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Abstraget. A new and general version of the duality theorem in the theory of
induced representations of groups is given. The theorem gives the description of the
diserete part of the decomposition of the induced representation into irreducibles
in terms of spaces of continuous invariant sesquilinear forms on the product of the
space of inducing representation of the subgroup with some dense invariant subspace
of the given irreducible representation.

Induced representations are meant in the sense close to that of Bruhat and
groups are asgumed to be of Yamabe type and possessing a large subgroup.

Introduction. This paper deals with duality theorems in the theory
of induced representations of groups, which are also called Frobenius
reciprocity theorems.

‘We recall here the clagical formulation: .

For a compact G the intertwining number (i.e. the dimension of
space of intertwining operators) for a given irreducible unitary represen-
tation U of & and the induced representation U” of G equals the inter-
twining number for the inducing representation V of a subgroup I" and
the restriction of U to I .

There were numerous attempts to generalize the duality theorem
to noncompact groups — the interested reader may consult the Chicago
lecture notes of G. W. Mackey for the history and several formulations —
other papers of interest in that connection are Mackey [6], Fell [3] and
Bruhat [1]. The main difficulty in the noncompact case is the presence
of continuous spectrum of decomposition into irreducibles.

In this paper we deal with discrete part of decomposition of the
induced representation into irreducibles and we find the dimension of
space of intertwining operators for this and the given irreducible one.

Several versions of theorems of that type are already known — the
first, and the most famous is the Gelfand, Piateckil-Sapiro duality theorem
for automorphic forms [4]. It was proved for @ semisimple, discrete
subgroup I' such that G/I" is compact and V = id and asserts that for
a given irreducible representation U the intertwinirg number for U and
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U7 is equal the dimension of space of the generalized invariant vectors
for the restriction of U to I" which just correspond to automorphic forms.

In the latter years several generalizations were made by L. Maurin
[10], Y. Olsanskii [11] and finally a very general version was proved
in the joint work of K. Maurin & L. Maurin [9], however all those thoerems
formulated for unitary inducing representations.

In this paper, by adopting Bruhat’s definition of the differentiable
induced representation we are able to carry over the Gelfand & Pia-
teckii-Sapiro theorem to a large class of groups — the so called Yamabe
groups or projective limits of Lie groups, which we assume to have large
compact subgroups, and inducing representations — arbitrary in the
Fréchet space. We found however that certain growth condition replacing
the original condition of compactness of G/I"is necessary,

The organization of the paper is following., Section 1 contains pre- -

liminaries and notations — there is also explained what we mean by
unitary induced representation when the inducing representation is not
unitary. Section 2 contains the construction of the dual object to the
space of intertwining operators, corresponding to the generalized invariant
vectors of Gelfand & Piateckii-Sapiro, which is the space of “appropriately
continuous” sesquilinear, invariant forms on @ x B, where @ is a certain
subspace of the representation space. There is also proved the general
version of the duality theorems — Theorem 2.8.

Possible applications of the scalar version of the Theorem 2.8 were
diseussed at length in [12] and [13]. However, the first of those contains
a version of duality theorem which is untrue, the other is not eagy to
deal with, so the present results may be thought of as an improvement
and generalization of previous results.

The last section contains the duality theorem for unitary induced
representation and also discusses conmections between our results and
the previously known formulations of duality theorems.

1. Notations and fundamental concepts. The aim of this introductory
Daragraph is to establish notations which will be used in the sequel and
recall some basic definitions and theorems which we shall freely use after-
wards without mentioning them explicitly.

a) Regular functions and distributions on Yamabe groups
(2], [8]). By a Yamabe group we mean a countable projective limit of
Lie groups. We shall use standard notations for spaces of functions e.g.
2 for infinitely differentiable scalar fumetions with compact support, D (L)
for the same class of functions valued im a locally convex Hausdorff
topological vector space B. Those spaces are equiped with usual topology
qf; double inductive limit. We shall call an E-distribution a continuous
linear functional on the space @(E). It is known that in the case when
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F is a Fréchet space there is a canonical isomorphism between the space
of E-distributions and the space of bilinear separately continuous forms
on 2 X E. In the following we shall not distinguish between those spaces.
In agreement with the formation of tensor product of spaces 2 and F
we shall denote by f®e the function on G:

