curve of length 2 in the boundary of the unit ball of $C_{\sigma}(K)$, with antipodal endpoints. Let $r \in [-1, 1]$ be given. Since $g_{\mathfrak c}(1-r) \in C_{\sigma}(K)$, $\|g_{\mathfrak c}(1-r)\| = 1$, there exists $t_r \in K^{\sigma}$ such that $(g_{\mathfrak c}(1-r))$ $(t_r) = 1$. Then

$$\begin{split} r &= 1 - (1 - r) \leqslant 1 - \|g_{\mathfrak{c}}(1 - r) - g_{\mathfrak{c}}(0)\| \leqslant 1 - \left(1 - \left(g_{\mathfrak{c}}(0)\right)(t_{r})\right) \\ &= \left(g_{\mathfrak{c}}(0)\right)(t_{r}) = \left(1 + \left(g_{\mathfrak{c}}(0)\right)(t_{r})\right) - 1 \leqslant \|g_{\mathfrak{c}}(1 - r) + g_{\mathfrak{c}}(0)\| - 1 \\ &= \|g_{\mathfrak{c}}(2) - g_{\mathfrak{c}}(1 - r)\| - 1 \leqslant 2 - (1 - r) - 1 = r. \end{split}$$

Therefore $r = (g_c(0))(t_r) \in (g_c(0))(K^a)$; since $r \in [-1, 1]$ is arbitrary and $||g_c(0)|| = 1$, we conclude that (b) is satisfied with $h = g_c(0)$.

- (c) implies (d). With h as in (c), consider once more the congruence $\varphi\mapsto \varphi\circ h$ of $C_\pi([-1,1])$ onto a closed subspace of $C_\sigma(K)$. If, contrary to (d), \varGamma_P were surjective for some $P\subset K$, $P\cap \sigma P=\emptyset$, then every element of $\left(C_\pi([-1,1])\right)^*$ would, by the Hahn–Banach Theorem, be of the form $\sum\limits_{l\in P}y(t)e^n_{h(l)},\ y\in l^1(P);$ however the linear functional $\varphi\mapsto\int\limits_0^1\varphi(r)\,dr$ on $C_\pi([-1,1])$ is bounded, but not of this form.
- (d) implies (a). Assume, contrary to (a), that K^{σ} is scattered. Since $K \setminus K^{\sigma}$ is a singleton, K itself is scattered. Let $x^* \in (C_{\sigma}(K))^*$ be given. By the Hahn-Banach Theorem, x^* can be extended to an element of $(C(K))^*$. By Theorem 2, there exists $y_0 \in l^1(K)$ such that

$$\langle f, x^* \rangle = \langle f, \Gamma y_0 \rangle = \left\langle f, \sum_{t \in \mathbb{K}} y_0(t) e_t \right\rangle = \left\langle f, \sum_{t \in \mathbb{K}^{\sigma}} y_0(t) e_t^{\sigma} \right\rangle, \quad f \in C_{\sigma}(\mathbb{K}),$$

since $\langle f, e_{\infty} \rangle = f(\infty) = 0$. Thus

(2)
$$x^* = \sum_{t \in K^{\sigma}} y_0(t) e_t^{\sigma}.$$

Let P be any set in K that is maximal with respect to the condition $P \cap \sigma P = \emptyset$ (such exist, by Zorn's Lemma); then $P \cup \sigma P = K^{\sigma}$. We define $y \in l^{1}(P)$ by $y(t) = y_{0}(t) - y_{0}(\sigma t)$, $t \in P$ (so that $||y|| \leq 2 ||y_{0}||$). Then (2) implies—since $e_{\sigma t}^{\sigma} = -e_{t}^{\sigma}$, $t \in P$ —

$$egin{aligned} x^* &= \sum_{t \in \mathcal{P}} y_0(t) \, e^{\sigma}_t + \sum_{t \in \mathcal{P}} y_0(t) \, e^{\sigma}_t = \sum_{t \in \mathcal{P}} \left\{ y_0(t) \, e^{\sigma}_t + y_0(\sigma t) \, e^{\sigma}_{\sigma t}
ight\} \ &= \sum_{t \in \mathcal{P}} y(t) \, e^{\sigma}_t = \Gamma_{\mathcal{P}} y \, . \end{aligned}$$

Since $x^* \in (C_{\sigma}(K))^*$ was arbitrary, Γ_P is surjective, in contradiction to (d).

- (d) implies (F2). Let $P \subset K$ satisfy $P \cap \sigma P = \emptyset$, $P \cup \sigma P = K'$; we have just shown that such a set exists. As noted earlier in this section, the set of extreme points of the unit ball of $(O_{\sigma}(K))^*$ is $\{e_t^{\sigma}: t \in K''\}$ = $\{\pm e_t^{\sigma}: t \in P\}$. But the image of Γ_P contains this set, and hence also contains (actually, coincides with) the closed linear span of this set of extreme points. The required implication follows.
- (F3) is equivalent to (F4). Since $(C_{\sigma}(K))^*$ is an abstract L-space (cf. [9]), it is flat if and only if it is not congruent to $l^1(A)$ for any set A [12].

Remark 1. Using statement (a), it is possible to apply the equivalences of Pełczyński and Semadeni [10] to derive many other conditions equivalent to (F1)–(F4) for $X=\mathcal{C}_{\sigma}(K)$; e.g., there exists a nonatomic regular finite Borel measure v on K such that $v(K^{\sigma})>0$.

