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Nonfactorization in group algebras
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HWAI-CHIUAN WANG (Iowa City, Iowa)

Abstract. In this paper we study two large classes of group algebras — IFP
group algebras and Segal algebras. Many examples of IFP group algebras and Segal
algebras are given in Examples 2.4. The main results are as follows: 1. (See Theorem
3.1 and 3.3) An IFP group algebra or a proper Segal algebra does not have any weak
bounded approximate identity. II. (See Theorem 4.1 and Corollary 4.2). An IFP
group algebra or a character Segal algebra with property F does not have the weak
factorization property. III. If 4 is an IFP =x-algebra such that 42 is dense in A4,
then there exists a discontinuous positive linear functional on A.

1. Introduction. Factorization and nonfactorization (See 2.I for the
definitions) in various group algebras have been studied by a number
of mathematicians. W. Rudin in 1957 [12] proved I*(R)* L'(R) = L'(R),
and in 1958 [13] proved L'(@)*L'(G) = LY®), where G is any locally
Euclidean abelian group. Using an interesting method, P. J. Cohen in

- 1959 [1] proved that a Banach algebra with a (left) bounded approximate

identity (See 2.1 for the definition) has the factorization property. In
particular, L'(@)* ['(@) = L*(&), where @ is any locally compact group.
In 1965, R. BE. Edwards [3] proved that if 1 < p < oo and & is any in-
finite compact abelian group, then the group algebra L?(G) does not
have the weak factorization property (See 2.1 for the definition). L. Y. H.
Yap in 1970 [17] proved that if 1 < 9 << oo and @ is any non-discrete
locally compact abelian group, then the group algebra I' N L? (@) tinder
the norm [f}] = fll,+fli, has neither a weak bounded approximate identity
nor the weak factorization property (See 2.1 for the definition). In 1970,
J. C. Martin and L. Y. H. Yap [10] proved that if 1 <p < oo and @ is
any non-discrete locally compact abelian group, then the group algebra
F?(G) of all f in I*(G) whose Fourier transforms are in L?, under the
norm ||f|| = |Ifll,-+1Ifll,, has neither a weak bounded approximate identity
nor the weak factorization property. There is, therefore, good reason to
believe that an algebra which does not have a weak bounded appromma;te
identity will not have the weak factorization property. '
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In this paper we prove that a large class of group algebras, the
so-called IFP group algebras, lack both a weak bounded approximate
identity and the weak factorization property. Many IFP algebras are
listed in 2.4. Our main results are contained in Theorem 3.1 and Theorem
4.1. Bdwards’, Yap’s, and Martin-Yap’s results then are corollaries of
our theorems.

Making use of Cohen’s construction, N. Th. Varopoulos [14] in 1964
proved that for any locally compact group @, every positive functional
on L'(@) is continuous. Using the results in Section 4, we proved in
Section 5 that each known IFP algebra 4 is an *-algebra under some * and
there exists a discontinuous functional on A except the algebra L ().

These results are taken from the author’s doctoral dissertation.at
the University of Iowa, written under the direction of Professor Richard
R. Goldberg.

2. Definitions and examples. Throughout this paper unles the
contrary is stated, G will denote a non-discrete locally compact abelian
group with character group I'. The identities in @ and I" will be denoted
by ¢ and d, respectively.

In this section we give definitions and examples of group algebras
which form several chains. Afterwards, we shall define and study the
IFP group algebras.

DrriNmrron 2.1. Let (4, |l,) be a commutative Banach algebra.
We say that A has the factorization property it for every wecA, there exist
Y, zeA such that » = yz. We say that 4 has the weak factorization property,
in symbols 42 = A4, if for ‘every med, there exist Yiy eery Yny Bry e vvy Bped
such that & = y,2,+ ... +9,2,. We say that 4 has a bounded approwi-
mate identity if there is a constant D and a net (z,),., in 4 with llzs)ls <D
for every 1<, such that limm,z = & for every wed. We say that 4 has

i

& weak bounded approvimate identity if there exists a constant D such
that, for every zed and for every &> 0, there exists yeA such that
lyla <D and |lys—a, < e.

DEFINITION 2.2. A dense Banach algebra (4, ||,) in the group
algebra I'(@) is a Ll-dense subspace of LM(@) and also a Banach algebra
under || |, with convolution as multiplication.