G>9—~>flglecE where feD, ¢cE.

b) Various notations concerning representations [1]. Let
@ denote a locally compact unimodular group of the Yamabe type. By
a representation of @ in a Hausdorff topological vector space X we mean
a strongly continuous homomorphism g — U, of & into the group of linear
topological isomorphisms of X with an additional property:

(%) for every compact K <G the set of operators {U,},x is equicontinuous

n X.

When X is barreled, (x) is antomatically satisfied. It is well known
that left translations define in all reasonable function spaces like 2,
2(H), ete. representations of G. The notation used for a representation
of @ is (U, X) where U is the homomorphism and X the underlying space.

Let (U, X) be a representation of & in the complete space X and
I the comvolution algebra of measures on G with compact support.

-The group homomorphism U can be extended to the homomorphism of

M into the algebra £ (X). If, in addition (U, X) is a unitary represen-
tation in Hilbert space this homomorphism is involution preserving. We
shall be interested in the representation of a subalgebra of M, namely the
convolution algebra 2 < M. We shall denote it by 25 f— U; e £(X).

Every character of a compact subgroup K « @ defines a projection
P, in X, where

1
Pao—— f 1 (%) Uy dh
nz &

dk is the Haar measure on K, n, denotes the dimension of the irreducible
representation with character y. '

The range of this projection is the maximal subspace of X on which
the restriction of U to K is equivalent to the multiple of the represen-
tation of K associated with character .

¢) Induced representations [1], [6]. We shall employ the
Bruhat’s definition, with minor changes, of the induced representations.
It goes as follows. . )

Let I'< @ be a closed subgroup of G and (V, E) its representation
in a space E. Denote by 2" the space of regular functions on ¢ valued

"in F, which satisfy the following conditions:

(a) suppf/I" is compact in G/,
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(b) flgy) = 4(y) V;*f(g), 4 denotes the modular funetion on I
The map f: 2(B)— 2" defined by

Bilg) = [ 47
r

V,flgy)dy, dy the left Haar measure on I

js continuous, surjective and commutes with left tramslations, hence
we can form the quotient representation of the left regular representation
in 2 (®). This quotient representation in the space 9" ~ 9(H)[Kerp
equiped with quotient topology is called the differentiable representation
induced. by the representation (V,B) of I' and denoted by (U, D).
By a left-invariant prehilbert seminorm on 297 we mean a prehilbert
seminorm ¢ such that ¢(L,f, L,h) = q(f, h) for every g <G and all
f; b« 2(B). L, as usual denotes the left regular representation of G.
Examples are furnished by seminorms of the type

— [ (Df(g)| Dh(g))dg,

(&

2B)x 28> ],k

where D is a left invariant differential operator on 2 (H) and (-|-) a pre-
hilbert geminorm on E.

Having defined a hermitian positive, invariant form ¢ on 27 we
can form a unitary representation of @ by taking the Hilbert space HY,
the completion of 27/ (null space of g) mormed by |f]? = ¢(f,f) and
extending operators of the induced representation to the whole H? This
unitary representation, that is the pair (U, H%) we shall call the undtary
induced representation of @. This notion, as explained in Section 3 extends
the notion of the induced representation of Mackey.

d) Groups with large subgroups [6]. A compact subgroup
K « @ is called large it every irreducible representation of @& in a Banach
space contains any irreducible representation of K with finite multiplicity.
This being the case projections P,, defined above, have finite dimensional
ranges for any character of the large subgroup.

Convention. All groups considered in the sequel are separable
locally compact unimodular Yamabe groups with a large subgroup K.

Such groups are called simply groups without any further reference.

