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On the Fourier series of fumctions of bounded ®-variation
by
ALBERT BAERNSTEIN II (Syracuse, N.Y.)

Abstract. Let @ and ¥ be functions complementary in the sense of of W. H.
(=]

Young. Salem proved that, when }' ¥(i—!) < oo, every continuous periodic function
i=1
of bounded @-variation has a uniformly convergent Fourier series. We prove here

that, when E‘?’(i—l) = oo, there exists a continuous periodic function of bounded
i=1
@-variation twhose Fourier series diverges at a point.
1. Let © and ¥ be functions complementary in the sense of W. H.

Young. That is

u . u

ow) = [ g)d, ¥ =[p0d, @>0),

0 0
where ¢ is a strietly increasing continuous function on (0, ) with
limg(u) = 0, limg(u) = oo, and y is the inverse of . For example, if
u—>0 U0
D(u) = u? (L<p < o) then ¥(u) = const-u% where p~'+¢ ' = 1. We
say that a function F' defined on [—, =] has bounded @-variation if

n
sup ) @ (1F(z) — F (2,,)]) < oo,

i=1
where the sup is taken over all partitions {x;};_, of [—=, =]. Note that
functions of bounded variation have bounded @-variation. For @ (u) = u®
(L<p< oo) L. C. Young [4], generalizing Jordan’s theorem, proved
that every continuous periodic function of bounded @-variation has
a uniformly convergent Fourier series. Young’s result was extended by

Salem ([8], p. 50), who showed the same conclusion holds as long as

(==}
DIV < oo,
i=1
Salem’s result is an easy consequence of a convergence criterion he devised.
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244 A. Baernstein II

This criterion may be stated as follows (see discussion in (I11, p. 305).
Let
N

1) Wo(a) = 2’ rlf [E(w+ i——%’—”—)-ﬁ(m f—r—(%:ﬂ)]sinmt

=1 0

+Z ~1f[ ( H’”) F(m—jj%tﬁ)]sintdt,

where 2' means sum over odd indices only, and n is odd. Then, assuminé" F
is continuous and periodic, we have, uniformly,
F(2)—8,(@) = 2" W,(2)+0(1)  (n - o).

In this note we show that > ¥(i™') < co is sharp by constructing,
when >W(i™") = oo, a continuous periodic function of bounded @-va-
riation whose Fourier series diverges at x = 0. This answers a question
raised by Goffman and Waterman [2].

2. We will make use of the elementary theory of Orlicz sequence
spaces. Denote by U; the set of all real sequences a = {e;}3, such that

=2 P(la) < o0,
and by s the set of all a such that

lale = sup ]yl f; < oo,
where the sup is taken over all non-negative sequences f = {8;}2, with
D ¥(B;) < 1. Then aely iff kel for some constant k. The if part follows
from Young’s inequality ab < ®(a)-+ P(b), and the only if part from
the fact that

@) lalle < M = 0o(M™'a) < 1

For proofs of these statements, see ([5], p. 76 ff.). We also need
ProrosITION 1. If MW(i™') = oo, them, given &> 0, there. emists
aely with all a; = 0 and a; = 0 for all sufficiently large 4, such that ||ul|s < ¢
and i ta; > 1.
Proof. Define sequences p"cl, by ff =14 (1<i<n), /3}”:0
(i > n). Then |||y — oo with n, for if not, we would have ||%|, <M
(M some integer) for all m, hence, by (2), with ¥ in place of &,

2!{/ MYy <1,

=1
hence
D) <1,

=1
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and this implies, since ¥4, that

Zw' P < oo.

i=1

Take n so large that ||”||y > 2¢~". Then there exists yel, with ;>0
for all 4, gp4(y) <1, and

We may assume that y; = 0 for 4 > n. It follows from Young’s inequality
that [Jylls <14 ps(y) < 2. Hence a = ey has all the desired properties.