Derpinrrion 2.3. A dense Banach algebra (8(&), 1 ls) in LM@) is
a Segal algebra on G if the following properties are satisfied:

S-1 If feS(6) and a ae@, then L f(z) = f(za ") eS(G) and |L,fls
= [Ifls-

S_-2. For each fe8(@), the mapping @ L,f is a continuous mapping
of G into (S(&), | |lg)- l

icm°®

Nonfactorization in group algebras 233
By 8-1, 8-2 is equivalent to
8-2". For each fe S(@), the mapping # — L,f is continuous at e.
A Segal algebra (8(@), | HS) is said to be character if feS(@), yelI
imply yfe 8(&) and [pflls = lIflls. LHG) is a character. Segal algebra on G.
A Segal algebra on @ is proper if it is not the whole of L(@).

Exsmrres 2.4. We list here many group algebras. All of them are
Segal algebras, and some of them are character Segal algebras. We shall
eventually prove that they are all IFP algebras (as defined in 2.9).

2.4.1. Let 1 <k << oo and T be the circle group. The Banach algebra
C*(T) of all functions with % continuous derivatives on 7' under the norm
[fllox = sup max|f9(z)]. C*(T) is a non-character Segal algebra.

0<i<k 2T

2.4.2. Let @ be an infinite compact abelian group. The Banach
algebra O'(@) of all continuous functions on @ under the norm Iflle = max
[f(m)]. C(&) is a character Segal algebra. et

2.4.3. Let 1 <p << oo and & be an infinite compact abelian group
with normalized Haar measure dr. The Banach algebra L?(G) of all
measurable functions f with [ |f(#)[?dr < co under the norm |fl},

&

=([] f(@)|Pdm)?. IP (@) is a character Segal algebra [7], [3], [5; p. 356].
@

2.44. Let R be the additive group of all real numbers. The Banach
algebra L4 (R) of all functions f in L* (R) which are absolutely continuous
on R with f’e L*(R), under the norm ||f]jz« = ||fll, + If ll.. Z4(R) is a non-
character Segal algebra ([11]; p. 9).

2.45. Let @ be a non-diserete locally compact abelian group having
a discrete subgroup H such that G/H is compact. (There will then exist
a compact set K of measure 1 in ¢ such that @ = HEK). The Banach
algebra T'(@) of all continuous functions of G for which sup ' max |f(uhz)|

heH zeK
<C oo under the norm ||f|ly = sup 3 max|f(uhs)|. T(G) is a character

uel@ heH  xeK
Segal algebra [16], [2], (4], ([11]; p. 127). For example, ¢ = R, H — integers,

1
K = [0, 2z], Haar measure = 5 Lebesgue measure.
5T

2.4.6. Let ¢ be any non-discrete locally compact abelian group. The
Banach algebra I' n Cy(G) of all continuous functions in L2 (@) which
vanish at infinity under the morm |f], = Ifli+1fle Where [flle
= sup|f(z)]. L' N Co(G) is a character Segal algebra ([113; p- 9).

zeF

2.4.7. Let 1<p << oo and G be any non-discrete locally compact
abelian group. The Banach algebra L' n L?(G) of all functions in &)
and I7(@), under the norm {fl, = Ifll,+Ifl,- L* N I?(G) is & character
Segal algebra [15], [171.


GUEST


234 Hwai-Chiuan Wang

2.4.8. Let 1< p< oo and @ be any non-discrete locally compact
abelian group. The Banach algebra F?(G) of all functions f in L(@)
whose Fourier transforms f belong to L (I"), under the norm ||f||pp = ||f]|,+
—[—Hf]}y. F'?(@) is a character Segal algebra [6], [8], [10].

Notations as in Examples 2.4, for the reference convenience we state
without proving the following three theorems:

TeEOREM 2.5. The group algebras O(G), LP(G), T(G),
I N IP(G) and F*?(G) are character Segal algebms

TemorEM 2.6. The algebras C*(T) amd L*(R) are non-character Segal

L' 0 0o (&),

algebras. )

THEEOREM 2.7. ([11]; p. 128) If @ is a discrete locally compact abelian
group, then a Segal algebra on G is the whole of L*(@).