2. A duality theorem. We begin with considering an irreducible unitary
representation (U, H) of the group @ acting in Hilbert space H and
a certain nuclear space @ connected with it.

Let us define a mapping from 2 into H as follows:

o D—H;  a,(f) := U,

where » belongs to the subspace P,H for some character y. We shall
show that the image of «, which we denote by @, does not depend on
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# and equip it ‘with the nuclear topology transported by a,. To this end
let us note that the following holds

-Pxoaa:(f = ax zf)} Uhoam f) = aan(h'*f

At the right hand side of the first equality P,f is formed with respect
to the left regular representation of G in 2.

PROPOSITION 2.1.

1° @, =@, =: D for every w, o « (—BPIH'

h,fe.

2° N atuml myectwns D, —~ D, are lmear isomorphisms for topologies
transported by a,.

3° The representation of comolm‘wn algebra 2 in D is algebmwall'y
irreducible. :

Proof. 1°. For every character y P, &, is a dense subspace of finite
dimensional space P,H, hence is identical with it. This shows that for
' eP,H =P, P, = P, we have &, =Ima, = §,. Reversing the roles
of z and % in this argument we obtain opposite inclusion. Thls implies
o, =,

3° follows immediately from the argument in 1° ‘

2° The basis of neighbourhoods in the topology transported by a,
is obtained by taking sets of the form ‘«,(V), where V ranges through
neighbourhoods in 2. From this and continuity of convolution in 2 we
infer that
*) 4(V) ={pe®: 9 =T, Usa’; p eV}

={pe®: 9 =Uu'; heVrf} < ay(W),

where W is a neighbourhood of 0 in 2 and U;z = .

Sinee we also have a, (V') < a, (W), that means that the topologies
transported by a, and by «, are equivalent.

‘We shall need the following slight extension of the proposition a.bove,
which we state separately:

PROPOSITION 2.1'. For every x ¢ ® define a,(f)
a: D2~ D

= Um. Then

is 1° surjective 2° open.

Proof. 1° follows from 3° above. Since # = U,s’ where & ¢ P, H
in virtue of 3° applies and the proof follows.

The representation of & in @ characterises completely the represen-
tation (U, H).

ProrosImtioN 2.2. Let (U, HY) and (U?, H*) be irreducible wunitary
representations of @ and let @', @ be corvesponding spaces constructed as
above. The representations (U, H*) and (U?, H?) are equivalent if and only
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if there ewists o linear operator A: @ — O* dnlertwining for vepresentations
of @ in O and P This being the case A turns out to be the restriction
to D' of a scalar multiple of a unitary operator on H'. (We do not suppose
the comtinuity of A).

Proof. The necessity of this condition is evident. We prove the
sufficiency. Since the representation of 2 in @° iy irreducible it follows
that A is an algebraical isomorphism onto.

A is automatically continuous, because the preimage of a neigh-
bourhood in @* of the form {U%w: @ ¢V} is the set {Up A" w: ¢ <V}
which ig in turn a neighbourhood in @

Because of this we can define a hermitian, ¢ — invariant continuous
form on &':

(@l%) 1= (p|y):+ (dp|Ap),

where (g |v); stands for the scalar product in H. Let 5 denote the ITil-
- bert space obtained by completion of @' normed by (-|-), and U unitary
representation of @ in # obtained as extension of U™

_ We shall show that the extention of the identity of @* to the con-
tinuous operator I: o — H' is still injective. The argument runs as
follows. Suppose that Kerl s {0}, hence by the intertwining property
of I the subspace KerI is K-invariant subspace of o, hence decomposes
into sum of subspaces P,(Kerl) < Kerl (l’x is formed with respect to
(U, H)).

But P,s# = closure of P,®". The restriction of P, to &' equals the
restriction of P} to @' (P} being formed with respect to (U*, H)), hence
we have P, = closure of P,&' = P;®' because the latter is finite
* dimensional. Moreover P,# = P,®' < @', hence P,(Kerl) c P, &' = &'
and this is a contradiction since I on &' is the identity. Being so we shall
indentify o with I(s#).