Remark 2. In [13] we shall give further conditions on the metric structure of the unit balls of X, X^* that are equivalent to (F1)-(F4) for $X = C_{\sigma}(K)$.

4. Applications to other spaces. Theorem 5 provides criteria for the flatness of Banach spaces congruent to $C_{\sigma}(K)$. The following theorems summarize some of these criteria.

The proofs will merely be sketched. We recall that a topological space is *basically disconnected* if the closure of every co-zero set is open; extremally disconnected spaces are basically disconnected.

THEOREM 6. Let T be a completely regular Hausdorff space. Then (F1), (F2), (F3), (F4) are equivalent for the space X = where T is and hold if and only if

$$C_0(T) \begin{tabular}{ll} locally compact \\ compact \\$$

Proof. 1. If T is locally compact, there is a natural congruence between $C_0(T)$ and $C_\sigma(K)$, where the compact space K is $T \times \{-1,1\}$ if T is compact, and the one-point compactification of this product otherwise, and $\sigma \colon K \to K$ interchanges the second components -1 and 1 in the product. The conclusion for $C_0(T)$ — and for C(T) if T is compact — then follows from Theorem 5.

- 2. In general, there is a natural congruence between C(T) and $C(\beta T)$ where βT is the Stone-Čech compactification of T. Application of the preceding result to $C(\beta T)$ shows that C(T) satisfies (F1), (F2), (F3), (F4) if and only if
 - (*) there exists $h \in C(T)$ such that h(T) is a dense subset of [0, 1].

If T is pseudocompact, every continuous image of T in R is pseudocompact, hence compact. In this case, (*) is equivalent to the existence of $h \in C(T)$ with h(T) = [0, 1]. If T is not pseudocompact, we prove (*) by an argument adapted from [4]. Let $f \colon T \to R$ be an unbounded continuous function; there exists a countably infinite set $S \subset f(T)$ that is closed and discrete in R. Since R is normal, there exists a continuous $\varphi \colon R \to [0, 1]$ such that $\varphi(S)$ is dense in [0, 1]. Then $h = \varphi \circ f$ satisfies (*).

The conclusion for paracompact T follows from these results, since such a space is pseudocompact if and only if it is compact.

3. If T is basically disconnected and infinite, βT contains a subset homeomorphic to βN ([5]; 9H); but βN is not scattered, hence βT is not scattered. The conclusion follows from the preceding results applied to $C(\beta T)$.

Remark. The condition for non-compact pseudocompact spaces in Theorem 6 is unsatisfactory: pseudocompactness itself has a simple *intrinsic* characterization for completely regular Hausdorff spaces ([3]; p. 232), but we lack such a characterization of those pseudocompact spaces that can be mapped continuously onto [0, 1]. Such spaces may well be scattered: it is easy to construct a suitable instance of the scattered locally compact pseudocompact space Ψ described in ([5]; 5I) so that it has a continuous mapping onto [0, 1]; the construction is suggested by ([5]; 6Q).

Theorem 7. If (S,S,μ) is any measure space, (F1), (F2), (F3), (F4) are equivalent for $X=L^\infty(\mu)$ and hold unless this space is finite-dimensional.

Proof. $L^{\infty}(\mu)$ is congruent to C(T), where T is the Stone space of the σ -complete Boolean measure algebra of μ ([14]; pp. 206–207). T is compact and basically disconnected; a proof might use ([14]; pp. 85–86) and ([5]; Theorem 16, 17). The conclusion follows from Theorem 6.

References

- [1] H. Busemann, The geometry of geodesics, New York 1955.
- [2] M. M. Day, Normed linear spaces. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 21) Berlin-Göttingen-Heidelberg 1962.
- [3] J. Dugundji, Topology, Boston 1966.
- [4] R. Engelking, and A. Pełczyński, Remarks on dyadic spaces, Colloq. Math. II (1963), pp. 55-63.
- [5] L. Gillman, and M. Jerison, Rings of continuous functions, Princeton 1960.
- [6] R. E. Harrell and L. A. Karlovitz, Nonreflexivity and the girth of spheres, Proc. Third Sympos. on Inequalities, UCLA, 1969. (To appear).
- [7] and L. A. Karlovitz, Girths and flat Banach spaces, Bull. Amer. Math. Soc. 76 (1970), pp. 1288-1291.
- [8] J. Lindenstrauss, The geometrical theory of the classical Banach spaces, Proc. Internat. Congress of Mathematicians, Nice 1970. (To appear).
- [9] and D. E. Wulbert, On the classification of the Banach spaces whose duals are L¹-spaces, J. Functional Analysis 4 (1969), pp. 332-349.
- [10] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), (Spaces $C(\Omega)$ for Ω without perfect subsets). Studia Math. 18 (1959), pp. 211-222.
- [11] J. J. Schäffer, Inner diameter, perimeter, and girth of spheres. Math. Ann. 173 (1967), pp. 59-79.

[12] J. J. Schäffer, On the geometry of spheres in L-spaces, Israel J. Math. 10 (1971), pp. 114-120.

[13] — On the geometry of spheres in spaces of continuous functions, J. Analyse Math. (To appear).

[14] R. Sikorski, Boolean algebras, Second Edition, (Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 25), Berlin-Göttingen-Heidelberg, 1964.

Received February 12, 1971 (300)