THEOREM 2.8. The group algebras in 2.4, together with the group

algebra L, form a number of chains as follows:
L..c (DNl (Tc...cO(T) c...c I'T)c I}(T)
.. LMT), where k is a positive integer and r > s > 1.
IL O@) = ... c (@) = (@) < ... = IMG), where G is an infinite
compact abelian group, and r > s > 1.
oI I4(R) ¢ T(R) « I* n Oy(R) = I* n I*(R) =« F¥(R) = L(R),
where p>1, and t =2 if p>2,t =plp—1if p<2.,
IV. T(G) =« L' n Cy(@) = L' n IP (@) = F¥Q) = IMG), where G is
a non-discrete locally compact abelian group with a discrete éubgfroup H such
that G[H is compact, p >1 and t =2 if p >2, t =plp—1 if pK2.
V. I 0 Cy(@) =« I' N IP(G) =« T*(@) = LX), where G is any non-
discrete locally compact abelian group, p > 1 andt =24ifp >2,¢ = pjp—1
if p<2.
Proof. First we shall prove that I4(R) « T(R). Let fe L (R), and
let V=2, f =lim V2,f, where V*, is the total variation on [ —mn, n]. By

n->00

the Radon-Nikodym Theorem, V°°mf IIf'ly» Moreover,
D) max|f(e+a)| < 3 min|f(k+2)|+ V2 f < If b I = Ifllza.

F=—n 2€0,1] Jo=—p 2€[0,1]

< |fllza- l‘or any continuous functlon g

<2 3

ne=—00

Therefore Z ma.x |f (k)|

k=—oc0 [0

on R, by routme computation, sup Z‘ max |g(%+n-+ )|

UeR n=—o0 xe0,1]
max |g(n+a)|. Therefore |flip <2 [flz4, s0 fe T(R)

Goldberg [4] proved T'(R) = Lt N Oy(R). Similarly it may be shown
that T(6) < L' n ().

Itf <2 and fel' n I* (@), then, by the Hausdorff—Young theorem,
f"eII') where t —p/p—1. This shows that L' (@ < F”(G). If
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P> 2, and fe L' N LP(@), then fe L*(@), f e L3(I"). Hence I' n L?(})
< FY(@).

The other inclusions among the chains are clear. This completes
the proof.

DerFInITION 2.9. Let G be a non-discrete locally compaet abelian
group with character group I. A dense Banach algebra (A BN _4) in
LY(@) is an IFP group algebra if the following properties &a,tlsfled:

PrOPERTY L |fsglq < Iflilgllsy (feLH&), ged)

PROPERTY F. A™ < IP(I) for some py, 0 < py<< co.

PrOPERTY P. There exist sequence (K,)5_ 1, (N2, of subsets of T,
a sequence (fy)ar, in A and a sequence of positive numbers (C,>=1)2_,
such that

Pl E;nK; =0, if i #j. N, cInt(K,), »(N,) =a>0, »(K,)
=f< o0 (n=1,2,...), (Here, Int denotes interior and v denotes the Haar
measure on I').

P-2. 0<f, <1, suppf, < K,, [, (V) =

P-3. [ifulla < G, and

L\|43

<< oo for some a,0 << a << oo,

B
Il
-

N
K|~

for some b, 0 << b << oo.
1

£
il

Every Segal algebra on G has the property I ([11]; p. 128) while the
improper Segal algebra (@) does not have the property F. Moreover
we have the following theorem.

TrpOREM 2.10. Every character Segal algebra (S(@), | |s) on G has
the property P.

Proof. Sinece G is non-discrete, I iz non-compact. There exists
a sequence (y,);., in I and a compact symmetric neighborhood K of d
such that y, = d, v, K Ny, B = @ if i 54§ ([9]; p. 116). Let N be a compact
symmetric neighborhood of & with ¥ < IntK. There exists a generalized
trapezium function fe L'(@) such that ([11]; p. 111)

0<f <1, '
(*) suppf” < K,
(V) =1.
Then feS(@) since f has compact support ([11]; p. 128). Let K, = v, K,

N, =y N, fo = y.fand C, = qn, where ¢ > 1 and fls<gn =1,2,. )
Then
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P-1 holds by the construction of the K, N, and y,;

P2 0< f7: < 17 Suppfnj < VnK = Kn? fr: (Nn) = f; (_')/,LN) =1
n=12. ); -
1 1
Z(Q'rb :,,Z_*IM = gl—cﬁ= %o and
”fn”S = llyaflls
=|lfly  sinee(S(&),| I is character

<g<g=0, (n=1,2,..).

Thus (S(@),

TeEOREM 2.11. Bvery Banach algebra (A (
group algebra.

Proof. We divide the proof into three parts:

Property I: Hach algebra in 2.4. is a Segal algebra, and hence
([11]; p. 128) has Property I.

Property F: By Theorem 2.8.