Now we show that (U, #) is irreducible. Assuming the opposite let
{0} # o#' = # be closed and invariant. For some character y we have
{0} #Pz.?f" cP# c @'. But then

O ={peh: 2=Uy,feD, yePH} W

Density of @' in # implies o' = o# and Schurs lemma in turn shows
that (p|9); = A;(¢|y) for appropriate A,.

DEFINITION 2.3. For a Fréchet space I let @, denote the family
of left-invariant prehilbert seminorms on 2(#) and put %y = (2(8), Qn)
ie. the space 2 (H) topologized by Q. ‘

.We note that this family of seminorms is a bassis of continuous
seminorms on % in the sense that the sets AV,, where 1 > 0 and Vy

is the unit semiball of ¢ <@y, form a basis of neighbourhoods for the
topology of Z.
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 Let H? denote the Hilbert space obtained by completion of 2 (B)/N,
where N, = {f: q(f, f) =0} for g < Qp.

The space of sesquilinear separately continuous forms on @ X F,
linear with respect to the second variable can be imbedded into the space
B(2, B) of separately continuous bilinear forms on 2 X F which in turn
is canonieally isomorphic to the dual of 2 (H). This imbedding is given by

Jzb(f, ) := b(az(f*)y 6)7 b: OXE~C.

We shall be interested here in such sesquilinear forms which under
this identification give continuous form on %z. We shall also regard
H? as the subspace of %g.

Lemma 2.4. If j,b e H = &y then for every o' <P,

Jpob e HY
Proof. Let y ¢ 2 be such that ' = U,s. By hypothesis
17:0(f, &) < Cq(f®e), C>0.
Then
528 (f, &)l = b(aw (f*), &) = [B(Upa', )]
= [b(Up Uy, 0)] = [5,b(9**f, 0l <O [y ldga(f®e)
é

in view of the left-invariance of g. N

DEFINITION 2.5. Let us denote: I(®, E) := j,*(%£z) — the space of
sesquilinear forms on @ X E continuous relatively to some g e¢@gz. Let
I'be a subgroup of @ and let (V, ) be a representation of I'. By V(P, B)
we denote the subspace of I(®, B) consisting of forms invariant relatively
to the action of a subgroup I'c G on @ and E. Explicitly it means
{I(®, B)> b belongs to V,(D,E)) (A b(U,p, V,e) =blg, e)

- el

We are now in the position to fty)rmulate one of the main results.

PROPOSITION 2.6. There exists an injection of I(D, H) into the space
of operators intertwining for the left reqular representation of @ in 2(E)
and the representation (U, H). -

Proof. Let belI(®,E) We define o: 9(E)—>5’ where @' is the
space of antilinear continuous functionals on .

ps o)y = [ BT 9, fl9))dg-
¢
Observe that for fixed ¢ this defines a bilinear form

DX B> (b, )~ [b(U; e, (h@e)(g)dg = b(Upxp, 6) = jyb(h, e).
G

In view of Lemma 2.4. j,b and j,b are equicontinuous i.e. jzb ¢ H?
implies j,b « HY hence j,b « 2.
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This shows that ot Zp— &' is continuous when @' is equiped with
its wealk fopology, and can be extended to a continuous mapping from
H%into @'. This extention is justified, because @’ is weakly cloged subspace
of the space of distributions on @&, hence complete.

Let # be canonical injection of H into >’

{pyn@ = (p|@).

Next step in the proof consists in constructing a commutative diagram
of spaces and mappings: ‘ ' s e

H—— @

A
™
[
HY

Diagram 1.

For this we shall need the following lemma
' Lemvia 2.7. a) The subspace of functionals from @' vamishing iden-
tically on P, ® for all x + 5 is equal to n(P,H).

b) Let X9 (B) denote the algebraic divect sum of all subspaces of the
form P, (H), where y is a character of K. Then we have o(X2(B)) = (D).