3. Now let F be a real function defined on [— =, =]. We define
IFlls = sup )| F(x) — F(w,_,)| B;
i=1

where the sup is taken over all partitions {#;} of [ —m, =] and over all
non-negative sequences f with

an <1

It follows from (2) that if |[F,<1, then F has bounded &-variation.
PRrOPOSITION 2. Let there be given aelg with a; > 0 for all ¢ and a; = 0
for i > m, a positive integer n > 2m -+ 1, and & > 0. Then there exists a contin-
uous periodic function F with the following properties.
(i) F=0, F =0 on (0, n/n) U (2mm/n, ), and supF(x) = supa;,
xz B 1

vy thin i (i) a
o2 ._1 3 —_——
(ii) 2 f[ ( ) F( - ):Ismtdt>2 Pl
(i) zIFHqs < 2|lafle
In the notation of (1), (ii) asserts that W,(0) > Sita;—e.

Proof. Define F =0 on [—=, 0] U [27m/n, ©] and on the intervals
[wifn, =(i4+1)/n] (i =0,2,...,2m~2). For ¢ odd, 1 < i < 2m—1, choose
& proper subinterval [s;, ?;] of [wifn, x(i-+1)/n], define F = aqy;., on
this subinterval, and let F be linear on [wi/n,s;] and [t;, =(¢+1)/n].
Choose [s;,%] so that

S RN, t4+(i+1)x
f[lﬂ( J;”‘)—F( +0 1)")] Sintdt > 2y, — 27,

w
[ .
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and extend F by periodicity. Then (i) is clearly satisfied, and the sum
in (if) is :

. m m
>2 Y a2i-1)—e> Y iTa—e.
=1 =1

To prove (iii), fix a non-negative sequence f with } ¥(8,) <1 and
a partition {z;} of [—=, =]. Assume first that {#;} is a refinement of I7,
where I7 is the partition whose points are — =, «, all the nifn (i =1, 2, ...,
2m), and all the s;,% (¢ =1,3,...,2m~1). For ¢ =1,2,..., m let

4, ={j: @i—Dn/n< 1< 81},
By = {j: tyy < @ < 2im/n}
and write y; = F(z;) —F(2;_,). Then p; = 0 if

je H (4; v By

and ) . .
Dl =a, Dyl = a.
Jedy JeBy
Hence
3) 2 il = D (il D) il )< D) aipt+aplt,
i 1=l jed; JeBy i=1

where f; = maxf; and f;* = maxp,. Since
Jedy JeB;

DwEh< dwEg)<

and similarly > P(85*) < 1, the right hand side in (3) is < 2|a/l,.

Now assume that {#;} is an arbitrary partition of [—m, =]. Let {y.}
be the least common refinement of {x;} and I7. With each ;(j> 1) we
associate a point y,, of {y;} according to the following scheme: If I (2)
=F(n_,) take ¥,y = ;. If F(w)> F(w;_,) then m;e(ni/n, x(i-+1)n)
for some odd 4. Take g, = @; if #; <s; and Yoy = 8¢ i @; > ;. IE P(wy)
< F(#,_;) then a;_ ;& (ni/n, n(i+1)/n) for some odd 4. Define Yoisy OY
Yor—1 = b i @5y <4 and Yoy = 5, if w;_, > ¢;. In all cases we have
Bi1 < Yoy S @y a0A |05 2> |yl , Where 8, = () — F(wy.), y; = F(ay)—
—F(%;_,). Verification is left to the reader. In particular, () < o(j+1),
;sDDhWe can define (a new) g* by i = f; when & = o(j), 8§ = 0 for other %.

en i

Dl Be< Y10yl B = D104 85 < 2o,

Where*the lagt inequality holds because {y,} is a refinement of IT and
2 »(8) = 2 P(B) < 1. This proves (iii).
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4. We proceed with our construction. Assume that Y ¥(i™!) = oco.
Then by Proposition 1, for p = 1, 2, ... there exists o™ el, with all of”> 0
and o =0 for i>m,, such that [a®|, <2 @+ and 3 i~'e® > 1.