Property P: Except for C*(T) (k>1), and L4(R), the Banach
algebras in 2.4 are character Segal algebras and so, by Theorem 2.10,
all of them have the Property P. Moreover,

1. C*(T) (k> 1) has the Property P: The character group of T is Z,
the integers. Let K, = N,, = {n}, fo(t) = 6™, and 0, = n*(n =1,2,...).
By a simple caleulation, G”“ () has the Property P

II. I#(R) has the Property P: Let K, = [n—%, n-+%], N, = [n—4,

7+ §]in R. There is a function fin I'(&) such that 0 < f < 1, supp, f < K,
f"(N,) = L. Since L4 (R) is a Segal algebra, fe T4 (R). Let f, (1) = /" f (),
and C, =n||fllz4 (=12, ...). We have

Ifallza = [l + I flly
= F A N @) 4 6 (e
W A4 1 A o — 1) 1 F Ll

<
< lfli+2lflh = #llfils = 0,.

| |ls) has the Property P. This completes the proof.
@, || i) in 2.4. is an IFP

1) eV,

Now it is easy to see that L4 (R) has the property P.
These complete the proof.

3. Bounded approximate identity.

TEEOREM 3.1. A proper dewse Banach algebra (4(&), || |.) in L*(&)
with property 1 does not have any weak bounded approvimate identity (sce
Definition 2.1). In particular, an IFP group algebra does not have any
weak bounded approvimate identily.
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Proof. The identity map of 4(@) into L(G) is a continuous map as
2 homomorphism of a semisimple Banach algebra into another. So there
is a constant D > 0 such that ||/}, < D [|f]|, for all fe 4 (G). By our assump- ‘
tions, the norms [|ffl, and ||f||, are non-equivalent and so there is no
constant D, > 0 such that ||f], < D, ||f|; for all fe4(Q). Thus, for every
integer k > 1 there is a geA(G) with [jgj, > % and fjg];, = 1. Let hed(G)
with |h*g—gll, << 1. Then

1<k <llglle < Iglly+1 < BlLollgl+1 < 1]l +1.

We have ||kl > k—1. So for every k > 1 there exists geA (@) such that
Ilh*g —gll << 1 implies |hjl; > k—1. This proves that (4(®), | |.) does
not have any weak bounded approximate identity.

CorOLLARY 3.2. Each Banach algebra in 2.4 has no weak bounded
approzimate identity.

THEOREM 3.3. Every proper Segal algebra does not have any weak
bounded approzimate identity.

Proof. A Segal algebra has the property I ([11]; p. 128)

4. Factorization property. In this section we shall show that none

of the algebras 4 (@) in 2.4 has the weak factorization property.
The main ideas are as follows:

(@) If A(6) = LYG) has the weak factorization property (that is,
N

A(G)Y = A(@) and if A(G) = IP(I"
< IP(I') for oll p, 0 < p < oo.

) for some p, 0 < p < oo, then A(G)

(i) But if A(G) is in 2
& I7(I') for some r.

(iii) Hence 4(G) + A(Q).

THEOREM 4.1. A Banach algebra (A @11 A) in LNG) with proper-
ties ¥ and P does not have the weak factorization property. In particular,
any IFP group algebra does not have the weak factorization property.

Proof. I. Let {4 (@), || |ly) be a subalgebra of I}(@) such that A(G)
n

= A(@) where A(@)? = {Yfi*g;: f;, g:c A (@), n is any positive integer}.
i=1

2.4 then A(G < LP(I) for some p, but A(G)

N
Then/{ (@) = LPo(I') for some py, 0 < p, << oo (that is, 4 (6) has property F')

iff A(G@) = LP(I") for all p, 0<p < o
The “If” part is clear.

A\
“Only-if” part. Suppose 4(&) < LPo(I') for some Poy 0 < Pe< 0.
N AN
Since 4(G) = L*(I) we have A(G) = L*(I") for all p, Po<P < oo If
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feA (@), there exists g;, hyed(G), 1 =1,2,...

"= él g: by
f lg: ()R

3
y 1 with f = g, *h;, or
i=1

By the Schwarz inequality, for ¢ =1,2,..., n, we have

(P)Pody = f lg:” (PP R ()70 dy

<(f 17 moay)™ ([ 107 ()
I I

since g; , h; e IPo(I).