Proof. Consider a character x on K for which P, D # 0. We denote

by @, tl}e closure in @ of the algebraic direct sum of the subspaces P, @,
where y' # 4, ie. ‘

@ PP =0,

xEX
Since P, @ = @, i finite dimengional D, DD, is closed in @ and contains
@, for all y. We know that X2 is dense in 9 [13] what implies @&,
dense in @. Hence we have ‘ ’

?=2,09, P = O,0b,
By elementary algebra dim Wed: w (@) = 0) L= =
. tw(Py) =0} = dim @), = dim®,.
?in the other hand dimn(®,) = dim @, and every form from 7 (,) vanishes
i entmg.ly on @,. This together with the equality P, ® = P, H mentioned
before implies part a) of the lemma.

Property b) follows from the observation that for f=P,f we have
{ Dy, of ) = 0. In fact, for y % 5 and ¢« @, ‘

and

Pye, of) =<(P,o, (Pf) = <PuP,p, o(f)> = 0.
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“We proceed with the proof of the Proposition 2.6. As remarked
above ¢ can be extended to the operator on Hilbert space H? Taking
quotient space modulo Kero and the operator associated with o in. quo-
tient space (which we denote also o) we obtain the continuous algebraic.
isomorphism intertwining for the representation of @ in H, = H?/Kerc
and the transpose of representation U in &' ‘

Let us suppose that H, = H' @ H" where both subspaces are closed
and invariant. We show that one of those must be empty. For otherwise
there are y' and y” such that P,H' # {0} and P, H'' # {0}. But then
(P, H') = (@) and similiarly o (P, H") = #(P) by Lemma 2.7. b). That
implies

o(H') s {Uw: © e P H', f e D} = y(D)

and o(H") > n(®P) by the same argument.

This is impossible since o is an isomorphism (algebraic) on H, and
H' and H'" are orthogonal.

Lemma 2.7 b) shows that the following definition makes sense

_ ©(f) =7 oo (f)
at least for fe X2(H).
" We easily observe that both ¢ and % are intertwining operators for
the representations of 2 in corresponding spaces, 8o this equality defines
7 a§ an operator from

D, ={Usx: feD,0¢ P, H,}
P

into ¢ = H intertwining for the representation of the convolution algebra
2 in @, and @ correspondingly. Hence the rypotheses of the Proposition
2.2 are satisfied and we see that v can be extended to the continuous
intertwining operator z: H, — H.

So we came to the end of the construction of Diagram 1.

2" H

H, y H
Diagram 2.

Here # denotes cannonical projection of 2 (F) into H? and =’ pro-
jection. onto. To end the proof it suffices put v, = vox o
The main results of this section is formulated as follows.
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THEOREM 2.8. (THE DUALITY THEOREM) Let (U, H) be a unitary
irreducible representation of G and @ the space consiructed above for the
representation (U, H). Let I' be an arbitrary closed subgroup of G. We denote
(V, B) a continuous representation of I' in a Fréchet space B. Let 2" be
the space of the differentiable representation of G induced by V in the sense
explained in Section 1.

Then there exists o bijection of the space V,.(D, H) onto the space
Zo(DY, H) of intertwining operators for the representations of G in 2¥
and H.

Proof. After the Proposition 2.6 we have an assignment

I(®, B)> b, e 2(2(B), H).

We are going to show that the condifion of I“invariance iinposed on
b results in the possibility of completing the diagram

2(B) S H

A

5 y
T,
%

Diagram 3.