i
Take an odd integer %, > 2m,-+1. Apply Proposition 2 with » = n, and
¢ = 1. Let F, be the function thus obtained. Choose now odd integers
Ny Mgy ... and functions F, Fy, ... inductively as follows: Assume that
Nyy.uotpy and By, ..., Fp have already been chosen, where p > 2.
Select an odd integer %, which is so large that

(4) oy > (21 1)1y

and, letting o denote modulus of continuity,
»n—1

(5) o (Z‘ 7, n/%p)logﬂp_l <pl.
i=1

Let F, be the function obtained from Proposition 2 with n = n, and
e = p~'. Note that the support of F, (in [—m, n]) lies strictly to the
left of that of F,_ ;. Define

This series converges uniformly, since F,(x) % 0 for at most one p and
supF,(z) = supa® < const-ldPp = 0(1) (p - o0).
z i :
Thus F is continuous. Clearly g - |glls is subadditive, and it is easy to
prove that g, -» g pointwise implies
llgle < liminfjlg,ls.
P00
Thus

1Plle < D) 1Fllo< 2 D 1as < 1

0
p=

4

and hence F has bounded @-variation.

Consider now W,,p(()), where p is fixed. All the terms in the second
sum of (1) are zero, since F = 0 on [ —=, 0]. For 1 < ¢ < 2m,—1 (i odd)
it follows from Proposition 2(i), applied to ¥,_, and F,.,, and from (4),
that

(6)
(t—!—irr)_F(t—l—(i—}—l)n)=Fp(t+in)_Fp(t+(i+1)“) 0<t<n).
F\ my Ny My Ty
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For 2m,+1< i<k, where k is the largest odd integer < (n,/n,_;)—2,
each term in the first sum in zero, where now Proposition 2 (i) has been
applied to F, and F,_;. For 4>k, the left hand side of (6) is <

p-1
w(z By, W/”p);
=1
which, by (8), is < p~* (logn,_,)~'. We conclude from.(6), and from
Proposition 2 (ii) applied to F, that
) np—2
Wiy (00> D74 ol —2p~* (logm,, )™ D) i,
i i=k+1
Since k> (t,[n,_,) —4, the second sum on the right is O(logn,_,). The
firgt sum on the right is > 1. Hence Wnp (0) >1—o0(1) (p - oc) and thus
the Fourier series of F diverges at 0.
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Convergence of convelution operators
by
CHARLES SWARTZ (Las Cruces, New Mexico)

Abstract. In this paper a locally convex topology is defined on the space of
convolution operators over a general test space of functions. When the test space
is the space & of rapidly decreasing functions, convergence in this topology coincides
with the convergence introduced in ¢} by L. Schwartz. The topology is studied in
some detail, and then the special case when the test space is a K{M,} space
is considered.

In [8], L. Schwartz defined a class of convolution operators between
certain spaces of distributions and introduced a topology on this space
of operators. In this approach emphasis is placed on considering convo-
lution by a fixed distribution as a linear operator between spaces of
distributions. In Gelfand and Shilov [2], a somewhat different approach
is taken. Gelfand and Shilov define a convolution operator on an arbitrary
test space with continuous translation and then consider a few examples
of such operators, some in very general test spaces. There i3 no topology
defined on the space of convolution operators although one sequential
limit theorem is proven ([2], TII. 3.5). .

In this paper we consider the approach of Gelfand and Shilov and
introduce a locally convex topology on the space of convolution operators
on a test space with continuous translation. In the first section some
of the properties of this topology are studied and we compare this topology
with the topology introduced by L. Schwartz in [8]. In the second section
we consider this topology for a certain type of K {3} space ([2], IL. 2.1).
Our results yield the characterization of sequential convergence in
0.(K,, K,) as given in [12] and also a characterization of sequential
convergence in the space @, of L. Schwartz ([7], VIL. 3). t

Our terminology and notation will basically be that of Gelfand and
Shilov [2]. A test space is a vector space @ of infinitely differentiable
funetions on R* equipped with a locally convex Hausdorff topology such
that
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