[Pody)*
< o0

N\
¢ IP*(I). Hence A()

Thus g; h; e LMY (I) (6 =1,2,...,m). So /\f
e I for n = 1, 2,

< IPP(I). Continuing this process, we have 4 ()
For any p, 0 < p < p,, there iy a positive integer n such that 211 < P < Py

Therefore A(G) < IP(I') for all 0 < p < p,. This completes the proof,

II. If the Banach algebra (4 (@), | |l4) in L*(G) has the Property P,
then there is feA(@) with f~ e L*(I") but f ¢ L”(]‘) for some r,0<<r<l

o0 o0 1
Notations as in 2.9. Since Z (gﬂj‘ <Z 0‘17;1 = 3 G5 < oo, there
n=1 f=1 n=1 YN

exists fed (@) with f =2_0I“%’ the series converging with respect to
n=1 n

| . Then f* = 3"

since [lg” (|, < lelHQ”HA lglls for each. g4 (G).

0‘1‘1‘1
Slnee, suppfn cK (n=1,2,...) and EnK; =0 if ¢ #j, we
have
N Ifal N
=) e and  If717 = _*_f%b_
n=l " n=1 n
Then
. Y [ 1Fa ) T [ fa ()
[i5 iy =3 [Lallla 37 (sl
o n=1 I " =1 K, "
1 .
SZ e Tv(H,) since 0<f, <1
n

[

n

I
DV
-

(=]
1 . .
T A< E P since 0, >1 for every m < co.
" =1 n '

I
-

A
2
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Also

(17 0y = > f f"(”‘““
I n=1

f’ f L since fo (M) =1

E{ N, Cn

o 1 o 1
=Z———v(Nn) =2~—ba — . Note a> 0.
n=1 0?' n=1 On

. . b .
Thus "« LM(I') but f ¢ I"(I'), where r =21’ and 0<r<1 since

f e I*(I") for every s,
III. Suppose A (@) has the weak factorization property, that is,

A(@) = A(G)". Then, by I, A./(??) « IP(I) for all, 0 < p < oo. But, by
II., there is a function f in A (@) such that f~ e L*(I)\I7(I"), for some
7,0 <r<<1. This is a contradiction. Therefore A (@) does not have the
weak factorization property.

1<sg oo

COROLLARY 4.2. A character Segal algebra S(G) with S/(E) < LPo (1),
for some py, 0 << py<< oo, does not have the weak factorization property.

Proof. Theorem 2.10 and Theorem 4.1.

COROLLARY 4.3. Each Banach algebra in 2.4 does not have the weak
factorization property.

Proof. Theorem 2.11 and Theorem 4.1.

Remark 4.4. Let @ be an infinite compact abelian group. Let L= (@)
be the convolution algebra of all essentially bounded functions on G
under the norm ||f{l., = esssup |f(z)]. Now L”(G) is a Banach algebra

but is not a Segal algebra, smce S-2 of Definition 2.3 does not hold. However
it may be shown that L%(@) is an IFP group algebra and hence lacks
both a weak bounded approximate identity and the weak factorization
property. We omit the proof.

5. Discontinuous posiﬁve functionals. By Corollary 3.2 and Corollary
4.3, every Banach algebra in 2.4 lacks both a weak bounded approximate
identity and the weak factorization property. Each one of them is com-
mutative, so they are #-algebras under the trivial involution *. That is,
f* =7 for every f. Evidently they are *-algebras under some non-trivial
involution *. In this section we shall apply previous results to prove
that there exists a discontinumous positive functional on each of them.


GUEST


240 Hwai-Chinan Wang

TeROREM 5.1. Let (4, |,) be a Banach algebra such that Azi A
and A* is dense in (A, i) If A is also a x-algebra, then there exists
a discontinuous positive fumctional on A.

Proof. Since A* is a subspace of 4, by Zorn’s lemma there exist
a Hamel basis 4 for A* and a Hamel basis 4 for A such that A Z 4.
Take ge AN A. Let M be the linear space spanned by AN {gp}. We have
4 = M®Cp, where (' denotes the complex numbers. Clearly A%< M.
For every fed, f can be uniquely represented by g-+agp for some ge M,
aeC. Define p(f) = a. Then p is a non-zero linear functional on A such
that p (h) = 0 for any he M. For fed, we have f*fed® « M, 50 p(f*f) = 0.
Thus p is a non-zero positive functional on 4. Since A2 is dense in 4,1 1.
and p(4*) = 0, p is discontinuous.

THEOREM 5.2. Let (A(G), || |l) be any Bamach algebra in 2.4. Then
there ewists a discontinuous positive functional on A(Q).

Proof. By Corollary 4.3, 4(G)? ; A (G). Bince A(Q)is a Segal algebra,
A (G is dense in (A, 1 4) [11; p. 128]. By Theorem 5.1, there is
a discontinmous positive functional on A(G).
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