It suffices to prove that f(f) = 0 implies z,(f) = 0. We know (cf
G. Mackey [6]) that for an arbitrary quasi-invariant measure p on G/I"
there exists a continuous function on @, say ¢, with following properties

elzy) = d(y)e(w)

and
(2.1) [fg = [ap@ f flgp)dy.
¢ air
So we have
(‘P\Tb(f)) = fb(lffl_l(p:f(g))d_(]
= J.4@ [ (U, 05, Tigr) iy ‘
=0Ld,u(m)@—1(g) ,fA(V"'l)b(U‘;l(p, V. o) dv
= [ du@)e™ (9)b(U; 0, Blg)) =
@/r

for f«Kerg and an arbitrary p. That implies 7,(f) = 0.
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The proof will be completed once we have shown that this assignment
is onto Lg(27, H). To this end let us define for T eZy(27, H) a form
b on @ F as follows

(2.2) b(Uz,e) = (x| TB(f* ®e)).

We observe that T = T, for this definition of ». In fact we have
(U1 Ty (8) = [b(U; Uy, (g))dg
) ¢

= [(z17(8(Z; 0y ®F(9))dg = [ (aT8(k(g) ®L;S))dy

G

~ [ (@ U7 R )T (B) g = (Tn2| TE ()

G
forany he2 and fe2(H).
Moreover we have
DU, Uz, V,e) = (2| T(BL; ¢)* @V ,e)
=(m|Tﬂ(R,(L;1¢)*®e)) = (@I T(8(¢" ®e)) =b(T,a, €)
what shows I invariance of b.
Tt remains to show the continuity of j, b relatively to some seminorm
from Q. Applying Schwarz inequality we get
[520(F, &) = [b(as(F"), )] = wiTﬁ(f®6)<

Ag the required seminorm we can take g(f) = | T8(f
the proof. '

NT(f@e)l il

). This completes

3. Applications. The duality theorem proved in Section 2 allows
us to deseribe the discrete irreducible components of an arbitrary unitary
induced representation. By discrete component we understand such rep-
resentation for which there exists an operator intertwining for this and
the given representation. w

Given an unitary induced representation (U”,H?) let us consider
the sesquilinear form on Z(H) defined by

q(f, by == p(Bf, Bh),

TaROREM 3.1. The intertwining number for the representations (UY, H?)
and a given wnitary irreducible representation (U, H) is equal to the di-
mension in V(®, B) of the subspace of forms for which

job e HY

f,h e 2(B).

d.6. jpb is continuous relatively to the seminorm g.-
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Proof. Let be Vp(P, E) be continuous reletively to the seminorm
pie.j,beH% According to diagram 1 the operator vox' maps continuoﬁsly
H%into H. To see that H? is isometric to H? recall that:

H? i3 the completion of 2 (H)/Kerpop normed by p and H? is the com-
pletion of A2 (E)/Ker p normed by p.

The very definition of ¢ shows that the operator T, intertwines
representation U” with U for every form satisfying the hypothesis.

To prove the opposite let T' be such an intertwining operator and
let b e V,(D, E) be corresponding form (ef 2.2). :

We know that j,b is continuous respectively to "the seminorm
q(f) = |[zom (f)|| which in turn is continuous relatively to g.

In the following we shall explain the connection between the notion
of the unitary induced representation and the induced representation
in the sense of Mackey.

- Let B be a Hilbert space with the scalar produet (-|-) and V be
a representation of the subgroup in ¥ of the form I's y — V, = A2 (y) U(y)
where U denotes an arbitrary unitary representation of G in H.

In this case we can define a positive definite left invariant hermitian

form on 27:

(8 = [ o7 (@) (f(0)| h())du (=),

G

where p i3 a quasi-invariant measure on G/I' and ¢ corresponding to 1f
via formula (2.1). . :
The condition imposed on b in the hypothesis of the Theorem 3.1

ie. beVy(D, ) and j,b < H? is equivalent to the continuity of the
functional

2(@)>f = [b(U;%0,f(g)dg = [ b(U; e, Bf(g)e™ (9)dulo)
g fennd

relatively to the seminorm ¢ = pop.

This means tha’c the Hunctional I vanishes on Ker # and can be re-
garded as a continuouy functional on HP. Applying the Fréchet—Riesz
theorem we see that there exists an element % ¢ H? for which the fol-

lowing equality holds
US) = p(h, Bf).
Comparing the above facts we obtain the following
(h(g)|e) =b(U; w,e)

which holds for an afbitra.ry 6cll aﬁd w almost all ¢.
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This gives the following

COROLLARY 3.2. The intertwining number of the induced represeniation
(UV, BP) and (U, H) is equal to the dimension of the subspace of forms from
V(®, B) such that the function

F: G290 2(g)0(U,,-) e B

is square integrable.

Bxplicity it means that the function

G>yg ——>(F(g)/F(g)) belongs to L'(G/T", du).

This corollary corresponds to the following well known theorems
and generalize them in case of groups with large subgroups.

1. Let G be a semisimple group with finite center, B-finite dimensional,
I' diserete and G/I' compact; it is the Gelfand and Piateckii-Sapiro
theorem in the theory of automorphic funections [4]. .

9. Under the assumption that G/I" is compact and possesses an in-
variant measure and F is finite-dimensional cf. OlSanskil [11].

Recently K. Maurin and L. Maurin have proved a general version
of the duality theorem for Mackey’s induced representations and
arbitrary locally compact groups assuming however a different continuity -

condition for the form b [9].
Both authors wish to ekpress their sincere thanks to Professor

Krzysztof Maurin for hig lively interest and encouragement in the work.
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Uber die Struktur der rationalen Operatoren
in der zweidimensionalen diskreten Operatorenrechnung

von

WERNER JENTSCH (Halle)

Zusammenfassung. In der Mikusifiskischen Operatorenrechnung sind die in
p (Differentiationsoperator) echt gebrochenen rationalen Operatoren stetige Funk-
tionen aus dem Grundring. Im Zweidimensionalen gilt ein entsprechender Satz nicht.

In der diskreten zweidimensionalen Operatorenrechnung ist der Grundring die
Menge der fiir alle nichtnegativen ganzzahligen m, n definierten Funktionen. Man
betrachtet hier Operatoren, die in p, g (Verschiebungsoperatoren) rational sind.
Es werden Kriterien fiir die Zugehorigkeit solcher Operatoren zum Grundring ange-
geben. Die Ergebnisse lassen sich bei der Losung linearer partieller Differenzenglei-
chungen verwerten.

In der von J. Mikusinski begriindeten Operatorenrechnung gehort
bekanntlich der Integrationsoperator zum Integrititsbereich (der fixr 1> 0
definierten und dort stetigen Funktionen), wihrend das inverse Element,
der Differentiationsoperator p, ein ,eigentlicher” Operator ist. Die in
p echt gebrochenen rationalen Operatoren sind aber stetige Funktionen
aus dem Integritdtsbereich.

Eine analoge Rolle spielen in der diskreten Operatorenrechnung der
Verschiebungsoperator v und sein inverses Element g. Der Operator
» gehort zum Integritdtsbereich (der fitr n = 0,1, .... definierten Zahlen-
folgen), wihrend ¢ ein (im zugehorigen Quotientenkdrper existierender)

- eigentlicher Operator ist. Wie im kontinuierlichen Fall gilt dann analog,

daf jeder in g echt gebrochene rationale Operator eine Zahlenfolge aus
dem Integritétsbereich darstellt (s. ebwa [1]).

Tn der zweidimensionalen Operatorenrechnung gelten die entsprechen-
den Sitze nicht, wie im kontinuierlichen Fall aus [9] und im diskreten
aus [4] zu ersehen ist. Im letzteren Fall ist z. B. 1/(p —¢) kein Element
des Integritéitsbereichs der filr nichtnegative ganze m,n definierten
Doppelfolgen. Die Operatoren p bzw. ¢ sind dabei die inversen Elemente
der Verschiebungsoperatoren » bzw. v (1), die ihrerseits im Integritétsbereich

* 1 fiir m=1,0=0, 1 fiir m =0, n=1,
Vuzd ¢
0 sonst; AN
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